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Abstract—Operational Transformation (OT) is a consistency maintenance technique for collaborative editing systems—a special

class of distributed applications for supporting human-computer-human interaction and collaboration over communication networks.

The theory of causality has been the foundation of all prior OT systems, but it is inadequate to meet essential OT requirements in

functionality and correctness. In this paper, we analyze the limitation of the causality theory, propose a novel theory of operation

context as the new foundation for OT systems, and present a new OT algorithm—Context-based OT (COT)—which provides uniform

and efficient solutions to both consistency maintenance and undo problems. The COT algorithm has been implemented and used for

supporting a range of novel collaborative applications. The context theory and context vectors are potentially applicable to other

distributed computing applications.

Index Terms—Operational transformation, operation context, causality, consistency maintenance, distributed applications.
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1 INTRODUCTION

COLLABORATIVE editors allow multiple users to view and
edit shared documents over communication net-

works; they are a special class of distributed applications
for supporting human-computer-human interaction and
collaboration. Operational Transformation (OT) is a
technique originally invented for consistency maintenance
in collaborative text editors [2]. In more than 20 years, OT
has evolved to acquire new capabilities and support an
increasing number of new applications, including undo
[3], [4], [5], [6], operation notification and compression [7],
locking [8], HTML/XML and tree-structured document
editing [9], [10], [11], office productivity tools [12], [13],
3D digital media design tools [14], transparent applica-
tion-sharing environments [15], [16], [11], and replicated
mobile computing systems [17].

To effectively and efficiently support existing and
emerging applications, we must continue to extend the
capability and improve the quality of OT. The soundness of
the theoretical foundation for OT is crucial in this process.
One theoretical underpinning of all existing OT algorithms
is causality/concurrency [18], [2]: causally related operations
must be executed and transformed in their causal order;
concurrent operations must be transformed before their
execution. The theory of causality had played an important
role in guiding the design of early OT algorithms, but it is
limited to capturing causal relationships among user-
generated operations, which form only part of the opera-
tions in an OT system. This limitation leads to its

incapability of capturing essential OT-required relations
and conditions among operations of other types, including
transformed and inverse operations that are generated by
the OT system not by users. These limitations have caused
various OT correctness and complexity problems.

The limitation of causality had caused correctness
problems from the very beginning of OT history. The dOPT
algorithm was the first OT algorithm based on concurrency
relationships among operations [2]: a pair of operations is
transformable as long as the operations are concurrent.
However, later research discovered that the concurrency
condition alone is not sufficient, and another essential
condition is that the two operations involved in a
transformation must be defined on the same document
state. In reality, concurrent operations may not be defined
on the same state, and not all operations in an OT system
have causal/concurrent relationships with each other. The
failure to recognize these problems and to capture relevant
correctness conditions was the root of the well-known
dOPT puzzle [19]. The dOPT puzzle had been solved by
using various technical patches, but the theory of causality
remained at the core of follow-up OT algorithms.

The limitation of causality became even more prominent
when OT was applied to solve the undo problem in
collaborative editors. The causal relation is not defined for
inverse operations, which are derived from interpreting
meta-level undo commands, let alone capturing their OT-
related conditions with normal editing operations. To work
around this problem, special technical patches were invented
to maintain suitable relationships between inverse and other
operations under different circumstances, resulting in more
intricate and inefficient OT algorithms [5], [6].

After having designed, implemented, and experimented
with a series of OT algorithms of increased functionality and
complexity, we realized that technical patches and incre-
ment improvements to the existing theoretic framework are
no longer sufficient to cope with the complexity of existing
OT systems and to support the continual evolution of OT.
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We reflected on what had been learned and set out to
develop a new theoretical framework for better under-
standing and solving OT problems, reducing complexity,
verifying correctness, and improving efficiency. In this
paper, we report the main results of this effort: the theory
of operation context and the Context-based OT (COT)
algorithm.

The rest of this paper is organized as follows: First, we
present basic definitions of causality and discuss its limita-
tions in Section 2. Then, definitions of operation context and
COT conditions are presented in Section 3, followed by
context vectors as an efficient representation of contexts in
Section 4. In Section 5, we present the basic COT algorithm for
supporting consistency maintenance (do) and undo. Then,
we discuss properties for transformation functions and their
preconditions (PCs) in Section 6 and present COT solutions to
these properties by breaking their PCs in Section 7. We
discuss operation buffering schemes in the COT framework
and analyze their time and space complexity in Section 8.
Comparisons of the COT work with prior work are presented
in Section 9. Finally, major contributions of this work and
future work are summarized in Section 10. Supplemental
materials include formal proofs of theorems about the context
theory and the COT algorithm in Appendix A, context vector
representation of the document state and context-based
relations and conditions in Appendix B, and complexity
analysis of operation buffering schemes in Appendix C. The
appendices can be found on the CS Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2008.240.

2 BASIC CONCEPTS OF CAUSALITY AND ITS

LIMITATIONS

2.1 Causal Relationships among Operations and
Commands

The theory of causality is central to distributed computing
and to the design of prior OT algorithms. Following [18],
causal relations among user-generated operations/com-
mands in a collaborative editing session can be defined in
terms of their generation and execution orders [2], [20].

Definition 1. Causal-dependency relation “! .” Given two
operations/commands Oa and Ob, generated at sites i and j, Ob

is causal-dependent on Oa, denoted by Oa ! Ob, if and
only if: 1) i ¼ j and the generation of Oa happened before
the generation of Ob, 2) i 6¼ j and the execution of Oa at site j
happened before the generation of Ob, or 3) there exists an
operation Ox such that Oa ! Ox and Ox ! Ob.

Definition 2. Causal-independency relation “k.” Given two
operations/commands Oa and Ob, Oa and Ob are causal
independent or concurrent, denoted by OakOb, if and only
if neither Oa ! Ob nor Ob ! Oa.

The above causal relations have been adopted by all
existing OT systems. To illustrate causal relationships among
operations/commands, consider a real-time collaborative
editing session with two sites in Fig. 1. There are four editing
operations O1, O2, O3, and O4 and one undo command
UndoðO2Þ in this scenario. According to Definitions 1 and 2,
we have O2 ! O3 ! UndoðO2Þ because the generation of O2

happened before the generation of O3, which in turn

happened before the generation of UndoðO2Þ; O1 !
UndoðO2Þ because the execution of O1 at site 1 happened
before the generation of UndoðO2Þ; and O1kO2 and O1kO3

because for each pair, neither operation’s execution hap-
pened before the other’s generation.

As vector logical clocks are used for capturing causality
in distributed systems [21], state vectors have been used to
time stamp operations for detecting their causal relation-
ships and for modeling document states in OT systems
[2], [4], [20].

2.2 Limitations of Causality

In Section 1, we have made some general statements on the
limitations of causality in relation to OT for motivating the
COT work. In this section, we use the scenario in Fig. 1 to
illustrate and elaborate on these general statements. In the
process of presenting the COT work, we provide further
elaboration on these points as necessary technical back-
grounds build up. At the end of the paper, we summarize
the limitations of causality and causality-based OT in
comparison with the COT work in Section 9.

2.2.1 Lack of Capability of Defining Relations among

All Operations in OT Systems

In the following discussions, the term IT-transformation is
used to mean the invocation of the Inclusion Transformation
(IT) function IT ðOa;ObÞ, which transforms operation Oa

against operation Ob in such a way that the impact of Ob is
effectively included in Oa [20]. This term is to differentiate
the invocation of the IT function from other steps involved
in a transformation process.

An OT system has at least two types of operation: original
operations, which are generated by users, and transformed
operations, which are outcomes of some transformations.
For OT systems supporting both do and undo, another two
types of operation can be distinguished: normal operations,
which are related to doing something, and inverse opera-
tions, which are generated from interpreting metalevel
commands for undoing executed operations [3], [5], [6]. In
combination, there are four types of operation in OT
systems supporting both do and undo. For example, all
operations O1, O2, O3, and O4 in Fig. 1 are original normal
operations; an original inverse operation O2 can be obtained
from interpreting command UndoðO2Þ; a transformed
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Fig. 1. A real-time collaborative editing scenario.



normal operation O01 can be obtained by IT-transforming O1

against O2, i.e., IT ðO1; O2Þ; and a transformed inverse
operation O2

0
can be obtained by IT-transforming O2 against

O3, i.e., IT ðO2; O3Þ. The four types of operation and
examples are summarized in Table 1.

According to Definitions 1 and 2, the causal relation is
defined only for original normal operations but not for the
other three types of operation. Consequently, the causal
relation is inadequate in capturing essential OT-required
conditions among all types of operation in an OT system.
One such condition is about what relationship two
operations must have before being IT-transformed. Under
the theory of causality, the commonly used condition is that
two operations can be IT-transformed if they have the
causal-independency (or concurrency) relationship. How-
ever, this condition is neither necessary nor sufficient for
two operations to be IT-transformed, which has caused
problems in supporting both do and undo in OT systems.

2.2.2 Problems in Supporting Consistency Maintenance

To make the discussion concrete, we instantiate the initial
document state and O1, O2, and O3 in Fig. 1 as follows:

. The initial document state is a string “ABC.”1

. O1 ¼ Insert½2; ‘‘x’’�, to insert “x” at position 2.

. O2 ¼ Insert½1; ‘‘12’’�, to insert “12” at position 1.

. O3 ¼ Insert½3; ‘‘3’’�, to insert “3” at position 3.

We examine the OT processing of these three operations
at both sites. At site 1, after executing O2 and O3, the
document state becomes “A123BC.” When O1 arrives, it
needs to be transformed against concurrent operations O2

and O3 according to the causality-based condition. Follow-
ing the dOPT algorithm [2], O1 is first IT-transformed
against O2 to produce a transformed operation:
O01 ¼ IT ðO1; O2Þ ¼ Insert½4; ‘‘x’’�, whose position parameter
is 4—an increment by two from the original position of O1

since the execution of O2 has shifted the position of O1 to
the right by two positions. Then, O01 is IT-transformed
against O3 to create O001 ¼ IT ðO01; O3Þ ¼ Insert½5; ‘‘x’’�,
whose position is 5—an increment by one from the position
of O01 since the execution of O3 has shifted the position of O01
to the right by one position. Finally, the transformed

operation O001 is executed, and the document state becomes
“A123BxC,” which correctly preserves the effect of O1.

