YES Termination Proof using AProVETerm Rewriting System R:
[N, M, X, V1, V2]
U11(tt, N) -> N
U21(tt, M, N) -> s(plus(N, M))
U31(tt) -> 0
U41(tt, M, N) -> plus(x(N, M), N)
and(tt, X) -> X
isNat(0) -> tt
isNat(plus(V1, V2)) -> and(isNat(V1), isNat(V2))
isNat(s(V1)) -> isNat(V1)
isNat(x(V1, V2)) -> and(isNat(V1), isNat(V2))
plus(N, 0) -> U11(isNat(N), N)
plus(N, s(M)) -> U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) -> U31(isNat(N))
x(N, s(M)) -> U41(and(isNat(M), isNat(N)), M, N)

Termination of R to be shown.



   TRS
CSR to TRS Transformation




Trivial-Transformation successful.
Replacement map:
and(1, 2)
plus(1, 2)
U41(1, 2, 3)
U31(1)
x(1, 2)
U21(1, 2, 3)
s(1)
U11(1, 2)
isNat(1)

Old CSR:

U11(tt, N) -> N
U21(tt, M, N) -> s(plus(N, M))
U31(tt) -> 0
U41(tt, M, N) -> plus(x(N, M), N)
and(tt, X) -> X
isNat(0) -> tt
isNat(plus(V1, V2)) -> and(isNat(V1), isNat(V2))
isNat(s(V1)) -> isNat(V1)
isNat(x(V1, V2)) -> and(isNat(V1), isNat(V2))
plus(N, 0) -> U11(isNat(N), N)
plus(N, s(M)) -> U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) -> U31(isNat(N))
x(N, s(M)) -> U41(and(isNat(M), isNat(N)), M, N)

new TRS:

U11(tt, N) -> N
U21(tt, M, N) -> s(plus(N, M))
plus(N, 0) -> U11(isNat(N), N)
plus(N, s(M)) -> U21(and(isNat(M), isNat(N)), M, N)
U31(tt) -> 0
U41(tt, M, N) -> plus(x(N, M), N)
x(N, 0) -> U31(isNat(N))
x(N, s(M)) -> U41(and(isNat(M), isNat(N)), M, N)
and(tt, X) -> X
isNat(0) -> tt
isNat(plus(V1, V2)) -> and(isNat(V1), isNat(V2))
isNat(s(V1)) -> isNat(V1)
isNat(x(V1, V2)) -> and(isNat(V1), isNat(V2))



   TRS
CSRtoTRS
       →TRS1
Dependency Pair Analysis



R contains the following Dependency Pairs:

U21'(tt, M, N) -> PLUS(N, M)
PLUS(N, 0) -> U11'(isNat(N), N)
PLUS(N, 0) -> ISNAT(N)
PLUS(N, s(M)) -> U21'(and(isNat(M), isNat(N)), M, N)
PLUS(N, s(M)) -> AND(isNat(M), isNat(N))
PLUS(N, s(M)) -> ISNAT(M)
PLUS(N, s(M)) -> ISNAT(N)
U41'(tt, M, N) -> PLUS(x(N, M), N)
U41'(tt, M, N) -> X(N, M)
X(N, 0) -> U31'(isNat(N))
X(N, 0) -> ISNAT(N)
X(N, s(M)) -> U41'(and(isNat(M), isNat(N)), M, N)
X(N, s(M)) -> AND(isNat(M), isNat(N))
X(N, s(M)) -> ISNAT(M)
X(N, s(M)) -> ISNAT(N)
ISNAT(plus(V1, V2)) -> AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) -> ISNAT(V1)
ISNAT(plus(V1, V2)) -> ISNAT(V2)
ISNAT(s(V1)) -> ISNAT(V1)
ISNAT(x(V1, V2)) -> AND(isNat(V1), isNat(V2))
ISNAT(x(V1, V2)) -> ISNAT(V1)
ISNAT(x(V1, V2)) -> ISNAT(V2)

Furthermore, R contains three SCCs.


