YES Termination Proof using AProVETerm Rewriting System R:
[X, Y, Z, I, P]
((X, Y), Z) -> (X, (Y, Z))
(X, nil) -> X
(nil, X) -> X
U11(tt) -> U12(tt)
U12(tt) -> tt
isNePal((I, (P, I))) -> U11(tt)

Termination of R to be shown.



   TRS
CSR to TRS Transformation




Lucas-Transformation successful.
Replacement map:
U12(1)
(1, 2)
isNePal(1)
U11(1)

Old CSR:

((X, Y), Z) -> (X, (Y, Z))
(X, nil) -> X
(nil, X) -> X
U11(tt) -> U12(tt)
U12(tt) -> tt
isNePal((I, (P, I))) -> U11(tt)

new TRS:

((X, Y), Z) -> (X, (Y, Z))
(X, nil) -> X
(nil, X) -> X
U11(tt) -> U12(tt)
U12(tt) -> tt
isNePal((I, (P, I))) -> U11(tt)



   TRS
CSRtoTRS
       →TRS1
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

((X, Y), Z) -> (X, (Y, Z))
(X, nil) -> X
(nil, X) -> X
isNePal((I, (P, I))) -> U11(tt)

where the Polynomial interpretation:
  POL(U12(x1))=  x1  
  POL(__(x1, x2))=  1 + 2·x1 + x2  
  POL(tt)=  0  
  POL(nil)=  1  
  POL(isNePal(x1))=  x1  
  POL(U11(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   TRS
CSRtoTRS
       →TRS1
RRRPolo
           →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

U12(tt) -> tt

where the Polynomial interpretation:
  POL(U12(x1))=  1 + x1  
  POL(tt)=  0  
  POL(U11(x1))=  1 + x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   TRS
CSRtoTRS
       →TRS1
RRRPolo
           →TRS2
RRRPolo
             ...
               →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

U11(tt) -> U12(tt)

where the Polynomial interpretation:
  POL(U12(x1))=  x1  
  POL(tt)=  0  
  POL(U11(x1))=  1 + x1  
was used.

All Rules of R can be deleted.


   TRS
CSRtoTRS
       →TRS1
RRRPolo
           →TRS2
RRRPolo
             ...
               →TRS4
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   TRS
CSRtoTRS
       →TRS1
RRRPolo
           →TRS2
RRRPolo
             ...
               →TRS5
Dependency Pair Analysis



R contains no Dependency Pairs and therefore no SCCs.

Termination of R successfully shown.
Duration:
0:01 minutes