Although the correct result is achieved in the above
transformation process at site 1, this is not obtained by
strictly following the causality-based condition: the
transformed operation O01 and the original operation O3 are
IT-transformed, but they do not have any causal relation-
ship. This means that the causal relationship is not a
necessary condition for two operations to be IT-transformed.
Prior OT algorithms have used other noncausal relationships
among operations to determine whether two operations can
be IT-transformed, which is nontrivial and ad hoc under
complex scenarios [19], [20].

At site 0, after executing O1, the document state becomes
“AxBC.” When O2 arrives, it is IT-transformed against
concurrent operation O1 to produce O02¼IT ðO2; O1Þ¼
Insert½1; ‘‘12’’�. In this IT-transformation, O02 ¼ O2 because
the execution of O1 does not have any effect on the position
parameter of O2. After executing O02, the document state
becomes “A12BxC,” which correctly preserves the effect of
O2. Then, when O3 arrives, it is IT-transformed against
concurrent operation O1 according to the causality-based
condition. After this transformation, we get O03 ¼
IT ðO3; O1Þ¼ Insert½4; ‘‘3’’� since O1’s position is at the left
side ofO3’s position by comparing their position parameters.
However, executing O03 would result in the document
state “A12B3xC,” which does not preserve the effect of O3

and is also inconsistent with the state “A123BxC” at site 1.
This is the well-known dOPT puzzle [19], which demon-
strates that the causality-based condition is insufficient for
capturing the required operation relation for correct
IT-transformation.

The root of the problem is that O3 (defined on “A12BC”)
and O1 (defined on “ABC”) are not defined on the same
document state so their position parameters are not
comparable. The solution to this problem is to first trans-
form O1 into a suitable form that is defined on the same
state as O3 and then IT-transform O3 against this new form
of O1. More specifically, O1 needs to be IT-transformed
against O2 to get O01 ¼ Insert½4; ‘‘x’’�, which is defined on
the same document state as O3; then, O3 is IT-transformed
against O01 to get O03 ¼ Insert½3; ‘‘3’’�, which correctly
detected the position of O01 is at the right side of O3’s
position. Executing the new O03 would result in a correct
document state “A123BxC,” which preserves the effect of
O3 and is consistent with the state at site 1.

Although the dOPT puzzle can be and has been solved
[19], the required IT-transformation condition involved in
the above solution, i.e., the two input operations to the IT
function must be defined on the same document state,
cannot be captured by the causal relation among opera-
tions. To work around this problem, various technical
patches were invented to maintain and detect the required
IT-transformation condition in different OT systems [19].

2.2.3 Problems in Supporting Undo

To undo an operation O, the user may generate a command
UndoðOÞ, which is a metalevel command and has to be
interpreted by executing a suitable inverse operation O. The
undo effect, adopted by OT-based undo solutions [3], [5], [6],
is to eliminate the effect of O but retain the effects of other
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TABLE 1
Four Types of Operation in an OT System Supporting Both Do

and Undo, with Examples from the Scenario in Fig. 1

1. In OT literature, it is common to use a string of characters to model a
document state, but the actual document state to which OT is applicable
may contain objects of any type, which may not necessarily be viewed as a
sequence from the user interface. The reader is referred to [11] and [14] for
discussions on how to map complex document states into the OT data
model.



operations in the document. To achieve this undo effect, O
may have to be transformed with other operations even
though it has no causal relationships with those operations.

To illustrate, we focus on command UndoðO2Þ and
operation O4 in Fig. 1. The intended effect of undoing O2

is to eliminate the effect of O2 but retain the effects of O1

and O3. As O2 is not the last operation executed on the
document state, the intended undo effect cannot be
achieved by executing the inverse of O2, denoted as O2,
on the current document state. We must transform O2

against all operations executed after O2 (i.e., O3 and O1).
However, the causality-based condition cannot be used to
detect these transformation targets since there is no causal
relation defined between O2 and O3 and O1.

The situation becomes even more complex when inverse
operations are mixed with normal editing operations. For
example, when the normal editing operation O4 arrives at
site 1, it must be transformed against O2 since the current
document state on which O4 is to be executed is different
from the document state on which O4 was generated: the
former includes the effect of O2, but the latter does not.
Clearly, this transformation cannot be detected by the
causality-based condition because there is no causal relation
between O4 and O2. One might be tempted to fix this
problem by allowing O2 to inherit from UndoðO2Þ the causal
relation with other operations so that O2 would be treated
as being concurrent with O4 (since UndoðO2ÞkO4) and hence
be transformed with O4. However, this quick fix does not
work in achieving the intended undo effect: it would
incorrectly treat O2 as being causally after O3 and O1, thus
missing the transformation of O2 against O3 and O1.

The root of this problem is deep and related to the
fundamental limitation of the causality theory: an inverse
operation has no causal relation with any other operation.
This example also illustrates that the relationships between
inverse and normal operations, as required for achieving
the intended undo effect, cannot be defined by the “happen-
before” relationship [18]. To work around these and other
undo-related problems/puzzles, various technical patches
had been invented to keep track of suitable but noncausal
relationships among inverse and other operations under
different circumstances, resulting in complex, inefficient, or
restrictive OT solutions to the undo problem [3], [5], [6].

In summary, the causal relation is limited to operations/
commands directly generated by users but undefined for
inverse operations and operations obtained from transfor-
mations. The lack of capability of capturing OT-related
relationships among all operations has had important
impact on the design of OT algorithms. Work-around
patches have made prior OT systems complex, intricate,
and inefficient, which hinders the understanding, verifica-
tion, application, and continual evolution of OT. To solve
these problems, we need a new theoretic framework that is
able to capture essential OT conditions for all types of
operation and that allows clean, efficient, and uniformed
solutions to both do and undo problems.

3 OPERATION CONTEXT

3.1 Basic Concept of Operation Context

Conceptually, each operation O is associated with a context,
denoted by CðOÞ, which corresponds to a document state on

which the operation is defined. The significance of operation
context is that the effect of an operation can be correctly
interpreted only in its own context. The ability to determine,
compare, and update operation contexts is essential for OT
systems to correctly execute and transform operations.

To facilitate comparison and manipulation of operation
contexts, it is necessary to explicitly represent operation
context. Since the context of an operation corresponds to the
document state on which the operation is defined, the
problem of context representation can be reduced to the
problem of document state representation. In an OT-based
collaborative editor, a document state can be uniquely
characterized by the set of original operations executed so
far on the document. These original operations may be
executed in different orders or forms at different sites, but
they must produce the same document state according to the
convergence requirement [20]. Moreover, the difference
between two document states can be expressed in terms of
different original operations executed on these two states.
Since every transformed operation must come from an
original operation, we use orgðOÞ to denote the original
operation ofO. For example,orgðO01Þ ¼ O1, andorgðO001Þ ¼ O1.
If O itself is an original operation, then orgðOÞ ¼ O. We use a
set of original operations, rather than transformed opera-
tions, to represent a document state.

Definition 3. Document state representation. A document
state, denoted as DS, can be represented as follows:

1. The initial document state is represented as DS ¼ f g.
2. After executing an operation O of any type on DS,

the new document state is represented by
DS0 ¼ DS [ forgðOÞg.

Based on the above document state representation, the
context of an original normal operation should be the same
as the document state from which this operation was
generated. To achieve the undo effect in [6], an original
inverse operation O should be defined on the document
state DS ¼ CðOÞ [ fOg, which is the state immediately after
executing the original operation O on the state CðOÞ. A
transformed operation O0, where O0 ¼ IT ðO;OxÞ, should be
defined on the document state DS ¼ CðOÞ [ forgðOxÞg,
which is the state achievable by executing Ox on the state
CðOÞ. More precisely, the context of an operation of any
type is defined as follows:

Definition 4. The context of an operation.

1. For an original normal operation O, CðOÞ ¼ DS,
where DS is the document state from which O was
generated.

2. For an original inverse operation O, CðOÞ ¼
CðOÞ [ fOg, where O is the original operation to
be undone.

3. For a transformed normal or inverse operation O0,
CðO0Þ ¼ CðOÞ [ forgðOxÞg, where O0 ¼ IT ðO;OxÞ.

For the scenario in Fig. 1, we have CðO1Þ ¼ f g,
CðO2Þ ¼ f g, CðO3Þ ¼ fO2g, and CðO4Þ ¼ fO1; O2; O3g by
statement 1 in Definition 4; CðO2Þ ¼ fO2g by statement 2
in Definition 4; and CðO02Þ ¼ fO1g (O02 ¼ IT ðO2; O1Þ) by
statement 3 in Definition 4.
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3.2 Context-Dependency/-Independency Relations

Based on operation context, the context-dependency/
independency relation among operations can be defined
in terms of whether an original operation is included in
the context of another operation of any type.

Definition 5. Context-dependency relation “!c ”. Given an

original operation Oa and an operation Ob of any type, Ob is
context-dependent on Oa, denoted by Oa !

c
Ob, if and only

if 1) Oa 2 CðObÞ or 2) there exists an original operation Ox

such that Oa !
c
Ox and Ox !

c
Ob.

It should be noted that the context-dependency relation
is defined between an original (normal or inverse) operation
and another operation of any type (original or transformed).
This is because every operation has a context, but only
original operations can be included in a context.

Definition 6. Context-independency relation “k
c

”. Given

two original operations Oa and Ob, Oa and Ob are context

independent, denoted by Oa k
c

Ob, if and only if neither

Oa !
c
Ob nor Ob !

c
Oa.

It can be shown that if both Oa and Ob are original normal

operations, then Oa!
c
Ob is equivalent to Oa!Ob, andOa k

c

Ob is equivalent to OakOb (Theorem 1 in Appendix A.1). In

other words, the causal-dependency/independency relation

is a special case of the context-dependency/independency

relation.

