
3 8 January 1991/Vol.34, No.l/COMMUNiCATiONS OF THE ACM

COMPUTING
PRACTICES

Im

S O M E I S S U
E /

Groupware reflects a change in
emphasis from using the computer
to solve problems to using the
computer to facilitate human in-
teraction. This article describes
categories and examples of group-
ware and discusses some underly-
ing research and development is-
sues. GROVE, a novel group editor,
is explained in some detail as a sa-

lient groupware example.

m

m

A N D

3

¢ . J L E l l i S ,
S .J . G i b b S , a n d

G . L . R e i n

ociety acquires much of its
character from the ways in
which people interact. Al-
though the computer in
the home or office is now
commonplace, our inter-
action with one another is
more or less the same now
as it was a decade ago. As
the technologies of com-
puters and other forms of
electronic communicat ion

continue to converge, however,
people will continue to interact in
new and dif ferent ways.

One probable outcome of this
technological marr iage is the elec-
tronic workp lace - - an organization-
wide system that integrates infor-
mation processing and communica-
tion activities. The study of such
systems is par t of a new muhidisci-
plinary field: Computer-Supported
Cooperative Work (CSCW) [29].
Drawing on the expert ise and col-

laboration of many specialists, in-
cluding social scientists and com-
puter scientists, CSCW looks at how
groups work and seeks to discover
how technology (especially comput-
ers) can help them work.

Commercial CSCW products,
such as The Coordinator TM [24] and
other PC-based software [67], are
often refer red to as examples of
groupware. This term is frequently
used almost synonymously with
CSCW technology (see [8] or [44]
for general descriptions of, and
strong motivation for groupware).
Others define groupware as soft-
ware for small or narrowly focused
groups, not organization-wide sup-
por t [30]. We propose a somewhat
b roader view, suggesting that
groupware be viewed as the class of
applications, for small groups and
for organizations, arising from the
merging of computers and large
information bases and communica-
tions technology. These applica-
tions may or may not specifically
suppor t cooperation.

This article explores groupware

in this larger sense and delineates
classes of design issues facing
groupware developers. It is divided
into five main sections. First, the
Overv iew defines groupware in
terms o f a group 's common task
and its need for a shared environ-
ment. Since our definit ion of
groupware covers a range of sys-
tems, the second section provides a
Taxonomy of Groupware Systems.
The third describes the widely
ranging Perspect ives of those who
build these systems. The fourth sec-
tion, Concepts and Example , intro-
duces some common groupware
concepts, and applies these to
GROVE, one example of a group-
ware system. The fifth section con-
tains a discussion of some Design
Issues facing groupware designers
and developers. Our emphasis in
this section is upon system-level is-
sues within real-time groupware. In
our conclusion to this article we
both issue a note of caution con-
cerning the difficulty of developing
successful groupware due to social
and organizational effects, and in-

C O M M U N I C A T I O N S OF THE ACM/January 1991/Vo1.34, No.1 39

dicate that there is much interesting
work remaining to be done in this
field.

O v e r w l Q w
Most software systems only suppor t
the interaction between a user and
the system. Whether p repar ing a
document , querying a database, or
even playing a video game, the user
interacts solely with the computer .
Even systems designed for multi-
user applications, such as office in-
formation systems, provide mini-
mal suppor t for user-to-user
interaction. This type of suppor t is
clearly needed, since a significant
por t ion of a person's activities occur
in a group, ra ther than an individ-
ual, context. As we begin to focus
on how to suppor t this group inter-
action, we must at tend to three key
areas: communication, collabora-
tion, and coordination.

T h e I m p o r L ~ n c e o f
C o l n n l u n l c a t l o n , C o l l a b o r a t i o n ,
a R d C o o r d i n a ~ i o n
Computer -based or computer-
media ted communicat ion, such as
electronic mail, is not fully inte-
grated with other forms of commu-
nication. The primari ly asynchro-
nous, text-based world of electronic
mail and bulletin boards exists sep-
arately from the synchronous world
of te lephone and face-to-face con-
versations. While applications such
as voice mail or talk programs blur
this distinction somewhat, there are
still gaps between the asynchronous
and the synchronous worlds. One
cannot t ransfer a document be-
tween two arbi t rary phone num-
bers, for example, and it is uncom-
mon to originate a te lephone
conversation from a workstation.
In tegra t ing telecommunications
and compute r processing technolo-
gies will help br idge these gaps.

Similar to communicat ion, co l -
laborat ion is a cornerstone of group
activity. Effective collaboration
demands that people share infor-
mation. Unfortunately, current in-
format ion sys tems--da tabase sys-
tems in pa r t i cu l a r - -go to great
lengths to insulate users from each

other. As an example, consider two
designers working with a CAD
database. Seldom are they able to
simultaneously modify different
parts of the same object and be
aware of each other 's changes;
rather, they must check the object
in and out and tell each other what
they have done. Many tasks require
an even finer granulari ty of shar-
ing. What is needed are shared en-
vironments that unobtrusively offer
up-to-date g roup context and ex-
plicit notification of each user's ac-
tions when appropr ia te .

The effectiveness of communica-
tion and collaboration can be en-
hanced if a group 's activities are
coordinated. Without coordination,
for example, a team of p rogram-
mers or writers will often engage in
conflicting or repetitive actions.
Coordinat ion can be viewed as an
activity in itself, as a necessary over-
head when several parties are per-
forming a task [62]. While cur ren t
database applications contr ibute
somewhat to the coordinat ion of
g r o u p s - - b y providing multiple ac-
cess to shared ob jec t s - -mos t soft-
ware tools offer only a single-user
perspective and thus do little to as-
sist this impor tan t function.

A O e f i n i £ 1 o n o f G r o u p w a r e
The goal o f groupware is to assist
groups in communicat ing, in col-
laborating, and in coordinat ing
their activities. Specifically, we de-
fine groupware as:

computer-based systems that support
groups of people engaged in a com-
mon task (or goal) and that provide
an interface to a shared environment.

The notions of a common task and a
shared environment are crucial to this
definition. This excludes mult iuser
systems, such as t ime-sharing sys-
tems, whose users may not share a
common task. Note also that the
definit ion does not specify that the
users be active simultaneously.
Groupware that specifically sup-
ports simultaneous activity is called
real-time groupware; otherwise, it is
non-real-time groupware. The em-
phasis of this article is real-time

groupware and system-level issues.
The term groupware was first

def ined by Johnson-Lenz [46] to
refer to a computer-based system
plus the social group processes. In
his book on groupware [44], Johan-
sen restricts his definit ion to the
computer-based system. O u r defi-
nition follows the line o f reasoning
of Johansen since this article is pri-
marily concerned with system-level
issues. All of the authors ment ioned
agree with us that the system and
the group are intimately interacting
entities. Successful technological
augmentat ion of a task or process
depends upon a delicate balance
between good social processes and
procedures with appropr ia te ly
s t ructured technology.

T h e G r o u p w a r e S p e c t r u m
There is no r ig id d iv id ing l ine be-
tween systems that are considered
groupware and those that are not.
Since systems suppor t common
tasks and shared environments to
varying degrees, it is appropr ia te to
think of a groupware spectrum
with d i f ferent systems at d i f ferent
points on the spectrum. O f course,
this spectrum is mult idimensional;
two dimensions are il lustrated in
Figure I. Following are two exam-
ples of systems described according
to our definit ion's common task
dimension:

1. A conventional t imesharing sys-
tem supports many users con-
current ly pe r fo rming their sepa-
rate and independen t tasks.
Since they are not working in a
tightly coupled mode on a com-
mon task, this system is usually
low on the groupware spectrum.

2. In contrast, consider a software
review system that electronically
allows a g roup of designers to
evaluate a software module dur-
ing a real-t ime interaction. This
system assists people who are
focusing on the same specific
task at the same time, and who
are closely interacting. I t is high
on the groupware spectrum.

