Aliasing Issues:
Call by reference, Pointer programs

Claude Marché
Cours MPRI 2-36-1 “Preuve de Programme”
18 janvier 2017

Reminder of the last lecture

- Additional features of the specification language
 - Abstract Types: e.g. sets, maps
 - Product Types: records and such
 - Sum Types, e.g. lists
- Programs on lists
- Computer Arithmetic: bounded integers, floating-point numbers
- Additional feature of the programming language
 - Exceptions
 - Function contracts extended with exceptional post-conditions

Home Work from previous lecture

- Re-implement and prove linear search in an array, using an exception to exit immediately when an element is found.
 (see lin_search_exc.mlw)
- Implement and prove binary search using also a immediate exit:
 low = 0; high = n - 1;
 while low ≤ high:
 let m be the middle of low and high
 if a[m] = v then return m
 if a[m] < v then continue search between m and high
 if a[m] > v then continue search between low and m
 (see bin_search_exc.mlw)

Introducing Aliasing Issues

Compound data structures can be modeled using expressive specification languages
- Defined functions and predicates
- Product types (records)
- Sum types (lists, trees)
- Axiomatizations (arrays, sets)

Important points:
- pure types, no internal "in-place" assignment
- Mutable variables = references to pure types
 No Aliasing
Aliasing

Aliasing = two different “names” for the same mutable data

Two sub-topics of today’s lecture:
▶ Call by reference
▶ Pointer programs

Need for call by reference

Example: stacks of integers

```
type stack = list int

val s : ref stack

let fun push(x:int):unit
  writes s
  ensures s = Cons(x,s@Old)
  body ...

let fun pop(): int
  requires s ≠ Nil
  writes s
  ensures result = head(s@Old) ∧ s = tail(s@Old)
```

Outline

Need for call by reference

If we need two stacks in the same program:
▶ We don’t want to write the functions twice!

We want to write

```
type stack = list int

let fun push(s: ref stack,x:int): unit
  writes s
  ensures s = Cons(x,s@Old)
  body ...

let fun pop(s: ref stack): int
  requires s ≠ Nil
  writes s
  ensures result = head(s@Old) ∧ s = tail(s@Old)
```

...
Call by Reference: example

```ml
val s1, s2 : ref stack

let fun test():
  writes s1, s2
  ensures result = 13 \land head(s2) = 42
  body push(s1,13); push(s2,42); pop(s1)

  ▶ See file stack1.mlw
```

Aliasing problems

```ml
let fun test(s3,s4: ref stack) : unit
  writes s3, s4
  ensures { head(s3) = 13 \land head(s4) = 42 }
  body push(s3,13); push(s4,42)

let fun wrong(s5: ref stack) : int
  writes s5
  ensures { head(s5) = 13 \land head(s5) = 42 }
    something’s wrong !?
  body test(s5,s5)

Aliasing is a major issue
Deductive Verification Methods like Hoare logic, Weakest Precondition Calculus implicitly require absence of aliasing
```

Syntax

▶ Declaration of functions: (references first for simplicity)

```ml
let fun f(y1 : ref \tau_1, ..., y_k : ref \tau_k, x_1 : \tau'_1, ..., x_n : \tau'_n):
  ...
```

▶ Call:

```ml
f(z_1, ..., z_k, e_1, ..., e_n)
```

where each z_i must be a reference

Operational Semantics

Intuitive semantics, by substitution:

```latex
\Pi' = \{ x_i \leftarrow [t_i]_{\Sigma, \Pi} \} \quad \Sigma, \Pi' \models Pre \quad Body' = Body[y_i \leftarrow z_i] \\
\Sigma, \Pi, f(z_1, \ldots, z_k, t_1, \ldots, t_n) \rightsquigarrow \Sigma, \Pi, (Old : frame(\Pi', Body', Post))
```

▶ The body is executed, where each occurrence of reference parameters are replaced by the corresponding reference argument.