For original normal operations O1, O2, O3, and O4 in

Fig. 1, we have O1 k
c

O2 and O1kO2; O1 k
c

O3 and O1kO3;

O2 !
c
O3 and O2 ! O3; O1 !

c
O4 and O1 ! O4; O2 !

c
O4

and O2 ! O4; and O3 !
c
O4 and O3 ! O4. However, for

transformed and inverse operations O01 ¼ IT ðO1; O2Þ,
O02 ¼ IT ðO2; O1Þ, and O2, we have O1 !

c
O02 but O1 6! O02;

O2 !
c
O01 but O2 6! O01; and O2 !

c
O2 but O2 6! O2.

3.3 Context-Based OT Conditions

Based on operation context, we have formulated six
Context-based Conditions (CCs) to capture essential re-
quirements for correct operation execution and transforma-
tion in OT systems.

Context-based Condition 1 (CC1). Given an original opera-
tion O and a document state DS, where O 62 DS, O can be
transformed for execution on DS only if CðOÞ � DS.

CC1 imposes a general constraint on the execution order
of operations in an OT system and must be satisfied before
an operation is given to the OT system for transformation. It
can be shown that meeting CC1 is equivalent to executing
operations in their context-dependency orders (Theorem 2
in Appendix A.1). When O is an original normal operation,
all operations that are causally before O must be included in
CðOÞ (Theorem 1 and Corollary 1 in Appendix A.1).
Therefore, CC1 covers the causality-based condition that
original normal operations should be executed in their
causal orders [2], [19]. When O is an original inverse
operation, CðOÞmust include the operation to be undone by
O (see statement 2 of Definition 4), so CC1 preserves the do-

undo ordering among normal and inverse operations [6].

Context-based Condition 2 (CC2). Given an original
operation O and a document state DS, where O 62 DS and
CðOÞ � DS, DS � CðOÞ2 is the set of operations that O must
be transformed against before being executed on DS.

CC2 determines the group of target operations that O
should be transformed against in order to be correctly
executed on DS. It can be shown that target operations in
DS � CðOÞ are context-independent of O (Theorem 3 in
Appendix A.1). When O is an original normal operation,
DS � CðOÞ must include all executed original operations
that are concurrent with O (according to Theorem 1).
Therefore, CC2 covers the causality-based transformation
condition that O should be transformed against concurrent
operations [19]. When O is an inverse operation, DS � CðOÞ
must include those operations that are generated after the
operation to be undone by O [6]. Thus, CC2 correctly
determines the set of target operations for an inverse
operation as well. In summary, CC2 gives a uniformed
condition in determining target operations for both original
normal and inverse operations.

Context-based Condition 3 (CC3). Given any operationO and
a state DS, O can be executed on DS only if CðOÞ ¼ DS.

CC3 imposes a context-state-equivalence condition for
executing all types of operation in OT systems. Every OT
algorithm must ensure CC3 for correctness.

Context-based Condition 4 (CC4). Given an original opera-
tionOx and an operationO of any type, whereOx 62 CðOÞ,Ox

can be transformed to the context ofO only if CðOxÞ � CðOÞ.
CC4 ensures that Ox is transformable to the context of O.

If CðOxÞ 6� CðOÞ, then there must be an original operation
Oy 2 CðOxÞ, but Oy 62 CðOÞ. Under such circumstances, Ox

cannot be transformed to the new context CðOÞ since IT-
transformation cannot remove Oy from CðOxÞ (see state-
ment 3 of Definition 4).

When Ox is one of target operations for O to be
transformed against, as determined by CC2 and CC5 (see
below), CC4 imposes an ordering condition for Ox to be
selected from a group of target operations for transforma-
tion with O. It can be verified that meeting CC4 is
equivalent to selecting target operations in their context-
dependency order (Theorem 8 in Appendix A.3).

Context-based Condition 5 (CC5). Given an original opera-
tionOx and an operationO of any type, whereOx 62 CðOÞ and
CðOxÞ � CðOÞ, CðOÞ � CðOxÞ is the set of operations that Ox

must be transformed against before being IT-transformed
with O.

CC5 determines the target operations that Ox must be
transformed against in order to be defined on the
context of O.

Context-based Condition 6 (CC6). Given two operations Oa

and Ob, they can be IT-transformed with each other,
IT ðOa;ObÞ or IT ðOb;OaÞ, only if CðOaÞ ¼ CðObÞ.

CC6 imposes a context-equivalence condition on applying
IT-transformation between two operations of any type [20].
Every OT algorithm must ensure CC6 for correctness.

It can be shown that under CC1 and CC6, Ox is in the
context of O if and only if O is context-dependent on Ox

(Theorem 4 in Appendix A.1). Furthermore, if Oy is a
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ence of DS and CðOÞ.



transformation target of Ox determined by CC5, then Ox

and Oy must be context-independent (Theorem 5 in
Appendix A.1).

Table 2 gives a summary of context-based conditions:
CC1 and CC4 are required for ensuring correct ordering of
operation execution and transformation, CC2 and CC5 are
required for determining correct transformation target
operations, and CC3 and CC6 are required for ensuring
correct operation execution and transformation. Apart from
CC1, which must be ensured by external schemes/protocols
before invoking the OT algorithm, CC2-CC6 must be
ensured by the OT algorithm. These context-based condi-
tions are described declaratively and impose no specific
way of implementation. They form the foundation for the
COT algorithm in Sections 5 and 7.

4 CONTEXT VECTORS

To represent the set of operations in a context efficiently, we
devised the context vector, which can be used for time
stamping operations in propagation. The context vector is
an important element of the operation context theory.

4.1 Representing Original Normal Operations
in a Context

For notational convenience, we assume that a collaborative
editing session consists of N collaborating sites, identified
by 0; 1; . . . ; N � 1. The original normal operations generated
at each site are strictly sequential, so each of them can be
uniquely identified by a pair of integers ðsid; nsÞ, where sid
is the site identifier, and ns is the local sequence number of
this operation.

Let Oij be an original normal operation generated at site i
with a sequence number j. If Oij is included in a context
CðOÞ, then Oi1; Oi2; . . . ; Oij�1 must also be included in CðOÞ
according to Definition 3 and Definition 4. Therefore, all
normal operations generated at the same site can be
sufficiently characterized by the largest sequence number
of these operations.

According to their generation sites, original normal
operations in a context can be partitioned into N groups,
so we can use N integers to represent all original normal
operations in a context.

4.2 Representing Original Inverse Operations
in a Context

An original inverse operation can be generated to undo an
original normal operation or to redo an undone operation.

The second case may occur when an undone operation is
redone later or when multiple concurrent undo commands
are generated to undo the same operation (see details in
Section 4.4). Under all circumstances, each original inverse
operation directly or indirectly corresponds to exactly one
original normal operation. For example, an original inverseO
may be generated to undo a normal operationO, and another
original inverseOmay be generated to undoO. BothO andO
correspond to the same normal operation O. Based on this
observation, all original inverse operations in an operation
context can be grouped by their corresponding original
normal operations: one inverse group for each undone
original normal operation.

Inverse operations in the same inverse group can be

further differentiated by a sequence number based on their

execution order within this group. For example, O and O

are in the same inverse group corresponding to O and

executed in this order, so O has a sequence number “1,” and

O has a sequence number “2.” In general, an original

inverse can be identified by a triple ðsid; ns; isÞ, where sid

and ns are the site identifier and sequence number of the

corresponding original normal operation, and is is the

inverse sequence number within the group.
Inverse groups can be further partitioned into N inverse

clusters according to the site identifiers of their correspond-

ing normal operations. The inverse cluster ici at site i can be

expressed as

ici ¼ ðns0; is0Þ; ðns1; is1Þ; . . . ; ðnsk�1; isk�1Þ
� �

;

where each pair ðnsj; isjÞ, 0 � j < k, represents an inverse

group with isj inverse operations, which correspond to the

same original normal operation whose sequence number is

nsj and site identifier is i. If no normal operation at site i has

been undone, ici is empty.

4.3 Representing Both Normal and Inverse
Operations in a Context

To represent an operation context with both original normal

and inverse operations, we use an N-dimensional context

vector, which is defined below.

Definition 7. Context vector. Given an operation O, its context

CðOÞ can be represented by the following context vector

CV ðOÞ:

CV ðOÞ ¼ ðns0; ic0Þ; ðns1; ic1Þ; . . . ; ðnsN�1; icN�1Þ½ �;

where for 0 � i � N � 1,

1. nsi represents all original normal operations generated
at site i, and

2. ici ¼ ½ðns0; is0Þ; ðns1; is1Þ; . . . ; ðnsk�1; isk�1Þ� repre-
sents all inverse operations for undoing normal
operations generated at site i, where ðnsj; isjÞ,
0 � j < k, represents an inverse group with isj

inverses related to the normal operation with sequence
number nsj.

To refer to various elements in CV ðOÞ, the following

notations shall be used: CV ðOÞ½i� refers to ðnsi; iciÞ,
CV ðOÞ½i�:ns refers to nsi, and CV ðOÞ½i�:ic refers to ici. In

the absence of inverse operations in an operation context, all
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ici, 0 � i � N � 1, would be empty, and a context vector
would be reduced to a state vector [2].

Based on Definition 7, it is straightforward to derive the
scheme for maintaining the vector representation for the
document state after executing each operation (according to
Definition 3). Moreover, the vector representation of
operation context can also be used to efficiently detect
context-based relations and conditions. These technical
details are provided in Appendix B.

In this paper, we have focused on how to define and use
context vectors to correctly represent operation contexts,
without concern about the size of context vectors. The context
vector size may become an issue if the number of users in a
session is very large (e.g., over hundreds/thousands) and/or
if the number of inverse operations accumulated in the
document state representation becomes very large. One
efficient way of representing inverse operations in context
vectors is to use the sequence-length encoding method: a
large number of inverse operations associated with a
consecutive sequence of normal operations generated by
the same user can be represented by two integers, i.e., the
lowest sequence number of those normal operations and a
length count of the sequence. This compression method is
most effective when operations are undone chronologically,
which often occurs in real undo usage [3], [5], [22]. Another
way is to keep the number of accumulated inverse operations
under control by regularly performing garbage collection on
operations in the document state representation. The reader is
referred to [20] for operation garbage collection and to [23] for
state vector compression in OT systems, which can be
adopted to COT systems.