Other systems, such as those de-
scribed in the following examples,

40 January 1991/Vo1.34, No.//COMMUNICATIONS O F T H E A C M

| s s a a s | a a a s a . a a a a a a a s a a s | a a a a a a a a s a a a a s a a * a a a a a J a a a a a a s a a a a a a a a a a a a a a a a | a a a a

can be placed on the groupware
spectrum according to how they fit
the shared environment par t of our
definition. In other words, to what
extent do they provide information
about the participants, the current
state of the project, and the social
atmosphere?

1. The typical electronic mail sys-
tem transmits messages, but it
provides few environmental
cues. There fo re it is ra ther low
on the groupware spectrum.

2. In contrast, the "electronic class-
room" system [74] uses multiple
windows to post information
about the subject being taught,
and about the environment .
Emulat ing a tradit ional class-
room, this system allows an in-
structor to present an on-line
lecture to students at remote
personal workstations. In addi-
tion to the blackboard controlled
by the teacher, windows display
the at tendance list, students '
questions and comments, and
the classroom status. Many com-
mands facilitate lecture delivery
and class interaction. This sys-
tem is high on the groupware
spectrum.

Over time, systems can migrate to
higher points on the groupware
spectrum. For example, Engelbart 's
p ioneer ing work on augment ing
the intellect in the 1960s demon-
strated multiuser systems with
groupware capabilities similar to
some of today's research proto-
types. Engelbart 's On-Line System
[NLS] [21], an early hyper text sys-
tem, contained advanced features
such as filters for selectively viewing
information, and suppor t for on-
line conferencing. Today's im-
proved technology and enhanced
user interfaces have boosted this
type of system higher on the group-
ware spectrum. Additionally, the
technological infrastructure re-
quired for groupware 's wide u s e - -
an infrastructure missing in the
1960s--is now emerging.

T a x o n o m y o f
G r o u p w a r e S y s t e m s
This section presents two

taxonomies useful for viewing the
variety of groupware. The first tax-
onomy is based upon notions of
time and space; the second on ap-
plication-level functionality.

1 1 m e S p a c e T n x o n o l n y
Groupware can be conceived to
help a face-to-face group, or a
group that is distr ibuted over many
locations. Fur the rmore a group-
ware system can be conceived to
enhance communicat ion and col-
laboration within a real-time inter-
action, or an asynchronous, non-
real-time interaction. These time
and space considerations suggest
the four categories of groupware
represented by the 2x2 matr ix
shown in Figure 2. Meeting room
technology would be within the
uppe r left cell; a real-time docu-
ment edi tor within the lower left
cell; a physical bulletin board within
the uppe r right cell; and an elec-
tronic mail system within the lower
right cell.

COMPUTING
PRACTICES

A comprehensive groupware sys-
tem might best serve the needs of
all of the quadrants . For example, it
would be quite helpful to have the
same base functionality, and user
interface look and feel (a) while I
am using a computer to edit a docu-
ment in real-time with a g roup
(same time/same place or same
t ime/different place) and (b) while I
am alone edit ing in my office or
home (different time). Of course,
there are other dimensions, such as
group size, that can be added to this
simple 2x2 matrix. Fur the r details
of this taxonomy are presented by
Johansen [45].

A p p l i c a t i o n - L e v e l
T a x o n o m y
The second taxonomy presented in

F e G U R E g. TWO Dimensions of
the Groupware Spectrum.
m G U R E 2. Grunpware Time
Space Matrix.

COMMUNICATIONS OF THE ACM/January 1991/Vo1.34, No.1 41

this section is based on application-
level functionality and is not meant
to be comprehensive; furthermore,
many of the defined categories
overlap. This taxonomy is intended
primarily to give a general idea of
the breadth of the groupware do-
main.

I f e s | a : l [e S y | t e l n 8

The most familiar example o f
groupware is the computer-based
message system, which supports the
asynchronous exchange of textual
messages between groups of users.
Examples include electronic mail
and computer conferencing or bul-
letin board systems. The prolifera-
tion of such systems has led to the
"information overload" phenome-
non [37]. Some recent message sys-
tems help manage information
overload by easing the user's pro-
cessing burden. "Intelligence" is
sometimes added to the message
delivery system; for example, the
Information Lens [63] lets users
specify rules that automatically file
or reroute incoming messages
based on their content. Other sys-
tems add intelligence to the mes-
sages themselves; the Imaii system
[38], role example, has a language
for attaching scripts to messages.
Scripts are sender-specified pro-
grams that execute in the receiver's
environment and that can, for ex-
ample, ,query the receiver, report
back to the sender, or cause the
message to be rerouted.

M u l t l u l e r E d i t o r s
Members of a group can use multi-
user editors to jointly compose and
edit a document. Some of these edi-
tors, such as ForComment TM [67],
a r e for asynchronous use, and con-
veniently separate the text supplied
by the author from the comments
of various reviewers. Real-time
group editors allow a group of peo-
ple to edit the same object at the
same time. The object being edited
is usually divided into logical seg-
ments; for example, a document
could be split into sections or a pro-
gram imLo procedures or modules.
Typically, a multiuser editor allows

concurrent read access to any seg-
ment, but only to one writer per
segment. The editor transparently
manages locking and synchroniza-
tion, and users edit the shared ob-
ject as they would a private object.
Examples include the Collaborative
Editing System (CES) [28], Shared
Book [58], and Quilt [22, 57].

Some multiuser editors provide
explicit notification of other users'
actions. For example, Mercury [47],
an editor intended for program-
ming teams, informs users when
their code needs to be changed be-
cause of program modifications
made by others. The DistEdit sys-
tem [49] tries to provide a toolkit
for building and supporting multi-
ple group editors.

Group Dec is ion S u p p o r t
s y s t e l n 8 a n d E l e c t l ~ m l ¢
M e e t i n g R o o m s ;

Group Decision Support Systems
(GDSSs) provide computer-based
facilities for the exploration of un-
structured problems in a group set-
ting (see [51] or [16] for recent sur-
veys). The goal is to improve the
productivity of decision-making
meetings, either by speeding up the
decision-making process or by im-
proving the quality o f the resulting
decisions [51]. There are GDSS aids
for decision structuring, such as al-
ternative ranking and voting tools,
and for idea generation [2] or issue
analysis [11].

Many GDSSs are implemented as
electronic meeting rooms that con-
tain several networked worksta-
tions, large computer-controlled
public displays, and audio/video
equipment (examples are discussed
in [2, 12, 16, 64, 77 and 78]). Some
of these facilities require a specially
trained operator; others assume
operational competence among the
group members.

A well-known example is the
PlexCenter Planning and Decision
Support Laboratory at the Univer-
sity of Arizona [2]. The facility pro-
vides a large U-shaped c)nference
table with eight personal worksta-
tions; a workstation in each of four
break-out rooms; a video disk; and

a large-screen projection system
that can display screens of individ-
ual workstations or a compilation of
screens. The conference table
workstations are recessed to en-
hance the participants' line of sight
and to encourage interaction. They
communicate over a local area net-
work and run software tools for
electronic brainstorming, stake-
holder identification and analysis,
and issue analysis.

Recent work at the University of
Arizona has concentrated on the
support of larger groups. The cur-
rent large group facility has 24
workstations designed to support
up to 48 people. The support of
large groups presents unique chal-
lenges and opportunities.

c o m p u t e r ~ r e n c l n g
The computer serves as a commu-
nications medium in a variety of
ways. In particular, it has provided
t h r e e new approaches in the way
people carry out conferences: real-
time computer conferencing, com-
puter teleconferencing, and desk-
top conferencing.

Real-Time Computer Conferencing
Real-time computer conferencing
allows a group of users, who are ei-
ther gathered in an electronic
meeting room or physically dis-
persed, to interact synchronously
through their workstations or ter-
minals. When a group is physically
dispersed, an audio link, such as a
conference call, is often established.