▶ Not a "practical" semantics, but that's not important...
Operational Semantics

Variant: Semantics by copy/restore:

\[\Sigma' = \Sigma[y_j \leftarrow \Sigma(z_j)] \quad \Pi' = \{ x_j \leftarrow [t_j]\Sigma, n \} \quad \Sigma, \Pi' \models \text{Pre} \]

\[\Sigma, \Pi, f(z_1, \ldots, z_k, t_1, \ldots, t_n) \leadsto \Sigma', \Pi, (\text{Old} : \text{frame}(\Pi', \text{Body}, \text{Post})) \]

\[\Sigma, \Pi' \models P[\text{result} \leftarrow v] \quad \Sigma' = \Sigma[z_j \leftarrow \Sigma(y_j)] \]

\[\Sigma, \Pi, (\text{frame}(\Pi', v, P)) \leadsto \Sigma', \Pi, v \]

Warning: not the same semantics!

Difference in the semantics

```plaintext
val g : ref int
let fun f(x:ref int):unit
    body x := 1; x := g+1

let fun test():unit
    body g := 0; f(g)
```

After executing test:
- Semantics by substitution: \(g = 2 \)
- Semantics by copy/restore: \(g = 1 \)

Aliasing Issues (1)

```plaintext
let fun f(x:ref int, y:ref int):
    writes x, y
    ensures x = 1 \land y = 2
    body x := 1; y := 2

val g : ref int

let fun test():
    body
    f(g,g);
    assert g = 1 \land g = 2 (* ??? *)
```

- Aliasing of reference parameters

Aliasing Issues (2)

```plaintext
val g1 : ref int
val g2 : ref int

let fun p(x:ref int):
    writes g1, x
    ensures g1 = 1 \land x = 2
    body g1 := 1; x := 2

let fun test():
    body
    p(g2);
    assert g1 = 1 \land g2 = 2; (* OK *)
    p(g1);
    assert g1 = 1 \land g1 = 2; (* ??? *)
```

- Aliasing of a global variable and reference parameter
Aliasing Issues (3)

```ml
val g : ref int
val fun f(x:ref int):unit
  writes x
  ensures x = g + 1
  (* body x := 1; x := g+1 *)

let fun test():unit
  ensures { g = 1 or 2 ? }
  body g := 0; f(g)
```

- Aliasing of a read reference and a written reference

Typing: Alias-Freedom Conditions

For a function of the form

\[f(y_1 : \tau_1, \ldots, y_k : \tau_k, \ldots) : \tau : \]

- writes \(\vec{w} \)
- reads \(\vec{r} \)

Typing rule for a call to \(f \):

\[
\ldots \quad \forall i \neq j \rightarrow z_i \neq z_j \quad \forall i, j, z_i \neq w_j \\ \forall i, j, z_i \neq r_j \\
\ldots \vdash f(z_1, \ldots, z_k, \ldots) : \tau
\]

- effective arguments \(z_j \) must be distinct
- effective arguments \(z_j \) must not be read nor written by \(f \)

Proof Rules

Thanks to restricted typing:

- Semantics by substitution and by copy/restore coincide
- Hoare rules remain correct
- WP rules remain correct

Aliasing Issues (3)

New need in specifications

Need to *specify read references in contracts*

```ml
val g : ref int
val f(x:ref int):unit
  reads g  (* new clause in contract *)
  writes x
  ensures x = g + 1
  (* body x := 1; x := g+1 *)

let fun test():unit
  ensures { g = ? }
  body g := 0; f(g)
```

- See file `stack2.mlw`
New references

▶ Need to return newly created references
▶ Example: stack continued

```plaintext
let fun create():ref stack
  ensures result = Nil
  body (ref Nil)
```

▶ Typing should require that a returned reference is always fresh

More on aliasing control using static typing: [Filliâtre, 2016]

Outline

Pointer programs

▶ We drop the hypothesis “no reference to reference”
▶ Allows to program on linked data structures. Example (in the C language):

```plaintext
struct List { int data; linked_list next; }
linked_list;
while (p <> NULL) { p->data++; p = p->next }
```