4.4 Inverse Representation and Multi-Undo Effect

The inverse representation in the context vector is related to
the definition of multi-undo effects for concurrent undo
commands targeting the same normal operation. In the
proposed context vector definition, a single sequence counter
is used to record the total number of inverse operations
related to the same undone normal operation. The inverse
sequence counter is able to capture the knowledge of how
many times the original normal operation has been undone,
but unable to differentiate whether those undo commands are
concurrent or sequential. This inverse representation is able
to represent the document state and context in systems that
support the same multi-undo effect for both concurrent and
sequential undo commands targeting a common normal
operation, and this multi-undo effect is independent of the
order of interpreting these undo commands. We call the
above multi-undo as the Serialized and Order-independent
Multi-undo Effect (SOME).

SOME can support the eXclusive-OR (XOR) logic effect: an
operation is undone if the number of undo commands
performed on it is odd and not undone if the number is even.
This XOR effect can be achieved by having a later undo
command reverse the effect of the previous undo command.
Alternatively, SOME can also support the Inclusive-OR
(IOR)logic effect: an operation is undone if there is one undo
command performed on it, which can be achieved by having
the first undo command take effect, but later undo commands
take no effect. Both XOR and IOR effects have well-defined
semantics and may be equally easy to understand by users.

The XOR multi-undo effect was first proposed and

implemented in the REDUCE system [22] and has also been

implemented in the Generic Collaboration Engine for CoW-

ord [11]. From our experience, the XOR effect is easy to

implement since it allows a uniformed treatment to both

concurrent and sequential undo and to both undo and redo

(implemented as undoing an undone); it is also easy to use

thanks to its unique feature of changing the undo status of an

operation with a click of any undo button. If multiple users

simultaneously issue undo commands targeting the same

normal operation and if the resulting XOR effect is not what

these users wanted, just one more click of any undo button by

any user would fix it. This XOR multi-undo effect is similar to

the XOR logic effect commonly offered by the multiuser

interface-multiple power switch buttons located at different

places of a building for controlling a single lamp: the lamp

state (light on or off) can be changed by pushing any button. In

case that multiple users (unintentionally) simultaneously

push different buttons and the resulting lamp state is not what

these users wanted, any user can push any button to fix it.
As the proposed inverse representation in the context

vector does not capture the concurrency relationship among

undo commands targeting the same normal operation, it

cannot represent document states for systems that support

different multi-undo effects for concurrent and sequential

undo commands, e.g., supporting the IOR effect for con-

current undo commands but the XOR effect for sequential

undo commands. It is unclear what benefit the user may gain

from being offered different multi-undo effects for concur-

rent and sequential undo commands and whether the benefit

(if any) is worth the complexity and cost in differentiating

concurrent and sequential undo commands in inverse

representation. Usability study is needed to evaluate differ-

ent multi-undo effects.

5 THE BASIC COT ALGORITHM

The COT algorithm has two entries: the COT-DO entry for

consistency maintenance (do) and the COT-UNDO entry for

supporting undo. Operation context and context-based

conditions are at the core of the whole COT algorithm.
In the COT algorithm description, we use the context set

representation CðOÞ, rather than the context vector repre-

sentation CV ðOÞ. This is because the context set representa-

tion is not only concise in expression but also directly

implementable. Moreover, a document state DS is ex-

pressed as a set of original operations as well. By using

original operation set expressions, we keep the COT

algorithm independent of internal operation buffering

schemes. We shall discuss operation buffering schemes in

the COT framework in Section 8.
When an operation O is propagated from the local site to

remote sites, however, it is the context vector, not the

operation set, that is actually piggybacked on O. Based on

the information in CV ðOÞ, operations in CðOÞ can be easily

determined from operations in DS. The mapping between

context-set-based and context-vector-based conditions can

be found in Appendix B (Table 8).
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5.1 COT-DO

COT-DO takes two parameters: an original operation O to
be executed and the current document state DS. Before
COT-DO is invoked, the following condition must met:
CðOÞ � DS (CC1). Methods for ensuring CC1 shall be
discussed in Section 5.3.1.

Algorithm 1: COT-DO(O, DS)

1) transformðO;DS � CðOÞÞ;
2) Execute O; DS :¼ DS [ forgðOÞg.

Procedure 1: transformðO;CDÞ
Repeat until CD ¼ f g:
1) Select and remove Ox from CD, where CðOxÞ � CðOÞ;
2) transformðOx;CðOÞ � CðOxÞÞ;
3) O :¼ IT ðO;OxÞ; CðOÞ :¼ CðOÞ [ forgðOxÞg.
COT-DO first invokes transformð Þ to transform O

against operations in DS � CðOÞ (CC2). This is to upgrade
the context of O to DS. In step 2, CC3 ðCðOÞ ¼ DSÞ must be
met, so O is executed, and the original of O is added to DS
(according to statement 2 of Definition 3).

The heart of COT-DO is transformðO;CDÞ, which is to
transform O against operations in the context difference CD
between CðOÞ and a new context on which O is to be
defined. This procedure repeats the following steps until
CD becomes empty:

1. Select and remove an operation Ox from CD, where
CðOxÞ � CðOÞ (CC4). One convenient and efficient
way to ensure CC4 is to select operations in CD in
their execution order determined by CC1 (see
Section 5.3.2 for more details).

2. The procedure transformð Þ is recursively invoked
to transform Ox against operations in CðOÞ � CðOxÞ
(CC5). This is to upgrade Ox to the context of O, so
that they can be used for IT -transformation in the
next step.

3. After the recursive call to transformð Þ, CC6
ðCðOÞ ¼ CðOxÞÞmust be met, so O is IT-transformed
against Ox, and the context of O is updated by
adding the original of Ox (according to statement 3
of Definition 4).

As an example, we show how COT-DO works in
processing O1, O2, and O3 at site 0 in Fig. 1. Let DS0 ¼ f g:

1. After the generation of O1, since CðO1Þ ¼ DS0, O1 is
executed as is, and DS0 is updated to DS1 ¼ fO1g.

2. When O2 arrives with CðO2Þ ¼ f g, transformðO2;
DS1 � CðO2ÞÞ is called, where DS1 � CðO2Þ ¼ fO1g.

Inside transformðO2; fO1gÞ, since CðO1Þ¼CðO2Þ,
we have O02 :¼ IT ðO2; O1Þ,3 and CðO02Þ ¼ fO1g.

Returning from transformðO2; fO1gÞ, we have
CðO02Þ ¼ DS1, so O02 is executed, and DS1 is updated
to DS2 ¼ fO1; O2g, where O2 ¼ orgðO02Þ.

3. When O3 arrives with CðO3Þ ¼ fO2g, transformðO3;
DS2 � CðO3ÞÞ is called, where DS2 � CðO3Þ ¼ fO1g.

Inside transformðO3; fO1gÞ, since CðO1Þ 6¼CðO3Þ,
transformðO1; CðO3Þ � CðO1ÞÞ is recursively called,
with CðO3Þ � CðO1Þ ¼ fO2g (which is the key step in
detecting the dOPT puzzle).

In the recursive transformðO1; fO2gÞ, since
CðO2Þ ¼ CðO1Þ, we have O01 :¼ IT ðO1; O2Þ, and
CðO01Þ ¼ fO2g.

Returning from the recursion, we have
CðO01Þ ¼ CðO3Þ, so CðO03Þ :¼ IT ðO3; O

0
1Þ (the dOPT

puzzle resolved here), and CðO03Þ ¼ fO1; O2g, where
O1 ¼ orgðO01Þ.

After returning from transformðO3; fO1gÞ,
CðO03Þ ¼ DS2, so O03 is executed, and DS2 is updated
to DS3 ¼ fO1; O2; O3g, where O3 ¼ orgðO03Þ.

5.2 COT-UNDO

To undo an operation O, a command UndoðOÞ must be
issued by a user. How to select O and generate the undo
command is part of the undo policy [6]. This paper is
confined to the undo mechanism, which determines how to
undo the selected operation in a given context.

In COT-UNDO, UndoðOÞ is interpreted as an inverse O
with CðOÞ ¼ CðOÞ [ fOg. COT-UNDO takes two input
parameters: the command UndoðOÞ and the current docu-
ment state DS, where O can be any operation in DS.

Algorithm 2: COT-UNDO(Undo(O), DS)

1) O :¼ makeInverseðOÞ; CðOÞ :¼ CðOÞ [ fOg;
2) COT -DOðO;DSÞ.
COT-UNDO first creates an inverse O by invoking

makeInverseðOÞ,4 with its context CðOÞ :¼ CðOÞ [ fOg
(statement 2 in Definition 4), and then invoking COT-DO
to handle O.

For example, to interpret UndoðO2Þ at site 1 in Fig. 1,
COT-UNDO is invoked with parameters UndoðO2Þ and
DS ¼ fO1; O2; O3g. First, O2 and CðO2Þ ¼ fO2g are created.
Then, COT-DO is invoked with parameters O2 and DS.
Inside COT-DO, transformðO2; DS � CðO2ÞÞ shall be in-
voked, and O2 shall be transformed against O1 and O3 since
CD ¼ DS � CðO2Þ ¼ fO1; O3g. This example shows that an
inverse operation can be directly handled by COT-DO and
CC1-CC6 are uniformly applied to both normal and inverse
operations.