There are two basic approaches
to implementing real-time com-
puter conferencing software [73].
The first embeds an unmodified
single-user application in a confer-
encing environment that multiplexes
the application's output to each
participant's display [42]. Input
comes from one user at a time, and
a floor passing protocol (determining
who has the floor) exchanges input
control among users [56]. Examples
include terminal linking (a service
found in some time-sharing sys-
tems) and replicated windows (typi-
cally implemented by a window
server that drives a set o f displays in

4 2 January 1991/Vol.34, No.1/COMMUNICATIONS OF THE ACM

i l a * l . . m l a l m i l m . J . l . . a A n . * n l l o l . l n . a . . a . a a A R l i O a a R A R n n n R a a n l m n i O a n n o R i n m

tandem). The second approach is to
design the application specifically
to account for the presence of mul-
tiple users. Some examples are Real
Time Calendar [RTCAL] [73], a
meeting scheduling system, and
Cognoter [78], a real-time group
note-taking system.

Each approach has its advantages
and disadvantages. While the first
allows existing applications to be
used, each user has an identical
view of the application--there is no
per-user context. The second ap-
proach offers the possibility of a
richer interface, but the application
must be built from the ground up
or with considerable additional ef-
fort.

Computer Teleconferencing
Telecommunication support for
group interaction is referred to as
teleconferencing [43]. The most
familiar examples of teleconferenc-
ing are conference calls and video
conferencing. Teleconferencing
tends to be awkward, requiring spe-
cial rooms and sometimes trained
operators. Newer systems provide
workstation-based interfaces to a
conference and make the process
more accessible. Xerox, for exam-
ple, established an audio/video link
for use by a project team split be-
tween Portland and Paio Alto [26].
Most video interactions occurred
between large Commons areas at
each site, but project members
could also access video channels
through their office workstations.
A similar system, CRUISER [72],
lets users electronically roam the
hallways by browsing video chan-
nels.

Desktop Conferencing
Teleconferencing is not only rela-
tively inaccessible, but it also has the
disadvantage of not letting partici-
pants share text and graphics (see
[18] for a discussion of the failure
of video conferencing). Real-time
computer conferencing does not
offer video capabilities. A third
type o f computer-supported con-
ferencing combines the advantages
of teleconferencing and real-time

conferencing while mitigating their
drawbacks. Dubbed desktop confer-
encing, this method still uses the
workstation as the conference in-
terface, but it also runs applications
shared by the participants. Modern
desktop conferencing systems sup-
port multiple video windows per
workstation. This allows display of
dynamic views of information, and
dynamic video images of partici-
pants [80].

An example of desktop confer-
encing is the MMConf system [14].
MMConf provides a shared display
of a multimedia document, as well
as communications channels for
voice and shared pointers. Another
example is the Rapport multimedia
conferencing system [1]. Rapport is
designed for workstations con-
nected by a multimedia network (a
network capable of transmitting
data, voice, and video). The system
supports various forms of interac-
tion, from simple telephone-like
conversations to multiparty shared-
display interaction.

I n t e l l i g e n t Agentm
Not all the participants in an elec-
tronic meeting are people. Mul-
tiplayer computer games, for ex-
ample, might automatically
generate participants if the number
of people is too low for a challeng-
ing game. Such nonhuman partici-
pants are a special case of intelli-
gent agents (a similar concept is
"surrogates" [44]). In general, intel-
ligent agents are responsible for a
specific set of tasks, and the user
interface makes their actions re-
semble those of other users.

As a specific example, we have
developed a groupware toolkit that
includes an agent named Liza [25].
One of the tools in the toolkit dis-
plays the pictures and locations of
all session participants. When Liza
joins a session, a picture of an intel-
ligent-looking android is also dis-
played, indicating to the group that
Liza is participating. Liza's participa-
tion means that a set of rules owned
by Liza become active; these rules
monitor session activity and result

COMPUTING
PRACTICES

in Liza suggesting changes of con-
tent or form.

C o o r ~ i n o f i o n S y s t e m 8

The coordination problem is the
"integration and harmonious ad-
justment of individual work efforts
toward the accomplishment of a
larger goal" [76]. Coordination sys-
tems address this problem in a vari-
ety of ways. Typically these systems
allow individuals to view their ac-
tions, as well as the relevant actions
of others, within the context of the
overall goal. Systems may also trig-
ger users' actions by informing
users of the states of their actions
and their wait conditions, or by
generating automatic reminders
and alerts. Coordination systems
can be categorized by one of the
four types of models they embrace:
form, procedure, conversation, or
communication-structure oriented.

Form-oriented models typically
focus on the routing of documents
(forms) in organizational proce-
dures. These systems address coor-
dination by explicitly modeling or-
ganizational activity as fixed
processes [59, 83]. In some of the
more recent systems there is an ef-
fort to make process support more
flexible. For example, in Electronic
Circulation Folders [ECF] [48] ex-
ception handling is addressed
through migration specifications
that describe all the possible task
migration routes in terms of the
steps to be carried out in processing
organizational documents.

Procedure-oriented models view
organizational procedures as pro-
grammable processe~; hence the
phrase "process programming" [3,
68, 69]. This approach was first
applied to coordination problems
in the software process domain and
takes the view that software process
descriptions should be thought of
and implemented as software. The
development of process programs
is itself a rigorous process consist-
ing of specification, design, imple-
mentation, and testing/verification
phases [69].

Conversation-oriented models
are based on the observation that

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.l 4 3

people coordinate their activities
via their conversation [15, 24, 65,
81]. The underlying theoretical
basis fi~r many systems embracing
the conversation model is speech
act theory [75]. For example, The
Coordinator [24] is based on a set of
speech acts (i.e., requests, promises,
etc.) and contains a model of legal
conver,;ational moves (e.g., a re-
quest has to be issued before a
promise can be made). As users
make conversational moves, typi-
cally through electronic mail, the
system tracks their requests and
commitments.

Communication structure-
oriented models describe organiza-
tional activities in terms of role rela-
tionships [10, 39, 77]. For example,
in the I T T approach [39, 40], a
person's electronic work environ-
ment is composed of a set of cen-
ters, where each center represents a
function for which the person is
responsible. Within centers are
roles that perform the work and
objects that form the work materi-
als for ,carrying out the function of
that center. Centers and roles have
connections to other centers and
roles, and the behavior of the con-
nections is governed by the role
scripts of the interacting roles.

S u n , m a r y
As mentioned, overlap exists in
these categories. As the demand for
integrated systems increases, we see
more merging of these
functionalities. Intelligent message
systems can and have been used for
coordination. Desktop conferenc-
ing systems can and have been used
for group editing. Nevertheless,
many systems can be categorized
according to their primary empha-
sis and intent. This, in turn, may
depend upon the perspectives of
the system designers.

I P i r i p e c t l v e l l

As the preceding section's taxon-
omy suggests, groupware relies on
the approaches and contributions
of many disciplines. In particular,
there are at least five key disciplines
or perspectives for successful
groupware: distributed systems,

communications, human-computer
interaction, artificial intelligence
(AI), and social theory. It is impor-
tant to note that the relationship
between groupware and these five
domains of study is a mutually ben-
eficial one. Not only does each dis-
cipline advance our understanding
of the theory and practice of
groupware, but groupware pres-
ents challenging topics of research
for all five d o m a i n s i t o p i c s that
without groupware might never be
explored.

Of equal importance is the no-
tion that a given groupware system
usually combines the perspectives
of two or more of these disciplines.
We can see the desktop conferenc-
ing paradigm, for example, as hav-
ing been derived in either of two
ways:

1. by starting with communications
technology and enhancing this
with further computing power
and display devices at the phone
receiver, or

2. by starting with the personal
workstation (distributed systems
perspective) and integrating
communications capabilities.

D i ~ r i b u t e d S y s ~ n l 8
P e r i p e c t l v e
Because their users are often dis-
tributed in time and/or space, many
multiuser systems are naturally
considered to be distributed systems.
The distributed systems perspective
explores and emphasizes this de-
centralization of data and control.
Essentially, this type o f system in-
fers global system properties and
maintains consistency of the global
state by observing and manipulat-
ing local parameters.