▶ “In-place” assignment
▶ References are now values of the language: “pointers” or “memory addresses”

We need to handle aliasing problems differently

Syntax

▶ For simplicity, we assume a language with pointers to records
▶ Access to record field: e→f
▶ Update of a record field: e→f := e'
Operational Semantics

- New kind of values: \textit{loc} = the type of pointers
- A special value \textit{null} of type \textit{loc} is given
- A program state is now a pair of
 - a \textit{store} which maps variables identifiers to values
 - a \textit{heap} which maps pairs (\textit{loc}, field name) to values
- Memory access and updates should be proved safe (no "null pointer dereferencing")
- For the moment we forbid allocation/deallocation
 [See lecture next week]

Component-as-array trick

[\cite{Bornat, 2000}]

If
- a program is well-typed
- The set of all field names are known
then the heap can be also seen as a finite collection of maps, one for each field name:
- map for a field of type \(\tau\) maps \textit{loc} to values of type \(\tau\)

This “trick” allows to \textit{encode pointer programs} into our previous programming language:
- Use maps indexed by locs (instead of integers for arrays)

Component-as-array model

```plaintext
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{loc}</td>
<td>constant \textit{null} : \textit{loc}</td>
</tr>
<tr>
<td>\textit{α}</td>
<td>\textit{β}</td>
</tr>
</tbody>
</table>
```

```plaintext
\textit{val} \textit{acc}(\textit{field} : \textit{ref (map \textit{loc α}),l:loc}) : \textit{α}
\textit{requires} \textit{l} \neq \textit{null}
\textit{reads} \textit{field}
\textit{ensures} \textit{result} = \textit{select(field,l)}

\textit{val} \textit{upd}(\textit{field} : \textit{ref (map \textit{loc α}),l:loc,v:α }):\textit{unit}
\textit{requires} \textit{l} \neq \textit{null}
\textit{writes} \textit{field}
\textit{ensures} \textit{field} = \textit{store(field@Old,l,v)}
```

Encoding:
- Access to record field: \(e \rightarrow f\) becomes \textit{acc}(f,e)
- Update of a record field:
 \(e \rightarrow f := e'\) becomes \textit{upd}(f,e,e')

Example

- In C
  ```plaintext
  \textbf{struct} List { \textit{int} data; \textit{linked_list} next; }
  \textit{*linked_list;}
  \textbf{while} (p \neq \textbf{NULL}) \{ p->data++; p = p->next \}
  ```

- Encoded as
  ```plaintext
  \textit{val} \textit{data} : \textit{ref (map \textit{loc int})}
  \textit{val} \textit{next} : \textit{ref (map \textit{loc loc})}

  \textbf{while} \textit{p} \neq \textbf{null} \textbf{do}
  \textit{upd}(\textit{data},\textit{p},\textit{acc}(\textit{data},\textit{p})+1);
  \textit{p := acc(next,\textit{p})}
  ```
In-place List Reversal

A la C/Java:

```c
linked_list reverse(linked_list l) {
    linked_list p = l;
    linked_list r = null;
    while (p != null) {
        linked_list n = p->next;
        p->next = r;
        r = p;
        p = n
    }
    return r;
}
```

Specifying the function

Predicate `list_seg(p, next, pM, q)` :
- *p* points to a list of nodes *pM* that ends at *q*

 \[p = p_0 \xrightarrow{next} p_1 \cdots \xrightarrow{next} p_k \xrightarrow{next} q \]

 \[pM = Cons(p_0, Cons(p_1, \cdots Cons(p_k, Nil) \cdots)) \]

 pM is the *model list* of *p*

```pred
predicate list_seg (p:loc, next:map loc loc, pM:list loc, q:loc) =
match pM with
| Nil -> p = q
| Cons h t ->
  p ≠ null ∧ h=p ∧ list_seg(select(next,p),next,t,q)
```

In-place Reversal in our Model

```ocaml
let fun reverse (l:loc) : loc =
  let p = ref l in
  let r = ref null in
  while (p ≠ null) do
    let n = acc(next,p) in
    upd(next,p,r);
    r := p;
    p := n
  done;
  r
```