5.3 COT Correctness with Respect to
Context-Based Conditions

5.3.1 Ensuring CC1

For COT -DOðO;DSÞ to work properly, the precondition
CðOÞ � DS (CC1) must be met before COT-DO is invoked.
For a local operation O, we have CðOÞ ¼ DS according to
statement 1 of Definition 4, which means that CC1 is
automatically met. For remote operations, there are various
ways of ensuring CC1, depending on the system commu-
nication topology. In systems with a full-connection commu-
nication topology, each collaborating site may directly
propagate operations (time stamped with context vectors)
to other sites. When a remote operation O arrives, its context
CðOÞmust be compared with the localDS. If CC1 is met, then
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3. In the transformðO;CDÞ function definition, the IT-transformation
result is assigned back to the original operation variable: O :¼ IT ðO;OxÞ. In
the example, however, we use the symbol O0 to represent the IT-
transformation result to highlight the fact that O has been transformed
into a new form.

4. The reader is referred to [13] for precise definitions of the three
primitive operations Insert, Delete, and Update and their corresponding
inverses. The makeInverseðOÞ procedure directly follows those definitions.



COT -DOðO;DSÞ can be called; otherwise, O should be kept
in an internal waiting queue. After executing a remote
operation and saving its original in DS, the internal waiting
queue should be examined to process waiting operations that
are now meeting the requirement of CC1.

In systems with a star-like communication topology,
each collaborating site has one first-in, first-out (FIFO)
communication channel (e.g., a TCP connection) with a
central notifier, which propagates operations among all
collaborating sites. Since operations are serialized at the
central notifier and each communication channel has the
FIFO property, they are guaranteed to arrive at all sites in
their causal-dependent order [8], which is also a context-
dependent order (according to Theorem 1). Therefore, CC1
is automatically guaranteed if remote operations are
processed in their order of arrival.

It is worth pointing out that the context relation covers
inverse operations but not undo commands. The causal
relationship between an undo command and other opera-
tions may not be reflected by the context relationship
among the corresponding inverse operation and other
operations. However, such causal relationships may be
meaningful to users, e.g., users may wish to see that the
undo effect takes place after all operations causally before
the undo command have been executed. To address such
issues, suitable causality-preservation schemes should be
used to enforce an inverse operation to be executed after
those context-independent operations that are causally
before the corresponding undo command. In systems with
a star-like communication topology, this order can be
automatically enforced if remote operations are processed
in their order of arrival.

5.3.2 Ensuring CC4

For transformðO;CDÞ to work properly, the condition
CðOxÞ � CðOÞ (CC4) must be met when selecting Ox from
CD for transformation with O. One method of ensuring
CC4 is to select operations in CD in an order that respects
their context-dependency relation: for Ox, Oy 2 CD, if
Ox !

c
Oy, then O must be transformed against Ox before

Oy; if Ox k
c

Oy, then O can be transformed against them in
any order. It can be shown that meeting CC4 is equivalent
to selecting operations for transformation in an order that
respects their context-dependency relationships (Theorem 8
in Appendix A.3).

There potentially exist many different operation orders
that are consistent with their context-dependency order and
hence meet CC4. The execution order determined by CC1 is
one of them (Corollary 2 in Appendix A.3). The orders
required by CC1 and CC4 do not have to be the same, but it
is convenient to use the operation execution order deter-
mined by CC1 as the operation transformation order
required by CC4.

5.3.3 COT Correctness with Respect to CC3 and CC6

From the definitions of COT procedures, it can be verified
that COT is able to ensure that 1) an operation O is
executed on a document state DS only if CðOÞ ¼ DS
(Theorem 9 in Appendix A.3); and 2) two operations Oa

and Ob are IT-transformed only if CðOaÞ ¼ CðObÞ
(Theorem 10 in Appendix A.3).

6 TRANSFORMATION PROPERTIES AND

PRECONDITIONS

COT is a high-level control algorithm responsible for
determining which operation should be transformed
against other operations according to context-based condi-
tions. Another important component of an OT system is the
low-level transformation functions responsible for trans-
forming operations according to their types and parameters.
Past research has identified a number of transformation
properties that must be maintained by either control
algorithms or transformation functions for ensuring the
correctness of an OT system. Different OT systems may
have different control algorithms, different transformation
functions, and different divisions of responsibilities among
these components.

The basic COT algorithm is simple yet powerful—capable
of doing and undoing any operations at any time. Among all
prior OT systems, only the combination of GOTO and
ANYUNDO, referred to as GOTO-ANYUNDO, has similar
capabilities [19], [6]. Different from GOTO-ANYUNDO, the
basic COT algorithm does not use Exclusion Transformation
(ET) functions, thus avoiding the requirement of the
Reversibility Property (RP) between IT and ET functions [6].

Similar to GOTO-ANYUNDO, the basic COT algorithm
assumes that transformation functions are capable of
preserving the following properties [2], [3], [4], [20], [6]:

1. Convergence Property 1 (CP1).5 Given a document
state DS and two context-equivalent operations Oa

and Ob, if O0a ¼ IT ðOa;ObÞ and O0b ¼ IT ðOb;OaÞ, then

DS �Oa �O0b ¼ DS �Ob �O0a;

which means that applying Oa and O0b in sequence
on DS is equivalent to applying Ob and O0a in
sequence on DS.

2. Convergence Property 2 (CP2). Given three context-
equivalent operations Oa, Ob, and Oc, if O0b ¼
IT ðOb;OcÞ and O0c ¼ IT ðOc;ObÞ, then

IT IT Oa;Obð Þ; O0c
� �

¼ IT IT Oa;Ocð Þ; O0b
� �

;

which means that the outcome of transforming Oa

against Ob and O0c in sequence equals the outcome of
transforming Oa against Oc and O0b in sequence.

3. Inverse Property 2 (IP2).6 Given any operation O
and a pair of operations Ox and Ox, it must be that

IT IT O;Oxð Þ; Ox

� �
¼ IT O; Ið Þ ¼ O;

which means that the outcome of transforming O
against Ox and Ox in sequence equals the outcome of
transforming O against the identity operation I.

4. Inverse Property 3 (IP3). Given two context-
equivalent operations Oa and Ob, if O0a¼IT ðOa;ObÞ,
O0b¼IT ðOb;OaÞ, and Oa

0 ¼IT ðOa;O
0
bÞ, then

Oa
0 ¼ O0a;
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5. CP1 and CP2 in this paper (and in [6]) are the same as Transformation
Properties 1 and 2 in [4].

6. There is an Inverse Property 1 (IP1) that is required in an OT system
for achieving the correct undo effect [6], but IP1 is not related to IT functions
and, hence, not included here.



which means that the transformed inverse operation
Oa
0
equals the inverse of the transformed operationO0a.

The above transformation properties are important
discoveries of past research, but they are not uncondition-
ally required. The Pre-Conditions (PCs) for requiring them,
however, were never explicitly stated in their specifications,
which has unfortunately caused quite some confusion in OT
literature. To clarify the situation and help explore alter-
native solutions, we explicitly state the PCs for CP1, CP2,
IP2, and IP3 below:

1. PC-CP1. CP1 is required only if the OT system
allows any two operations to be executed in different
orders.

2. PC-CP2. CP2 is required only if the OT system allows
two operations Oa and Ob to be IT-transformed in
different contexts: IT ðOa;ObÞ and IT ðO0a; O0bÞ, where
CðOaÞ ¼ CðObÞ 6¼ CðO0aÞ ¼ CðO0bÞ.

3. PC-IP2. IP2 is required only if the OT system allows
an operation O to be transformed against a pair of do
and undo operations Ox and Ox one by one.

4. PC-IP3. IP3 is required only if the OT system allows
an inverse operation Oa to be transformed against
Ob, which is context-independent of Oa.

PC-PC1, PC-IP2, and PC-IP3 are derived directly from
definitions of CP1, IP2, and IP3. PC-CP2 does not directly
correspond to the definition of CP2. It has been verified that
if PC-CP2 is broken, CP2 would not be required since CP1
would be sufficient to ensure convergence (Theorem 11 in
Appendix A.4); also, no operation would be transformed
against the same group of operations in different orders
(Theorem 12 in Appendix A.4).

Generally, there are two ways to achieve OT correctness
with respect to these transformation properties: one is to
design transformation functions capable of preserving these
properties; the other is to design control algorithms capable
of breaking their pre-conditions. Past research has shown
that it is relatively easy to design transformation functions
capable of preserving CP1 but nontrivial to design and
formally verify transformation functions capable of preser-
ving CP2, IP2, and IP3. Counterexamples illustrating the
violation of these properties in published transformation
functions can be found in [20], [6], [24], and [25]. IT
functions capable of preserving IP2 and IP3 had been
devised in the context of ANYUNDO [6], but our experi-
ence in implementing these functions revealed that those
solutions are quite intricate, and inefficient (more analysis
in Section 9). Therefore, solving CP2, IP2, and IP3 at the
control algorithm level has the benefits of simplifying the
design of transformation functions and improving system
efficiency. In the following section, we extend the basic COT
algorithm to provide cleaner and more efficient solutions to
CP2, IP2, and IP3 at the control algorithm level.

7 COT SOLUTIONS TO CP2, IP2, AND IP3

A distinctive feature of COT is that in each invocation of
transformðO;CDÞ, the whole set of target operations have
been provided in CD in advance. With all target
operations known at the start, we are able to properly

arrange these operations so that precondtions for CP2,
IP2, and IP3 can be broken.

7.1 Extended transformðO;CDÞ Procedure

We extend transformðO;CDÞ to take advantage of the
information in CD. The extended transformð Þ (Procedure
2) retains the structure and main elements of Procedure 1 but
add new procedures ensure TPsafetyðO;CDÞ, XIT ðO;OxÞ,
and make IP3safe InverseðO;CDÞÞ for solving CP2, IP2,
and IP3.

Procedure 2: transformðO;CDÞ
1) If CD 6¼ f g, ensure TPsafetyðO;CDÞ;
2) Repeat until CD ¼ f g:

a) Remove the first operation Ox from CD;

b) transformðOx;CðOÞ � CðOxÞÞ;
c) XIT ðO;OxÞ;

Procedure 3: ensure TPsafetyðO;CDÞ
1) Ensure CP2-safety: sort operations in CD in a total

order that respects their context-dependency order, as

specified in Definition 9.
2) Ensure IP2-safety: for any Ox 2 CD, if Ox 2 CD, mark

Ox as a do-undo pair, and remove Ox from CD.