The investigation o f efficient al-
gorithms for distributed operating
systems and distributed databases is
a major research area in distributed
systems theory. Some of these re-
search results are applicable to
groupware systems. For example,
implementing electronic mail sys-
tems evokes complex distributed-
systems issues related to robustness:
recipients should be able to receive

messages even when the mail server
is unavailable. One solution is to
replicate message storage on multi-
ple server machines [6]. Discover-
ing and implementing the required
algori thms--algori thms that will
keep these servers consistent and
maintain a distributed name lookup
faci l i ty i is a challenging task.

¢ o r n m u n l c a t l o n m Ise rmpec t lve
This perspective emphasizes the
exchange of information between
remote agents. Primary concerns
include increasing connectivity and
bandwidth, and protocols for the
exchange of many types o f infor-
m a t i o n I t e x t , graphics, voice and
video.

One of the commonly posed
challenges of groupware to com-
munications technology is how to
make distributed interactions as
effective as face-to-face interac-
tions. Perhaps the correct view of
this challenge is that a remote inter-
action, supported by appropriate
technology, presents an alternative
medium. While this will not replace
face-to-face communication, it may
actually be preferable in some situ-
ations for some groups because cer-
tain difficulties, inconveniences,
and breakdowns can be eliminated
or minimized. For example, distrib-
uted interactions allow participants
to access other relevant informa-
tion, either via the computer or in a
book on the shelf, without inter-
rupting the interaction flow. This is
analogous to findings on the use of
telephone, electronic mail, and
other technologies. While none of
these replace face-to-face interac-
tion, each has a niche where it is a
unique and useful mode of com-
munication. The challenge, then, is
to apply appropriate technological
combinations to the classes of inter-
actions that will benefit the most
from the new medium.

I f u r n a n - c o r n p u t e r
I n t e r a c t i o n P e r m p o c t l v e
This perspective emphasizes the
importance of the user interface in
computer systems. Human-
computer interaction is itself a mul-

4 4 January 1991/Vol.34, No.1/COMMUNIr~ATIONS OF "/'HE A C M

m m m m * a a a a a a n a m a m m s m a m a n a m m a m m a m a a m m m m * a a m m m a a a a a m m m m s m m m m m m m m m m m m m a m m m m m m s m m

t idisciplinary field, relying on the
diverse skills of graphics and indus-
trial designers, compute r graphics
experts (who study display technol-
ogies, input devices, and interaction
techniques), and cognitive scientists
(who study human cognitive, per-
ceptual, and motor skills).

Until recently, most user inter-
face research has focused on single-
user systems. Groupware chal-
lenges researchers to broaden this
perspective, to address the issues of
human-compute r interaction
within the context of mult iuser or
group interfaces. Since these inter-
faces are sensitive to such factors as
group dynamics and organizational
s t ruc ture - - fac tors not normally
considered relevant to user inter-
face des ign - - i t is vital that social
scientists and end users play a role
in the development of group inter-
faces.

Arl~l f lc la l I n t e l l i g e n c e
P e r s p e c t i v e
With an emphasis on theories of
intelligent behavior, this perspec-
tive seeks to develop techniques
and technologies for imbuing ma-
chines with human-l ike attributes.
The artificial intelligence (AI) ap-
proach is usually heuristic or aug-
mentative, allowing information to
accrue through user-machine inter-
action ra ther than being initially
complete and structured.

This approach blends well with
groupware 's requirements. For

example, groupware designed for
use by dif ferent groups must be
flexible and accommodate a variety
of team behaviors and tasks: re-
search suggests that two different
teams pe r fo rming the same task use
group technology in very different
ways [71]. Similarly, the same team
per fo rming two separate tasks uses
the technology differently for each
task.

AI may, in the long run, provide
one of the most significant contri-
butions to groupware. This tech-
nology could t ransform machines
from passive agents that process
and present information to active
agents that enhance interactions.
The challenge is to ensure that the
system's activity enhances interac-
tion in a way that is procedural ly
and socially desirable to the partici-
pants.

S o c i a l T h e o r y P e r i p e c t l v e
This perspective emphasizes social
theory, or sociology, in the design
of groupware systems. Systems de-
signed from this perspective em-
body the principles and explana-
tions der ived from sociological
research. The developers of Quilt
[22], for example, conducted sys-
tematic research on the social as-
pects of writing, and from this re-
search they derived the
requirements for their collaborative
edit ing environment . As a result,
Quilt assigns document access
rights according to interactions be-

The artificial intelligence (AI)
approach is usually heuristic or
augmentative, allowing infor-
mation to accrue through user-
machine interaction rather than
being initially complete and

structured.

COMPUTING
PRACTICES

tween users' social roles, the nature
of the information, and the stage of
the writing project.

Systems such as this ask people to
develop a new or different aware-
ness, one that can be difficult to
maintain until it is internalized. For
example, Quilt users must be aware
when their working s tyles--which
are often based on informal agree-
men t s - -change , so that the system
can be reconf igured to provide
appropr ia te access controls. With
The Coordina tor [24], users need
to learn about the language impli-
cations of requests and promises,
because the system makes these
speech acts explicit by automatically
recording them in a group calen-
dar. Both examples suggest the
need for coaching. Perhaps the sys-
tems themselves could coach users,
both by encouraging and teaching
users the theories on which the sys-
tems are based.

R e a l - T i m e G r o u p w a r e
¢ o n c e P t m a n d I E x a m p l e
The vocabulary and ideas embod-
ied in groupware are still evolving.
In this section, we list some impor-
tant terms useful for explanation
and comparison of groupware sys-
tems, followed by an illustrative
real-time groupware system. Our
emphasis th roughout the remain-
de r of this paper is on real-time
groupware. Functionality, design
issues, and usage experience of
GROVE, a real-time group text edi-
tor allowing simultaneous edit ing
of private, shared, and public views
of a document will also be ex-
plained.

• shared context. A shared context is
a set of objects where the objects
and the actions pe r fo rmed on the
objects are visible to a set of users.
Examples include document ob-
jects within coauthor ing systems
and class notes within electronic
classrooms. This notion of shared
context is a subset of the larger,
more elusive concept of a shared
environment discussed earlier.

• group window. A group window is
a collection of windows whose
instances appear on dif ferent dis-

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.1 4S

play surfaces. The instances are
connected. For example, drawing
a circle in one instance makes a
circle appear in the other in-
stances, or scrolling one instance
makes the others scroll.

• telepointer. A telepointer is a cur-
sor that appears on more than
one display and that can be
moved by dif ferent users. When
it is moved on one display, it
moves on all displays.

• view. A view is a visual, or multi-
media representat ion o f some
port ion of a shared context. Dif-
ferent views may contain the
same informat ion but differ in
their presentat ion (for instance,
an array of numbers can be pre-
sented as a table or as a graph), or
they can use the same presenta-
tion but refer to di f ferent por-
tions of the shared context.

• synchronous and asynchronous inter-
action. In synchronous interac-
tions, such as spoken conversa-
tions, people interact in real time.
Asynchronous interactions are
those in which people interact
over an extended per iod o f t ime
such as in postal correspondence.
Most groupware systems suppor t
only one o f these interaction
modes.

• session. A session is a per iod o f
synchronous interaction sup-
por ted by a groupware system.
Examples include formal meet-
ings and informal work group
discussions.

• role. A role is a set of privileges
and responsibilities at t r ibuted to
a person, or sometimes to a sys-
tem module. Roles can be for-
mally or informally at tr ibuted.
For example, the person who
happens to like to talk and visit
with many people may informally
take on the role of information
gatekeeper. The head o f a group
may officially have the role of
manager [37].

GROVE.. A G r O U p w a r e E x a m p l e

The GRoup Outline Viewing Edi tor
(GROVE), [20], is an example of
real-t ime groupware that illustrates
some of the concepts jus t intro-

duced. GROVE, implemented at
MCC, is a simple text edi tor de-
signed for use by a g roup of people
simultaneously edit ing an outline
dur ing a work session.