   TRS
CSRtoTRS
       →TRS1
DPs
           →DP Problem 1
Size-Change Principle
           →DP Problem 2
SCP
           →DP Problem 3
SCP


Dependency Pairs:

ISNAT(x(V1, V2)) -> ISNAT(V2)
ISNAT(x(V1, V2)) -> ISNAT(V1)
ISNAT(s(V1)) -> ISNAT(V1)
ISNAT(plus(V1, V2)) -> ISNAT(V2)
ISNAT(plus(V1, V2)) -> ISNAT(V1)


Rules:


U11(tt, N) -> N
U21(tt, M, N) -> s(plus(N, M))
plus(N, 0) -> U11(isNat(N), N)
plus(N, s(M)) -> U21(and(isNat(M), isNat(N)), M, N)
U31(tt) -> 0
U41(tt, M, N) -> plus(x(N, M), N)
x(N, 0) -> U31(isNat(N))
x(N, s(M)) -> U41(and(isNat(M), isNat(N)), M, N)
and(tt, X) -> X
isNat(0) -> tt
isNat(plus(V1, V2)) -> and(isNat(V1), isNat(V2))
isNat(s(V1)) -> isNat(V1)
isNat(x(V1, V2)) -> and(isNat(V1), isNat(V2))





We number the DPs as follows:
  1. ISNAT(x(V1, V2)) -> ISNAT(V2)
  2. ISNAT(x(V1, V2)) -> ISNAT(V1)
  3. ISNAT(s(V1)) -> ISNAT(V1)
  4. ISNAT(plus(V1, V2)) -> ISNAT(V2)
  5. ISNAT(plus(V1, V2)) -> ISNAT(V1)
and get the following Size-Change Graph(s):
{5, 4, 3, 2, 1} , {5, 4, 3, 2, 1}
1>1

which lead(s) to this/these maximal multigraph(s):
{5, 4, 3, 2, 1} , {5, 4, 3, 2, 1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
plus(x1, x2) -> plus(x1, x2)
x(x1, x2) -> x(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.


   TRS
CSRtoTRS
       →TRS1
DPs
           →DP Problem 1
SCP
           →DP Problem 2
Size-Change Principle
           →DP Problem 3
SCP


Dependency Pairs:

PLUS(N, s(M)) -> U21'(and(isNat(M), isNat(N)), M, N)
U21'(tt, M, N) -> PLUS(N, M)


Rules:


U11(tt, N) -> N
U21(tt, M, N) -> s(plus(N, M))
plus(N, 0) -> U11(isNat(N), N)
plus(N, s(M)) -> U21(and(isNat(M), isNat(N)), M, N)
U31(tt) -> 0
U41(tt, M, N) -> plus(x(N, M), N)
x(N, 0) -> U31(isNat(N))
x(N, s(M)) -> U41(and(isNat(M), isNat(N)), M, N)
and(tt, X) -> X
isNat(0) -> tt
isNat(plus(V1, V2)) -> and(isNat(V1), isNat(V2))
isNat(s(V1)) -> isNat(V1)
isNat(x(V1, V2)) -> and(isNat(V1), isNat(V2))





We number the DPs as follows:
  1. PLUS(N, s(M)) -> U21'(and(isNat(M), isNat(N)), M, N)
  2. U21'(tt, M, N) -> PLUS(N, M)
and get the following Size-Change Graph(s):
{1} , {1}
1=3
2>2
{2} , {2}
2=2
3=1

which lead(s) to this/these maximal multigraph(s):
{2} , {1}
2>2
3=3
{1} , {2}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   TRS
CSRtoTRS
       →TRS1
DPs
           →DP Problem 1
SCP
           →DP Problem 2
SCP
           →DP Problem 3
Size-Change Principle


Dependency Pairs:

X(N, s(M)) -> U41'(and(isNat(M), isNat(N)), M, N)
U41'(tt, M, N) -> X(N, M)


Rules:


U11(tt, N) -> N
U21(tt, M, N) -> s(plus(N, M))
plus(N, 0) -> U11(isNat(N), N)
plus(N, s(M)) -> U21(and(isNat(M), isNat(N)), M, N)
U31(tt) -> 0
U41(tt, M, N) -> plus(x(N, M), N)
x(N, 0) -> U31(isNat(N))
x(N, s(M)) -> U41(and(isNat(M), isNat(N)), M, N)
and(tt, X) -> X
isNat(0) -> tt
isNat(plus(V1, V2)) -> and(isNat(V1), isNat(V2))
isNat(s(V1)) -> isNat(V1)
isNat(x(V1, V2)) -> and(isNat(V1), isNat(V2))





We number the DPs as follows:
  1. X(N, s(M)) -> U41'(and(isNat(M), isNat(N)), M, N)
  2. U41'(tt, M, N) -> X(N, M)
and get the following Size-Change Graph(s):
{1} , {1}
1=3
2>2
{2} , {2}
2=2
3=1

which lead(s) to this/these maximal multigraph(s):
{2} , {1}
2>2
3=3
{1} , {2}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:15 minutes