3) Ensure IP3-safety: if O is inverse, invoke make

IP3safe InverseðO;CDÞ.

Procedure 4: make IP3safe InverseðO;CDÞ
1) O :¼ makeInverseðOÞ; CðOÞ :¼ CðOÞ � fOg;
2) NCD :¼ fOxj Ox 2 CD and Ox k

c

Og;
3) transformðO;NCDÞ;
4) O :¼ makeInverseðOÞ; CðOÞ :¼ CðOÞ [ forgðOÞg;
5) CD :¼ CD�NCD.

Procedure 5: XIT ðO;OxÞ
1) If Ox is a do-undo pair,
2) then CðOÞ :¼ CðOÞ [ forgðOxÞ; orgðOxÞg;
3) else O :¼ IT ðO;OxÞ; CðOÞ :¼ CðOÞ [ forgðOxÞg.

7.2 Breaking the Precondition for CP2

The basic idea is to force the order of remote operation
execution (governed by CC1) and the order of operation
transformation (governed by CC4) to be the same total
ordering that respects the context-dependency relation
among original operations. The CC1-related execution
order control must be supported by external protocols
before invoking COT, whereas the CC4-related transforma-
tion order control is built in COT in step 1 of Procedure 3.

To elaborate, let “)
c

” denote a total ordering of original
operations that respects their context-dependency relation-
ships. We specify the following operation execution order-
ing scheme to ensure CC1 and to control operation
execution orders.

Definition 8. “)
c

”-based operation execution ordering. An
operation O can be executed on document state DS only if
1) O is a local editing operation or 2) for any operation Ox, if
Ox )

c
O, then Ox has been executed, i.e., Ox 2 DS.

It should be stressed that under Definition 8, a local
editing operation O may be executed immediately after
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generation, even if there is a remote operation Ox such that
Ox )

c
O. For a group of N context-equivalent original

operations, there are only N permissible execution orders,
each starting from one of theseN operations. As an example,
for a group of three context-equivalent operations
fOa;Ob;Ocg, if Oa )

c
Ob )

c
Oc, three permissible execution

orders are <Oa;Ob;Oc> , <Ob;Oa;Oc> , and <Oc;Oa;Ob>.

Furthermore, we use the following transformation

ordering scheme to ensure CC4 and to force a group of

operations to be selected for transformation in the same

“)
c

” order.

Definition 9. “)
c

”-based operation transformation order-
ing. In transformðO;CDÞ, for any two operations Oa and Ob

in CD, if Oa )
c
Ob, then Oa is selected for transformation

with O before Ob, where “)
c

” is the same as the one used in
Definition 8.

It should be noted that CD becomes an ordered set after
the sorting. The first Ox in CD must meet the condition
CðOxÞ � CðOÞ in step 2a of transformðO;CDÞ (Procedure 1),
so this condition is no longer explicitly specified in
Procedure 2.

Based on Definitions 8 and 9, it can be verified the
COT algorithm eliminates the possibility of transforming a
pair of operations under different contexts, thus breaking
PC-CP2 (Lemma 2 and Theorem 13 in Appendix A.5).

There are various ways to enforce the “)
c

”-based
execution ordering before invoking COT. For systems with
an existing central document repository and notification
server (such as REDUCE [6] and CoWord [11]), the operation
broadcasting order determined by the central server is a total
order that can be directly used in the “)

c
”-based operation

execution and transformation ordering schemes. This
method is simple and obtained for free (since the server
already exists for other purposes) and also most suitable and
adequate for real-time collaborative editing sessions typi-
cally involving less than 10 users. For systems without a
central server or unsuitable to use a central server,
distributed protocols can be used to achieve such a total
ordering [18], [26]. The COT solution to PC-PC2 is
independent of whether the “)

c
”-based execution ordering

is achieved by a distributed or centralized protocol.

7.3 Breaking the Precondition for IP2

The basic idea is to make sure that an operation is never
transformed against a pair of do and undo operations one
by one. This solution consists of two parts: 1) in step 2 of
ensure TPsafetyðO;CDÞ, operations are coupled with
their corresponding inverses if they are included in the
same context difference CD, and 2) in the new eXtended IT
procedure XIT ðO;OxÞðÞ, if Ox is found to be a do-undo
pair, the IT-transformation of O against Ox is skipped
(effectively treating this pair as an identity operation), and
the context of O is updated by adding two operations, i.e.,
forgðOxÞ; orgðOxÞg.

It can be verified that the extended COT algorithm
eliminates the possibility of transforming an operation
against a pair of normal and inverse operations one by one,
thus breaking PC-IP2 (Theorem 14 in Appendix A.5).

It is instructive to examine how the COT solution
resolves some well-known IP2 puzzles—representative

scenarios in which the OT system may produce incorrect
results if transformation functions fail to preserve IP2. Two
kinds of IP puzzles have been identified in the context of
GOTO-ANYUNDO [6]: one is the coupled do-undo-pair trap,
in which an operation is transformed against a pair of do
and undo operations in a single sequence; another is the
uncoupled do-undo-pair trap, which occurs when an operation
is transformed against a pair of do and undo operations in
two different sequences.

The coupled do-undo-pair trap is clearly resolved by the
combination of step 2 in ensure TPsafetyðCDÞ and
XIT ðO;OxÞ. The uncoupled do-undo-puzzle trap can never
occur in the COT algorithm. This is because 1) every
transformation process in transformðO;CDÞ always starts
from an original operation O and 2) if O needs to be
transformed against both Ox and Ox, this pair of operations
must always be included in CD at the same time and be
coupled.

7.4 Breaking the Precondition for IP3

The basic idea is to make an inverse O to be IP3-safe with
respect to the context difference CD to which O is to be
transformed. An IP3-safe inverse is defined below.

Definition 10. An inverse O is IP3-safe with respect to a context
difference CD if O is made from a transformed version of
orgðOÞ, which has included all operations in CD that are
context-independent of orgðOÞ.
The IP3 solution is encapsulated in make IP3safe

Inverse ðO;CDÞ, which works as follows:

1. Create operation O by making the inverse of O and
get CðOÞ ¼ CðOÞ � fOg.

2. Select all operations from CD that are context-
independent of O and create a new context differ-
ence NCD.

3. Transform O against operations in NCD (by recur-
sively invoking transform( )).

4. Create a new inverse from the transformed O.
5. Create a new CD by subtracting NCD from the old

CD (the new CD must preserve the total order as
required for solving CP2).

This new inverse O must be IP3-safe because it is created
from a transformed operation whose context has included
all operations in NCD. The IP3-safe inverse O shall never be
transformed against the operations in NCD since these
operations have been removed from the new CD in step 5.

It can be verified that the extended COT algorithm
eliminates the possibility of transforming an inverse
operation against operations that are context-independent
of the operation to be undone, thus breaking PC-IP3
(Theorem 15 in Appendix A.5).

8 OPERATION BUFFERING IN THE COT FRAMEWORK

Another distinctive feature of the COT work is the
separation of the COT algorithm from the underlying
operation buffering organization. The high-level algorithm
focuses on the correctness aspect of the system and is based
on operation contexts represented by original operations,
without any concern about the internal organization of
operation contexts and document states. This feature has
resulted in not only a clean and simple algorithm, but also a
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flexible operation buffering organization, which allows
efficient implementation of the whole system. In this
section, we present an operation buffering organization
that saves both original and transformed operations and
uses saved operations to achieve a time and space-efficient
COT system, while retaining the correctness and cleanliness
of the high-level algorithm.

8.1 Operation Version Group

A key idea in the COT buffering organization is the notion
of operation version group (VG). In an OT system, every
operation is a version of an original operation: a trans-
formed operation is a transformed version of its associated
original operation; an original operation can be regarded
as the original version of itself. We can organize all versions
of the same original operation into an operation VG, and
all operations in an OT system into a collection of VGs.
Since each original operation has a unique identifier (see
Definition 11), we can use this identifier to identify the
corresponding VG as well. One operation belongs to one
and only one VG, so we use notation VGðOÞ to denote the
VG to which operation O belongs.

For each original operation in an operation context at the
algorithm level, there is a corresponding VG at the
operation buffering level, as shown in Fig. 2. A version
group can be regarded as an augmented representation of
an original operation: one original operation can be defined
on only one context, but one VG may have multiple
versions defined on different contexts, thus being capable of
matching different contexts. This multi-context-matching
capability of a VG allows us to use saved versions to replace
the original operation at the algorithm level according to the
context requirement: when an original operation is used in a
specific context at the algorithm level (e.g., at the beginning
and step 2a of transformðO;CDÞ), the corresponding VG is
searched for a version that meets the context requirement; if
such a version exists in the VG, it is used to replace the
original operation in the algorithm, thus saving the work to
transform the original operation into this version.

Different versions in a VG may be used to represent the
original operation in different contexts, but their effects on
operation contexts or document states are the same, which
is solely determined by the corresponding original opera-
tion (see Definition 4). This single-context-effect property of a
VG allows the use of one original operation to represent all

its versions in operation contexts and document states at the

algorithm level.
The notion of VG provides the foundation for saving

both original and transformed operations in the COT

framework. The remaining technical issues are the follow-

ing: which transformed versions should be saved and how

to select correct versions from a VG for transformation.

These are discussed in the following sections.

8.2 The Need for Saving Transformed Operations

To show the need of saving transformed operations, we first

analyze the time complexity of the COT system that saves

original operations only.

8.2.1 Time Complexity in Transforming a Set of

Operations

Consider a scenario with three operations O1, O2, and O3

defined on the same initial document state DS0 ¼ f g and

assume that they are executed in the order of O1,O2, and O3:

1. After executing O1, we have DS1 ¼ fO1g.
2. WhenO2 arrives, we haveDS1 � CðO2Þ ¼ fO1g. Since

CðO2Þ ¼ CðO1Þ ¼ f g, O2 is directly IT-transformed
against O1, i.e., O02 ¼ IT ðO2; O1Þ, and CðO02Þ ¼ fO1g.
Then, O02 is executed on DS1, and DS2 ¼ fO1; O2g. In
processing O2, one IT-transformation is performed.