Within a GROVE session, each
user has his or her own workstation
and bi tmap display. Thus each user
can see and manipulate one or
more views of the text being worked
on in mult iple over lapping win-
dows on his or her screen. GROVE
separates the concept of a view
from the concept of a viewer. A
view is a subset of the items in an
outline de te rmined by read access
privileges. A viewer is a g roup win-
dow for seeing a contiguous subset
of a view. GROVE views and view-
ers are categorized as private,
shared, and public. A private view
contains items which only a particu-
lar user can read, a shared view con-
tains items readable by an enumer-
ated set of users, and a public view
contains items readable by all users.

Figure 3 shows a GROVE group
w i n d o w - - g r o u p windows provide
the shared viewers for synchronous
interactions among users.

In addi t ion to displaying views,
g roup windows indicate who is able
to use the window and who is actu-
ally part icipat ing in the session at
any given time. This informat ion is
provided by displaying images of
the people who are members of the
view (or simply pr int ing their
names if their images are not avail-
able) along the bot tom borde r of
the window. Thus as users en ter or
leave the session, their pictures
appear and d isappear in all appro-
priate g roup windows. The window
in Figure 3 appears on the worksta-
tions of the three users shown along
the bot tom border , and each user
knows that the others have jo ined
the session. Users can modify the
under ly ing outline by pe r fo rming
s tandard edit ing operat ions (insert,
delete, cut, paste, and so on) in a
g roup window. When this is done,
all three o f the users immediately
s e e the modification. Outl ine items
which are grey (like the last item, in
Figure 3) ra ther than black on a
part icular user 's screen cannot be

modif ied by that user. Users can
also open and close parts of the out-
line (by mousing on the small but-
tons on the lef t-hand side) or
change the read and write permis-
sions of outline items.

Participants can enter and leave a
GROVE session at any time. When
users enter (or reenter) a session,
they receive an up-to-date docu-
ment unless they choose to retrieve
a previously stored version. The
current context, is mainta ined even
though changes may have occurred
dur ing their absence from the ses-
sion. A session terminates when
there are no remaining partici-
pants.

Design Issues and Rationale
GROVE was built as an exper imen-
tal proto type to explore systems
implementa t ion issues, and to gain
usage experience. We chose to
build this system from scratch
ra ther than beginning with the
code of an existing edi tor because
we wanted to unders tand, control,
and modular ize the code in particu-
lar ways. We were especially con-
cerned with the user interface, and
wanted to carefully architect the
system's features and its look and
feel. In keeping with the experi-
mental nature o f this tool, we chose
to minimize the functionality and
coding time spent on the s tandard
edit ing features, and to concentrate
on its groupware features. These
features include the private,
shared, and public g roup window
support ; the shared context present
in the user interface; and the repli-
cated architecture to allow fine-
gra ined (keystroke level) concur-
rent edit ing and notification.

The architecture uses a local edi-
tor and replicated document at
each user 's workstation, and a cen-
tralized coordina tor that serializes
the operat ions of the various edi-
tors. This forced us to immediately
face problems of response times,
concurrent actions, and data incon-
sistencies. These are problems that
plague real-t ime groupware sys-
tems in general. We have investi-
gated this fur ther , and using some

46 January 1991/Vol.34, No.l/COMMUNICATIONS O F T H E A C M

l l l l l l l l l i l i l i l l l i i l l l l l l l l i [i i l l l i l l l [i i l l l l l l i l l l i i l l l l l l l l l i l [l l l l l l i i l i [

concepts from the distributed sys-
tems literature, have d, evised an
algorithm for distributed concur-
rency control. This eliminates the
need for centralized coordination
as will be shown in the later section
on concurrency control.

GROVE proposes an alternative
style of interaction. It is designed to
encourage and assist in tightly cou-
pled interaction as opposed to the
majority of systems for editing doc-
uments or doing multiuser comput-
ing. The default in GROVE is a
mode where everyone can see and
edit everything, and there is abso-
lutely no locking while editing. New
users ask "Isn't it chaotic to all edit
in the same document, even the
same paragraph, at the same time?"
and "Why would a group ever want
to edit in the same line of text at the
same time?" Indeed, this editor is at
the opposite extreme from most
CASE systems which force a group
of software engineers to lock mod-
ules and work in a very isolated and
serial manner . The answer to the
above questions are related to
groups learning to work in new and
original ways. Part of the answer is
that after a learning period, it is not
chaotic, but rather surprisingly use-
ful, because social protocol medi-
ates. The above questions imply
that we can learn a lot by observing
teams using this editor for real work.
In the next subsection, we report
on our observation and reflection
on some of this usage.

Usage Experience
Groupware developers need to be
conscious of the potential effects of
technology on people, their work
and interactions. A sensitivity to
this dimension can make the differ-
ence between a groupware system
which is accepted and used regu-
larly within an organization, and
one that is rejected [32]. Issues of
user friendliness, flexibility, and
technological control must be con-
sidered dur ing design and imple-
mentation. Much can be learned
from ongoing observation and
empirical study of groupware sys-
tems.

COMPUTING
PRAC'rI(~ES

m ~

[] Outline T i t l e
[] 1. Item I is readable and writable.
[] 1.1. Item 1.1 is also readable and writable.
[] *. Shared item is readable and writable.
[] *.*. Shared item is read-only.

GROVE has been used by several
groups for a variety of design activ-
ities, from planning jo in t papers
and presentations to brainstorm-
ing. In general, sessions can be di-
vided into three types:

1. face-to-face sessions in the elec-
tronic meeting room at our lab
where there are three Sun work-
stations and an electronic black-
board,

2. distributed sessions where the
participants work from ma-
chines in their offices and use a
conference call on speaker
phones for voice communica-
tion, and

auIGURIE 3;. A GROVE Group Win-
dow.

3. mixed-mode sessions where
some of the participants are
face-to-face and others are dis-
tributed.

Table 1 lists the session type, group
size, and task for fifteen GROVE
sessions. The early sessions were
mostly face-to-face sessions where
we (the GROVE creators) used the
tool and fine-tuned it. More recent
sessions have primarily been dis-
tributed or mixed-mode sessions

m Number
Task

distributed 3
face-to-face 3
face-to-face 3
distributed 3
face-to-face 3
face-to-face 2
face-to-face 3
face-to-face 3
face-to-face 3
face-to-face 3
mixed-mode 5
distributed 3
distributed 5
distributed 5
mixed-mode 6

Identify issues in a project description.
Refine list of issues in project description.
Outline a technical report.
Plan a managerial presentation.
Continue planning a managerial presentation.
Plan a tutorial,
Discuss project plans.
Discuss soft:ware enhancements for a system.
Continue to discuss project plans.
Continue to discuss project plans.
Identify similarities/differences of two projects.
Remote session test.
Brainstorm on two related topics,
Outline a paper,
Outline a paper.

COMMUNICATIONS OF THE ACM/January 1991/Vo1.34, No.1 47

Groupware developers need to be
conscious of the potential effects
of technology on people, their

work and interactions.
across thousands of miles, and have
included participants at remote lo-
cations at the MCC Human Inter-
face Program, from the University
of Michigan, and from the Ar thur
Andersen Consult ing Company.
Distributed and mixed-mode ses-
sions frequently involve as many as
five or six people.

From the user's perspective, dis-
t r ibuted editing sessions are dis-
tinctly different experiences from
face-to-face edit ing sessions. Here
are some pro and con observations
regard ing distr ibuted sessions:

Increases information access. Partic-
ipants in distr ibuted sessions who
reside in their offices have access to
their local books and files. This
sometimes allows easy access to
impor tant information that would
not otherwise be available dur ing
the session. People have com-
mented positively on the conven-
ience, comfort , and familiarity asso-
ciated with remaining in their
offices.