Goals:

- Specify the expected behavior of `reverse`
- Prove the implementation

Specification

- pre: input *l* well-formed:
 \[\exists l_M.list_seg(l, next, l_M, null) \]
- post: output well-formed:
 \[\exists r_M.list_seg(result, next, r_M, null) \]
 and
 \[r_M = rev(l_M) \]

Issue: quantification on *lM* is global to the function

- Use *ghost* variables
Annotated In-place Reversal

```ml
let fun reverse (l:loc) (ghost lM:list loc) : loc =
  requires list_seg(l,next,lM,null)
  writes next
  ensures list_seg(result,next,rev(lM),null)

body
  let p = ref l in
  let r = ref null in
  while (p ≠ null) do
    let n = acc(next,p) in
    upd(next,p,r);
    r := p;
    p := n
  done;
  r
```

See file `linked_list_rev.mlw`

In-place Reversal: loop invariant

```ml
while (p ≠ null) do
  let n = acc(next,p) in
  upd(next,p,r);
  r := p;
  p := n
Local ghost variables \( p_M, r_M \)
```

List segments

```ml
list_seg(p, next, p_M, null)
list_seg(r, next, r_M, null)
append(rev(p_M), r_M) = rev(l_M)
```

Needed lemmas

To prove invariant \(\text{list}_\text{seg}(p, \text{next}, p_M, \text{null}) \), we need to show that \(\text{list}_\text{seg} \) remains true when \(\text{next} \) is updated:

```ml
lemma list_seg_frame: forall next1 next2:map loc loc,
  p q r v: loc, pM:list loc.
  list_seg(p,next1,pM,q) ∧
  next2 = store(next1,r,v) ∧
  not mem(r,pM) → list_seg(p,next2,pM,q)
```

This is an instance of a general frame property

Frame property

For a predicate \(P \), the frame of \(P \) is the set of memory locations \(fr(P) \) that \(P \) depends on.

```ml
Frame property
P is invariant under mutations outside \( fr(P) \)
```

```ml
H ⊨ P   H ∩ fr(P) = H' ∩ fr(P)  \[\text{H' ⊨ P}\]
```

See also [Kassios, 2006]
Needed lemmas

- To prove invariant \(\text{list_seg}(p, \text{next}, pM, \text{null}) \), we need to show that \(\text{list SEG} \) remains true when \(\text{next} \) is updated:

 \[
 \text{list SEG}(p, \text{next}, pM, \text{null}) \rightarrow \text{no_repet}(pM)
 \]

- But to apply the frame lemma, we need to show that a path going to \text{null} cannot contain repeated elements

```
lemma list_no_repet:
  forall next:map loc loc, p: loc, pM:list loc.
  list SEG(p,next,pM,\text{null}) \rightarrow \text{no_repet}(pM)
```

Exercise

The algorithm that appends two lists \text{in place} follows this pseudo-code:

```plaintext
append(l1,l2 : loc) : loc
if l1 is empty then return l2;
let ref p = l1 in
while p→next is not null do p := p→next;
p→next := l2;
return l1
```

1. Specify a post-condition giving the list models of both \text{result} and \text{l2} (add any ghost variable needed)
2. Which pre-conditions and loop invariants are needed to prove this function?

See \text{linked_list_app.mlw}

Bibliography

Aliasing control using static typing

Component-as-array modeling

Advertising next lectures

- Reasoning on pointer programs using the component-as-array trick is complex
 - need to state and prove frame lemmas
 - need to specify many disjointness properties
 - even harder is the handling of memory allocation
- *Separation Logic* is another approach to reason on heap memory
 - memory resources explicit in formulas
 - frame lemmas and disjointness properties are internalized

Schedule

- Lecture on January 25th by Arthur Charguéraud
- February 1st: lab session, help with the project, same room as usual, bring your laptop
- Lectures on February 8th, 15th, 22th
- Monday February 27th, deadline for sending your project solution
- Written exam: March 1st, 16:00, room 2036