3. When O3 arrives, we have CD ¼ DS2 � CðO3Þ ¼
fO1; O2g. O1 is first selected from CD; since
CðO3Þ ¼ CðO1Þ ¼ f g, O3 is directly IT-transformed
against O1, i.e., O03¼IT ðO3; O1Þ, and CðO03Þ¼fO1g.
Then, O2 is selected from CD; since CðO03Þ�CðO2Þ¼
fO1g, transformðO2; O1Þ is recursively invoked
to recreate O02 ¼ IT ðO2; O1Þ. Finally, O03 is IT-
transformed against O02 to create O003 , i.e., O003 ¼
IT ðO03; O02Þ. In processingO3, three IT-transformations
are performed, one of which is recreating O02, which
repeats the work in processing O2.

In general, for a set of n operations O1; O2; O3; . . . ; On

defined on the same context, suppose they are executed in

the order of their sequence numbers. The total number of

IT-transformations performed in processing On is given by

the following recurrence:

T ðnÞ ¼
0; if n ¼ 1;
Pn�1

i¼1

T ðiÞ þ ðn� 1Þ; if n > 1:

8<
:

Solving the above recurrence relation, we obtain its closed-

form expression: T ðnÞ ¼ 2n�1 � 1. The number of transfor-

mations required to process On is exponential in n. As n

becomes large, we can obtain a tight bound on the asymptotic

growth of this expression withT ðnÞ ¼ �ð2nÞ. Observe that we

must perform at least n� 1 transformations in creating the

desired new version of On, since On is context-independent

with all previously executed n� 1 operations. However, in

this process, we incurred the extra cost of performing T ð1Þ þ
T ð2Þ þ . . .þ T ðn� 1Þ transformations to recreate operation

versions for O1; O2; . . . ; On�1. Substantial savings can be

attained by eliminating the recreation of operations (which

dominate the time complexity expression) by saving pre-

viously created versions.
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8.2.2 Time Complexity in Transforming Multiple Streams

of Operations

Consider the following two streams of operations:

S1 ¼ O1;1; O1;2; . . . ; O1;n; S2 ¼ O2;1; O2;2; . . . ; O2;m;

where CðO1;1Þ¼CðO2;1Þ; CðO1;iÞ[fO1;ig¼CðO1;iþ1Þ, 1� i<n;
and CðO2;jÞ [ fO2;jg ¼ CðO2;jþ1Þ, 1 � j < m.

Under the assumption that no transformed operation is
saved, the following expression gives the exact number of
IT-transformations performed in transforming O2;m against
O1;1; O1;2; . . . ; O1;n:

T ðn;mÞ ¼ ðnþmÞ!ðn!�m!Þ � 1:

Using Stirling’s approximation [27], we can bound the
expression’s asymptotic growth, yielding T ðrÞ ¼ �ð2r=

ffiffiffi
r
p
Þ,

where r ¼ nþm. Note that the growth is subexponential in
the total number of operations involved and is strictly less
than the case with r context-equivalent operations for r > 1
(see Section 8.2.1). Among the total T ðn;mÞ transformations,
m transformations must be performed to create new
n versions, but T ðn;mÞ � n transformations were per-
formed to recreate versions. A detailed illustration of
processing these two streams and the derivation of the
above expressions are provided in Appendix C.1.

In general, with an operation buffering scheme that saves
original operations only, the time complexity in transforming
multiple streams of operations in the COT system would be
exponential to the total number of operations involved. Most
of these IT-transformations recreate versions, and the number
of new and necessary IT-transformations is actually linear to
the total number of context-independent operations involved.

With an operation buffering scheme that saves every
operation version ever created during the execution of the
COT system, it would be possible to completely eliminate
recreation of versions and achieve linear complexity. The
problem with this approach, however, is its high space
complexity: each VG would potentially have to accommo-
date an unlimited number of versions.

The design goal of the COT operation buffering scheme
is to selectively save transformed versions to eliminate
retransformations in most common operation sequence
patterns, while keeping the number of saved versions small.

8.3 Operation Buffering Schemes Saving
Transformed Operations

8.3.1 General Considerations

To devise schemes for saving and using transformed
operations in the VG-based buffering framework, the
following points should be considered:

1. Transformed versions are not essential for the
correctness of the algorithm. So if a transformed
version is not saved, it has no impact on the
correctness of the algorithm.

2. Not all transformed versions may be reused by later
transformations. So, saving more transformed ver-
sions increases space complexity, but may not
decrease time complexity.

3. Different transformed versions may have different
likelihoods of being reused by later transformations.

So the key is to selectively save those transformed
versions that are mostly likely to be reused.

Due to the nondeterministic nature of operation genera-
tion by interactive users, it appears impossible to develop a
deterministic algorithm to predict whether an operation
version, at the time of its creation, will be reused later.
However, by analyzing common patterns of operation
sequences generated by users, we are able to discover
heuristics for predicting the likelihood of a transformed
version to be reused by future transformations. We can use
these heuristics to selectively save transformed versions to
maximize their reuse and minimize their space usage.

8.3.2 Saving the Most-Recently Created Versions

By experimentation, we have discovered some heuristics
that are effective in eliminating retransformations for
common operation sequence patterns. One key heuristics
is that the most recently created versions (MRCVs) are
likely to be reused by later transformations. The buffering
scheme based on this heuristics is named as the MRCV
scheme, which is sketched as follows:

1. Initially, a VG contains an original operation O.
2. Whenever a new version of O is created during the

execution of the COT algorithm, this version is saved
in the corresponding VGðOÞ; if there is another
nonoriginal version in VGðOÞ, that version is
removed.

The MRCV scheme maintains at most two versions in each
VG: the original version plus the MRCV.

To make this scheme work effectively, we extend
transformðO;CDÞ (Procedure 2) by replacing XIT ðO;OxÞ
with a Symmetric IT (SIT) procedure, which is defined as
follows:

SIT ðO;OxÞ ¼ O0; O0x
� �

;

where O0 ¼ XIT ðO;OxÞ, and O0x ¼ XIT ðOx;OÞ. With SIT, O
and Ox shall be IT-transformed with each other to create
two new versions in their corresponding VGs.

To illustrate the effectiveness of this scheme, we examine
how it works in processing the two streams of operations
discussed in Section 8.2.2 (see details in Appendix C.2).
With a space cost of two versions in each VG, the basic
MRCV scheme is able to completely eliminate retransfor-
mations and achieve the optimal linear time complexity for
processing these two streams.

To achieve linear time complexity for handling an
arbitrary number of streams of operations, the basic MRCV
scheme can be extended to maintain a maximum of
N versions in each VG, where N is the number of
collaborating sites in a session. The N versions consist
of one original version and N � 1 MRCVs corresponding to
N � 1 remote collaborating sites.

The scenario ofn context-equivalent operations is a special
case of n streams of operations, where each stream has only
one operation. Without saving any transformed operation,
the number of IT-transformations required for transforming
thenth operation against the othern� 1 operations would be
�ð2nÞ (see Section 8.2.1). Under the extended MRCV scheme,
the number of IT-transformations can be reduced to 2ðn� 1Þ
(the constant factor 2 is due to the use of SIT), which is an
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exponential to linear reduction with a maximum ofnversions
saved in each VG, where n � N .

8.3.3 Processing a Stream of Undo Commands under

the MRCV Scheme

To examine how the MRCV scheme works in processing
inverse operations, we continue with the prior example
scenario with two streams of operations. After both S1 and
S2 have been executed, suppose one user issues a stream of
undo commands

UndoðO1;nÞ; . . . ; UndoðO1;2Þ; UndoðO1;1Þ

to undo operations in S1 in a reverse chronological order. A
detailed illustration of processing this stream of undo
commands can be found in Appendix C.3. Under the MRCV
scheme, for each undo command, an IP3-safe inverse can be
generated without any IT-transformation since the VG
associated with the operation to be undone has already a
version that contains in its context all context-independent
operations. Then, the IP3-safe inverse needs to be trans-
formed against operations that are context dependent on the
operation to be undone. A total of ðn� iÞ IT-transformations
are needed to undo the ith operation in a reverse chron-
ological order. If the user selectively undoes the ith operation
without undoingO1;iþ1; . . . ; O1;n, then the total number of IT-
transformations shall be 2ðn� iÞ.

When there are only two streams of operations, the
MRCV scheme is able to eliminate all retransformations
involved in creating any IP3-safe inverse. However, when
more than two streams of operations are involved in a
scenario, there is no guarantee that every VG associated
with an operation to be undone has an MRCV that contains
all context-independent operations in its context. To create
the IP3-safe inverse for undoing such an operation, we have
to transform this operation against its context-independent
operations, which has a quadratic time complexity with
respect to the number of operations involved.

It should be pointed out that the VG-based operation
buffering framework is not bound with the MRCV scheme
but is generic and applicable to any buffering scheme.
This framework provides a flexible environment for
discovering and experimenting with new buffering
schemes. Finally, when saved operations are no longer
needed for future transformations or undo, they can be
collected as garbage [20].

9 DISCUSSIONS

9.1 Comparison to Causality and Prior Work on
Operation Context

Based on the theory of causality, prior OT algorithms have
used state vectors to capture causal-dependency relation-
ships among original normal operations and to represent
document states with effects of original normal operations.
However, causal-dependency relationships are not defined
for inverse or transformed operations, and state vectors
cannot represent document states with original inverse
operations. The theory of causality is unable to capture
essential OT conditions for all types of operation—original
and transformed normal and inverse operations.

To overcome the limitation of the causality theory, we
first proposed the notion of operation context and used it in
conjunction with the theory of causality in the GOT

algorithm [20]. In early work, the context of an operation
O was defined as a sequence of transformed operations that can
be executed to bring the document from its initial state to
the state on which O is defined, and there was no explicit
representation of an operation context. The old definition of
context was directly coupled to the sequential history
buffering strategy, which saved operations in their execu-
tion forms. In the absence of explicit context representation,
context relationships among operations had to be derived
from their ordering relationships in the history buffer plus
causal relationships between their original versions [20].
However, this way of deriving context relationships does
not work with inverse operations since they have no causal
relationship with any operation (see Section 3). To work
around this problem, special technical patches had to be
invented to maintain suitable relationships among inverse
and other operations under different circumstances.