Encourages parallel work within the
group. People often divide into sub-
groups to work on different parts
of the task by using a social protocol
and shared views. Then their work
is merged with the rest of the
group 's work by changing the ac-
cess rights on the shared items to
public items. This is also done in
face-to-face sessions, but not as fre-
quently as in distr ibuted sessions
(perhaps because there are more
participants in a typical distr ibuted
session).

It is ,easy for distr ibuted mem-
bers to d rop out for a while, do
something else (such as work on
some code in another window or

get a drink), then return. This is
not socially acceptable in most face-
to-face situations, but is accepted in
distr ibuted sessions.

Makes discussion more difficult. Dis-
tributed sessions have a noticeably
di f ferent communicat ion pat tern
from face-to-face sessions. Because
our phones are not full-duplex,
only one person's voice is transmit-
ted at a time. Consequently, people
tend to take turns and are unusu-
ally po l i t e - - i f they are impoli te or
uncooperat ive, remarks get cut off
and the discussion is incomprehen-
sible.

Makes group focus more difficult,
requiring more concentration. Peo-
ple have commented that in gen-
eral, face-to-face sessions feel"
shorter, seem to accomplish more
in less time, and are frequently
more exhilarating. In contrast, dis-
t r ibuted and mixed-mode sessions
seem to require more concentration
and are more tiring. Since discus-
sion is more difficult when some of
the group members are distr ibuted,
people appea r to work ha rde r (i.e.,
they make a conscious effort) to get
and give feedback.

Cuts down on social interaction. Dis-
tributed sessions tend to be more
serious. Since there is less inter-
change about nontask-related top-
ics, people tend to focus on the task
immediately. The effect is a possi-
ble efficiency gain f rom time saved
and a possible loss f rom social
needs.

Most of the face-to-face sessions
seem to have more intense, r icher
interactions, but we think the rea-
sons are deeper than simply the

ability to look directly at o ther par-
ticipants. Group members rarely
look directly at each other dur ing
face-to-face sessions, but being in
the same room seems to increase
the awareness of other members '
activities to the point where highly
cooperative work can be done. Most
of the GROVE cooperative usage
techniques have emerged in the
face-to-face sessions, then have
been used again in the distr ibuted
sessions because they were success-
ful in the face-to-face environment .

In addi t ion to compar ing distrib-
uted with face-to-face sessions, it is
interest ing to compare group edit-
ing (in the synchronous or real-t ime
sense) with single-user editing. Our
observations regard ing group edit-
ing are:

Can be confusing, unfocused, and
chaotic. Many things can be going
on at once. Several people may be
busy in di f ferent parts of the out-
line. At times someone starts word-
smithing a public item while an-
o ther is still working on it. Since
GROVE does not provide a
te lepointer or o ther explicit turn-
taking mechanisms, actions on the
public view (such as scrolling or
opening and closing items) are gen-
erally disruptive unless accompa-
nied by some verbal explanation.
Without verbal explanations, such
as "Let's scroll to the next page" or
' T m opening line 2," one wonders
"Who is doing this?" and "Why is
this being changed?"

Collisions are surprisingly infre-
quent. Awareness of others ' activi-
ties is frequently at a subconscious
level. As one user expressed it,
"During the bra ins torming phase, I
r emember feeling that I was totally
occupied with enter ing my own
thoughts as fast as I could. I d idn ' t
feel at the time that I was paying
much attention to what others were
d o i n g - - b u t I know I was . . . First
of all, there was very little duplica-
tion (most of the items were fresh
material), so I must have been read-
ing others ' contr ibutions without
being aware of it. Secondly, there

48 January 1991/Vo1.34, No.l/COMMUNICATIONS OF THE ACM

were very few collisions with people
working in the same item at the
same t i m e - - I was aware of where
others were working and steered
clear of their space."

Can be efficient. Group edit ing pro-
vides many opportuni t ies for paral-
lel work. The most interest ing co-
operat ion pat terns also involve an
agreed-upon social protocol for
using the tool. For example,
GROVE does not have an easy way
to move a subtree: one group 's pro-
tocol was that one person should
create new empty items where he or
she wanted to move the existing
lines, then each person took re-
sponsibility for cutting and pasting
certain agreed-upon lines to new
locations in the outline. The group
accomplished the subtree move in
less time than if one person had
done it alone.

Can help prevent information loss,
leading to a tangible group product.
All the groups observed have pro-
duced significant outlines at the
end of their GROVE sessions.
These outlines are group composi-
tions that emerge out of the contributions
of individuals. The mechanism for
generat ing the outline is a fascinat-
ing process which can consist of any
of the following actions:

• independent entry--a user en-
ters information while paying lit-
tle attention to what is already
there or what is being discussed,

• reflective entry--a user com-
ments on, appends to, or modi-
fies what has already been en-
tered (perhaps by other users),

• consensus entry--as the result of
discussion the group decides on
an appropr ia te entry or modifica-
tion,

• partitioned entry--the group
assigns part icular members to
refine or reorganize part icular
parts of the outline, and

• recorded entry--a user para-
phrases what is being discussed
verbally.

This variety of contr ibution styles
has two effects. First, there is little

information loss (as compared with
having a single person enter infor-
mation), and consequently all
groups have a significant, tangible
product at the end of their sessions.
The product ion of tangible output
leads to interactions with high satis-
faction/productivity ratings. Sec-
ond, different groups tend to use
the tool in different ways, perhaps
adapt ing it to how they already
work or exper iment ing with new
formats.

Can make learning a natural aspect
of tool use. Since people are using
the same tool at the same time for a
shared purpose, when one has a
question, fr iendly help is r ight at
hand. The shared context makes
the exchange between requester
and provider efficient and relevant.

An unexpected f inding is that
GROVE users say they now find
using single-user tools frustrating.
Once one has exper ienced the flex-
ibility and suppor t provided by a
groupware tool, one wants group-
ware features in all tools. For exam-
ple, one group had a dis tr ibuted
session in which they used a docu-
ment-processing system to review
slides for a jo int talk. This system
was basically a single-user tool, de-
spite its shared desktop feature.
People could not edit slides on the
spot and effect a shared view of the
slide. They were constantly saving
and closing-and-reopening docu-
ment flies. There was no suppor t
for mult iple wr i t e r s - -whoever
saved last was what the system re-
membered . Al though this system
had powerful graphics and format-
ting capabilities, it was not adequate
for the task at hand and users
missed GROVE's collaborative edit-
ing features.

D e s i g n I m n u e e
Groupware systems of the future
will probably incorporate contribu-
tions from most, if not all, o f the
five disciplines of study previously
outlined. Fur thermore , the group-
ware designer will increasingly be
called on to grapple with several
impor tant issues that bear directly

COMPUTING
PRACTICES

on a system's success. Researchers
are current ly explor ing methods
and techniques for resolving these
issues, but many key research prob-
lems remain to be solved. This sec-
tion focuses on groupware re-
search, describing the problems
that continue to face groupware

d e s i g n e r s and developers. The
emphasis of this section is on real-
time groupware designed for use
by small- to medium-sized groups.
We focus on this form of group-
ware since we feel it is here that
technical challenges faced by
groupware designers are most ap-
parent.

G r o u p I n t e r f a c e #

Group interfaces differ from
single-user interfaces in that they
depict group activity and are con-
trolled by multiple users ra ther
than a single user. One example of
a group interface is the GROVE
group window illustrated in
Figure 3. Other examples include
interfaces to real-t ime computer
conferencing systems and to mul-
t iplayer games.

Group interfaces introduce de-
sign problems not presented by
single-user interfaces. A basic prob-
lem is how to manage complexity:
mult iple users can produce a
higher level of activity and a greater
degree of concurrency than single
users, and the interface must sup-
por t this complex behavior.

Other impor tant questions are:
What single-user interface tech-
niques and concepts are useful for
constructing group interfaces?
Where do they fail, point ing to the
need for new concepts? For exam-
ple, is something like a scrollbar
useful when it can be manipula ted
by more than one person, or is it
simply too distracting?

WYSIWIS Issues
One approach to constructing
group interfaces is known as
WYSIWIS [78]. This acronym
stands for "What You See Is What I
See" and denotes interfaces in
which the shared context is guaran-
teed to appear the same to all par-

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.l 49

ticipants. The advantages of
WYSIWIS are a strong sense of
shared context (e.g., people can
re fer to something by position) and
simple implementat ion. Its major
disadvantage is that it can be inflex-
ible.

Experience has shown that users
often want independen t control
over such details as window place-
ment and size, and may require
customized information within the
window. The contents o f the
GROVE window in Figure 3, for
example, vary among users in that
color indicates user-specific write
permissions (i.e., black text is read/
write, gray text is read-only). This is
an example of relaxed as opposed to
strict WYSIWIS. Stefik et al. [78]
have suggested that WYSIWIS can
be relaxed along four key dimen-
sions: display space (the display ob-
jects to which WYSIWIS is applied),
time of display (when displays are
synchronized), subgroup popula-
tion (the set o f part icipants involved
or affected), and congruence of
view (the visual congruence o f dis-
played information).

Group .Focus and Distraction Issues
A good group interface should
depict overall g roup activity and at
the same time not be overly dis-
tracting. For example, when one
user creates or scrolls a group win-
dow, opens or closes a group win-
dow, or modifies an object another
person is viewing/working on, o t h e r
users can be distracted.

This points up a fundamenta l
difference between single-user and
muhiuser interfaces. With single-
user interfaces , users usually have
the mental context to in terpre t any
display changes that result f rom
their actions. As a result, the sud-
den dit~appearance of text at the
touch of a but ton is acceptable; in
fact, much effort goes toward in-
creasing the system's respons ive -
ness. By contrast, with g roup inter-
faces, users are general ly not as
aware o f others ' contexts and can
less easi ly in terpre t s u d d e n display
changes result ing from others ' ac-
tions.

What is needed are ways to pro-
vide contextual clues to the group 's
activity. A simple solution is for
participants to audibly announce
their intentions pr ior to taking
ac t ion--su i tab le in some situations
but often burdensome. A promis-
ing alternative is to use real-time
animation to depict smoothly
changing group activity. For exam-
ple, text could materialize gradually
or change in color as it is entered .
This approach, however, intro-
duces a new set of problems. First,
animation is computat ional ly ex-
pensive and requires specialized
workstation hardware. Second, it is
difficult to find visual metaphors
that are suitable for animat ing op-
erations, a l though work on artificial
realities and responsive environ-
ments [54, 55] seems promising.
Finally, any solution to this problem
must take into account the dual
n e e d s for s p e e d and continuity: the
system's real-time responsiveness to
the user making changes must not
be sacrificed for the smooth, con-
t inuous notification to o ther users.

Issues Related to Group Dynamics
Group interfaces must match a
group 's usage patterns. Single-user
text editors often rely on simple in-
terfaces; characters appea r and dis-
appea r as they are inser ted a n d de-
leted. Multiuser text editors, must
contend with a diversity of usage
pat terns as we observed with
GROVE. The text was genera ted as
independent , reflective, consensus,
part i t ioned, and recorded entries
and, t h e r e f o r e r e q u i r e d much
r icher interfaces.

An exper imenta l cloudburst

F I G U R E 4 . Portion of an Edit-
Ing Window Using the Cloudburst
Model.

model of mult iuser text edit ing il-
lustrates some needed group inter-
face techniques. This model applies
two techniques and is i l lustrated in
Figure 4.

First, the text is aged so that re-
cent ly entered text appears in
br ight blue and then gradually
changes to black. Second, while tex-
tual modifications (insertions and
deletions) are immediately visible to
the person who initiates them, they
are indicated on other users' dis-
plays by the appearance of clouds
over the original text. The position
and size of a cloud indicates the
approximate location and extent o f
the modification. When a user has
s topped typing for some time, the
clouds on his or her display disap-
pear and the new text is displayed,
first in blue and gradual ly changing
to black. The rat ionale for this in-
terface is that an active user is only
marginal ly interested in others '
changes, which should therefore be
indicated subtly and not disrup-
tively. By the same token, when the
changes are m e r g e d , everyone
should be made aware o f their con-
tents.
Issues Related to Screen
Space Management
Screen space is a limited resource in
single-user applications, but it is
even more o f a problem with group
interfaces in which each user can
create windows that appear on
o t h e r users' screens. Techniques
for managing window prol iferat ion
are n e e d e d .

One approach is to aggregate
windows into functional sets, or
rooms, each of which corresponds to
a part icular task [9, 61]. Partici-
pants can move from room to room
or be teleported by o t h e r users.
When a room is entered, the win-
dows associated with that room are
opened.

Someone else is chang~id"::*~:~'~:" text.
I am working here, entering new 1

S O January 1991/Voi.34, No.l/COMMUNICATIONS OF THE ACM

t a a a a t a t s a a a a a a | a l a a a a t l a a a a | l a a | | a t l l a a a t l l a | l t | l a t a t t a l | a | | | | l l | a | | | l l | l l l

A second approach is to let one
of the users bear some of the bur-
den of maintaining window order.
The LIZA system [25] provides a
monitor tool, for example, which
allows one user to open and close
windows used by participants. This
approach is particularly useful with
inexperienced users.

Issues Related to Group Interface
Toolkits
Single-user interface technology
has matured significantly during
the past decade. The advances can
be attributed in part to the work on
user interface management systems
(see [60] for a summary) and in part
to the proliferation of window sys-
tems and their interface toolkits.

Many of these single-user inter-
face concepts can be generalized to
multiuser interfaces. Group win-
dows are one example, telepointers
another. Several questions remain
open, because there is little experi-
ence with these generalized tech-
niques. Should there be group win-
dows for subgroups? Should there
be multiple telepointers for the
multiple subgroups? What are the
intuitive ways to share telepointers?
Experience with showing all users'
cursors on every screen suggests
that groupware developers must be
careful not to clutter the screen or
overload the participants [78]. The
point is that group interface toolkits
must not simply be extensions of
existing toolkits; rather, they must
introduce new constructs that bet-
ter accommodate shared usage.

G r o u p P r o c o s m o 8

Some well-defined tasks, such as
code walk-throughs, require the
participation of a set of users and
are called group processes. Group
processes offer increased synergy
and parallelism, but the required
coordination overhead can burden
the group and dampen its effective-
ness. Groupware technology seeks
to enhance the benefits while mini-
mizing the overhead.

Group Protocols
Protocols are mutually agreed upon

ways of interacting. These proto-
cols may be built into the hardware
and software, called technological
protocols, or left to the control of the
participants, called social protocols.
Examples of technological proto-
cols are the floor control mecha-
nisms in several conferencing sys-
tems [1, 27, 56]. These systems can
only process one user's input re-
quests at a time, imposing on par-
ticipants a group process of turn-
taking.

Alternatively, control of the
group process can be left to the
group's social etiquettes which are
mutually understood and agreed
upon, but not enforced by the
groupware system. Social protocols
include formal rules or policies,
such as Robert's Rules of Order, and
less formal practices, such as polite
turn-taking or hand-raising. In
GROVE, social protocols control
the use of public windows. For ex-
ample, anyone can scroll a public
window at will, but a group quickly
learns that this is disruptive unless
accompanied by a verbal explana-
tion along the lines of "Let's scroll
to the next page."

]~ach approach to group pro-
cesses has advantages and disad-
vantages. Leaving the processes to
social protocols encourages collabo-
ration: the group must develop its
own protocols, and consequently
the groupware itself is more adap-
tive. Social protocols (in particular,
ad hoc protocols), however, can be
unfair, distracting, or inefficient. In
contrast, embedding a group pro-
cess in software as a technological
protocol ensures that the process is
followed, provides more structure
to the group's activity, and assists
less experienced users. Technologi-
cal protocols can be overly restric-
tive: a group's idiosyncratic work-
ing style may not be supported, and
the system can constrain a group
that needs to use different pro-
cesses for different activities.