Based on the insights from prior work on operation
context, we have redefined an operation context in this
article as a set of original operations corresponding to the
document state on which this operation is defined. This
new concept of operation context is independent of the
underlying operation buffering strategy and can be ex-
plicitly represented as an operation set. Based on the set
representation of operation context, we have formulated
CC1-CC6 to capture essential OT requirements that are
uniformly applicable to all types of operation. Moreover, we
have devised the context vector to efficiently represent both
normal and inverse operations in a context. The context
vector is more general than the state vector and potentially
applicable to other distributed computing systems as well.

The main differences between the causality and context
theories and between the old and new context theories are
summarized in Tables 3 and 4, respectively.

9.2 Comparison to Prior OT Algorithms

9.2.1 COT versus Prior OT Algorithms

Most prior OT algorithms support consistency mainte-
nance (do) only, including dOPT [2], CCU [28], Jupiter [29],
GOT [20], GOTO [19], SOCT3/4 [30], NICE [7], treeOPT
[10], TIBOT [31], and Mark & Retrace [32]. None of these
OT systems addressed issues related to IP2 and IP3 since
they do not support undo, but some of them are capable of
solving CP2 at the control algorithm level, including the
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Jupiter system by a central transformation-based server
[29], the GOT system by an undo/redo scheme based on
total ordering [20], the SOCT3/4 system by a control
strategy based on a continuous global sequencing [30], the
NICE system by a central transformation-based notifier [7],
and the TIBOT system by a time-interval-based distributed
synchronization protocol [31]. The COT work contributes
the explicit specification and formal verification of PC-CP2
and is unique in decoupling schemes for breaking PC-CP2
from the core algorithm. As pointed out before, CP2 could
be solved at either the OT algorithm or function level, and
an OT designer may favor one over the other by assessing
their relative benefits and complexities. The reader is
referred to [24] and [25] for alternative approaches to
solving CP2 at the function level.

Undo has long been recognized as a complex issue [33],
[34], [35], [36], [37], [38]. Designing an OT algorithm for
supporting both do and undo is significantly more
challenging than designing an OT algorithm for supporting
do only. DistEdit [3] is the first OT-based system supporting
undo, but its consistency maintenance is based on locking,
and its selective undo algorithm is unable to undo an
operation if it is adjacent to or overlapping with another
operation (conflict). The adOPTed algorithm [4], [5] is the
first OT system capable of supporting both do and undo,
but its undo capability is restricted to chronological undo.
ANYUNDO [6] is the first undo algorithm capable of
undoing any operation in any order and is combined with
GOTO to support both do and undo. For detailed
comparison of these prior OT-based undo solutions, the
reader is referred to [6]. The following discussion focuses on
the comparison of COT and GOTO-ANYUNDO since they
are the only pair of OT systems with similar capabilities.

9.2.2 COT versus GOTO-ANYUNDO

Both COT and GOTO-ANYUNDO are capable of doing and
undoing any operations at any time. The main difference is
that COT achieves this capability without using ET functions
(thus eliminating the RP requirement for IT functions) and
without requiring IT functions to preserve CP2, IP2, and IP3.
Avoiding RP and breaking pre-conditions for CP2, IP2, and
IP3 have significantly simplified the design of transformation
functions and the OT system as a whole.

COT is simpler than GOTO-ANYUNDO because COT is
based on a single theory of operation context, which is
uniformly applicable to all types of operation, whereas
GOTO-ANYUNDO is based on a mixture of operation
causality and history buffer ordering relationships and is
further complicated by intricate operation reordering/

coupling/decoupling for maintaining suitable operation
relationships under various circumstances.

COT is independent of underlying buffering schemes,
whereas GOTO-ANYUNDO is tightly coupled with the
linear history buffering scheme. COT is more efficient
than GOTO-ANYUNDO in supporting both do and undo.
When combined with the MRCV buffering scheme, COT
is able to achieve a linear time complexity for transform-
ing a normal operation (for do) in the face of multiple
streams of operations. To transform an inverse operation
(for undo), the number of IT-transformations is linear to
the number of operations generated after the operation to
be undone. The number of IT-transformations involved in
creating an IP3-safe inverse version is linear in common
operation sequence patterns but exponential in the worst
case to the number of operations that are context-
independent of the operation to be undone. The max-
imum space cost is N versions in each VG, where N is
the number of collaborating sites in a session.

In contrast, GOTO-ANYUNDO uses an IT-ET-based
transposition procedure to reorder executed operations in
the history buffer in order to enforce context-related
conditions. For the transposition to work properly, each
operation in the history buffer has to maintain two
versions: one original version and one execution version.
This is because the original version is needed in recursive
calls to GOTO to achieve IT-ET reversibility in the face of
lossy IT transformations [6]. To transform a normal
operation (for do) in the face of multiple streams of
operations, the worst case time complexity is exponential to
the total number of operations involved. For more detailed
discussions on time complexity and performance of prior
OT algorithms, the reader is referred to [5], [6], and [39].

For the purpose of preserving IP2, the do part (a normal
operation) and the undo part (an inverse operation) need to
be coupled in both COT and GOTO-ANYUNDO. In GOTO-
ANYUNDO, an eager coupling strategy was adopted: an
inverse operation is coupled with its corresponding normal
operation immediately after its execution. Under this
scheme, inverse operations are not explicitly represented
in the history buffer. When a normal operation is to be
executed, however, it may need to be transformed against
only the undo part of a do-undo pair. To cope with this
problem, an extra decouple-GOTO-recouple scheme has to be
used to decouple a do-undo pair before invoking GOTO and
then recouple them afterward [6], which causes unneces-
sary retransformations. In contrast, a lazy coupling strategy
is adopted in the COT algorithm: the coupling of a do-undo
pair occurs not immediately after executing each inverse,
but only when both the do part and the undo part appear in
the same transformation process at some later stage. These
strategies avoid retransformations caused by the eager
coupling scheme and the decouple-recouple scheme.

In the GOTO-ANYUNDO-based system, the solution to
IP3 is encapsulated in an IP3-preserving IT function
(IP3P-IT [6]). Inside this function, an extended ET
function has to be used, which may invoke the GOTO
algorithm to ensure RP with the corresponding IT
function. In contrast, the COT solution to IP3 is
encapsulated in the high-level procedure make IP3safe
InverseðO;CDÞ, which is more efficient since 1) it avoids
converting O to O back and forth multiple times for each
Ox 2 NCD (if IP3P -IT ðO;OxÞ were used instead) and
2) the transform() procedure is much cheaper than GOTO.
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The main similarities and differences between COT and
GOTO-ANYUNDO are summarized in Table 5.

10 CONCLUSIONS

We have contributed the theory of operation context and
the COT algorithm, which provide a new theoretical
framework and uniformed solutions to both consistency
maintenance and undo problems in distributed collabora-
tive editing systems. With these results, we have achieved
the goals to better understand and solve OT problems,
reduce complexity, verify correctness, improve efficiency,
and support the continual evolution of OT.

We started with identifying limitations of the causality
theory as the foundation of OT: the causal relation is not
defined for inverse operations for undo or for transformed
operations obtained from transformations; causality-based
conditions are not applicable to inverse and transformed
operations and inadequate for ensuring correct IT-transfor-
mation. Technical patches for working around these
limitations had resulted in intricate, complex, and ineffi-
cient OT algorithms.

We proposed the theory of operation context to replace
the theory of causality as the new foundation of OT.
Context-based conditions (CC1-CC6) have been formulated
to capture essential OT requirements, including context-
dependent ordering of operation execution and transforma-
tion, context-independent selection of transformation target
operations, and context-equivalent execution and IT-trans-
formation for all types of operation. Furthermore, the
context vector has been devised to represent operation
contexts efficiently for operation time stamping and
propagation. The context vector is able to represent states
with both normal and inverse operations and potentially
applicable to other distributed computing applications.

Based on the theory of operation context, we devised a
new OT algorithm—COT—which is distinctive in achieving
the capability of doing and undoing any operation at any
time without using ET functions and without requiring
transformation functions to preserve CP2, IP2, and IP3. The
avoidance of ET, CP2, IP2, and IP3 has significantly
simplified the design of underlying transformation func-
tions. In addition, we contributed explicit specifications of

pre-conditions for CP2, IP2, and IP3 and provided formal
verification (proofs) to the correctness of the COT algorithm
with respect to CC1-CC6, CP2, IP2, and IP3.

Another distinctive feature of the COT algorithm is its
independence of operation buffering structures. We pro-
posed the notion of operation VG to bridge the high-level
COT algorithm and underlying buffering schemes. We
devised an operation buffering scheme that saves the
MRCVs. Under this buffering scheme, the COT system is
able to achieve the optimal linear time complexity in
transforming normal operations (for do) in all cases and
inverse operations (for undo) in common operation sequence
patterns. The worst case time complexity for undo is
exponential, but this is insignificant in practice since the
number of independent operations is small in real-time
collaborative editing sessions.

The future of OT lies clearly in its applications. Real-world
applications give impetus to OT research, which in turn
enables novel collaborative applications. Collaborative text
editors had inspired the invention of the first OT algorithm
and served as vehicles for continuous OT research in the past
decade. The COT work was built on prior OT research and
was motivated by the need to support advanced collabora-
tive applications such as CoWord and CoPowerPoint.7 We
have implemented COT in a generic collaboration engine,
which is being used to support collaborative office produc-
tivity tools, digital media design, computer-aided design,
and software engineering tools. These and other emerging
applications provide exciting opportunities and fresh stimuli
to our ongoing and future research.
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Integrating, Transformation-Oriented Approach to Concurrency
Control and Undo in Group Editors,” Proc. ACM Conf. Computer-
Supported Cooperative Work (CSCW ’96), pp. 288-297, Nov. 1996.
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