Group Operations
At times, it is appropriate and in-
sightful to view the work of multi-
ple people as a single operation. We

COMPUTING
PRACTICES

call the resultant operations group
operations. There are many cases of
groups accomplishing a task with
more speed and accuracy than
would be possible by a single indi-
vidual. Examples include basketball
teams, and fire-fighting teams. In
other cases the complex procedures
carried out by a group are easier to
understand if they are not divided
into specific tasks performed by
specific individuals.

Group operations occur in both
synchronous and asynchronous sit-
uations. Office procedures present
an asynchronous situation and have
been studied extensively in the con-
text of the office information sys-
tems [5, 13, 83]. Problems associ-
ated with supporting these
procedures include the following:
organizational knowledge, excep-
tions, coordination and unstruc-
tured activity. Knowledge of an
organization's structure, history
and goals, is useful when following
office procedures [5], yet this
knowledge is volatile and difficult
to specify. Exceptions are frequent
since offices are open systems [33]; in
particular, they contain incomplete
and partial information about their
day-to-day activities, making it im-
possible to identify all the situations
encountered by an office proce-
dure. Office procedures consist of
many parallel asynchronous tasks
related by temporal constraints.
There is a need for coordinat ion--
a mechanism for informing users of
required tasks and reminding them
of commitments. Finally, since of-
rice procedures are not entirely
routine, unstructured activities,
such as planning and problem solv-
ing, can occur at various points
within an office procedure [70].

Synchronous group operations
are one of the characteristics distin-
guishing groupware from other
systems. The problems described
above for asynchronous group op-
erations also apply in the synchro-
nous realm. This can be illustrated
by considering a hypothetical vote
tool intended for small groups.
Suppose the tool functions as fol-
lows:

COMMUNICATIONS OF THE ACM/January 1991/Vo1.34, No.1 Sl

When a user activates the tool, a
window containing a type-in area
and "Start Vote" and "Stop Vote"
buttons appears on that person's
display. After this user enters the
issue to be voted on and selects
"Start Vote," a group window
appears on all session partici-
pant,;' displays. T h e group win-
dow contains four buttons for
voting ("Yes," "No," "Unde-
cided[," and "Uncast"), and a bar
chart showing the tallies of the
part icipants ' votes.

The following paragraphs refer to
this tool in discussions of the issues
involved in suppor t ing synchro-
nous group operations.

Organizational and Social Factors.
It is easy to build a tool with t h e
above functionality; the difficulty
lies in designing it to be useful in a
number of different situations. The
tool allows participants to change
their votes, displays partial results,
lets anyone pose an issue for voting,
and provides anonymity (unless the
users can see each others ' actions).
How closely this functionality
matches a given group 's needs de-
pends on both organizational fac-
tors (e.g., whether it is a group of
peers or a stratified, and perhaps
less democratic, group) and social
factors (e.g., how open or trust ing
the group is). In general , specializ-
ing a tool to meet a group 's particu-
lar needs requires group knowledge
(e.g., user and group profiles) as
well as organizational knowledge.

Exceptions and Coordination. The
voting tool example also points out
the need for exception handl ing
and coordinat ion in synchronous
group operat ions. Typical excep-
tions occur when a noncooperat ive
user fails to complete his or her role
in the operat ion, or when the group
composit ion changes (a person
unexpectedly leaves or enters dur-
ing a w)te). Coordinat ion is neces-
sary since group operat ions impose
obligations on the participants and
response times vary. A simple solu-
tion is to let the group resolve such

difficulties using alternative com-
munication channels, such as audio.
The system should at least help de-
tect problems, however, (e.g., by
moni tor ing the progress of vote)
and allow dynamic reconfigurat ion
of the operat ion 's parameters (e.g.,
changing role assignments or
group size).

Integration of Activity Support.
Asynchronous and synchronous
operat ions are complementary sub-
parts of larger tasks or activities.
For example, system design proj-
ects include both high-level asyn-
chronous tasks, such as require-
ments analysis, and synchronous
activity, such as face-to-face meet-
ings. A meeting proceeds in a
largely uns t ructured way, but it can
contain islands of s t ructured syn-
chronous opera t ions - - such as vot-
ing or brainstorming. This calls for
integrat ing suppor t for s tructured/
uns t ruc tured activity on the one
hand and for synchronous/asyn-
chronous activity on the other. For
instance, our voting tool should
store vote results so that the g roup
can use the results in the context of
o ther tools and activities. In o ther
words, the designer of g roup pro-
cess suppor t tools should look be-
yond the group and account for
factors such as the group 's goals
and its place in the larger context of
the organizat ion or society.

C o n c u r r e n c y C o n t r o l

Groupware systems need concur-
rency control to resolve conflicts
between part icipants ' s imultaneous
operations. With a g roup edi tor
such as GROVE, for example, one
person might delete a sentence
while a second person inserts a
word into the sentence. Groupware
presents a unique set of concur-
rency problems, and many o f the
approaches to handl ing concur-
rency in database app l ica t ions - -
such as explicit locking or transac-
tion p rocess ing- -a re not only inap-
propr ia te for groupware but can
actually h inder tightly coupled
teamwork.

The following lists some o f the

concurrency-related issues facing
groupware designers.

• R e s p o n s i v e n e s s - - I n t e r a c t i o n s
like group bra ins torming and
decision making are sometimes
best carr ied out synchronously.
Real-time systems suppor t ing
these activities must not h inder
the group 's cadence. To ensure
this, two proper t ies are required:
a short response time, or the time it
takes for a user's own interface to
reflect his or her actions; and a
short notification time, which is the
time required for these actions to
be p ropaga ted to everyone's in-
terfaces.

• G r o u p I n t e r f a c e - - G r o u p inter-
faces are based on techniques
such as WYSIWIS and group
windows, which require identical
or near identical displays. I f the
concurrency control scheme is
such that one user's actions are
not immediately seen by others,
then the effect on the group 's
dynamics must be considered and
the scheme allowed only if it is
not disruptive. A session's cohe-
siveness is lost, for instance, when
each part ic ipant is viewing a
slightly d i f ferent or out-of-date
version.

• W i d e - A r e a D i s t r i b u t i o n - - A pri-
mary benefit of groupware is that
it allows people to work together,
in real time, even when separated
by great physical distances. With
cur ren t communicat ions technol-
ogy, transmission times and rates
for wide-area networks tend to be
slower than for local area net-
works; the possible impact on re-
sponse time must therefore be
considered. In addit ion, commu-
nications failures are more likely,
point ing out the need for resil-
ient concurrency control algo-
rithms.

• Data R e p l i c a t i o n - - B e c a u s e a
real-t ime groupware system re-
quires short response time, its
data state may be replicated at
each user 's site. Many potemially
expensive operat ions can be per-
fo rmed locally. Consider, for in-
stance, a jo in t ed iung session be-

S 2 January 1991/Vo1.34, No.1/COMMONICATIONS OF T H E A C M

. l i m R l l ~ m . . i i n . i m l a a a m a n m l m i m a m a m m A a m n m a l a m m m m m m l a R l l a a A m n m n m m m A m i m m m m m a m m m l

tween a user in Los Angeles and
one in New York. Typically, each
user would be working in a
shared context with group win-
dows. I f the object being edi ted is
not replicated, then even scroll-
ing or repai r ing window damage
could require communicat ion
between the two s i tes - - lead ing to
a potentially catastrophic degra-
dation in response time.

• Robus tness - -Robus tness refers
to the recovery from unusual cir-
cumstances, such as component
failures or unpredictable user
actions. Recovery from a site
crash or a communications link
b reakdown- - typ ica l instances of
component fa i lu re- - i s a familiar
concern in distr ibuted systems
and a major one in groupware.
Groupware must also be con-
cerned with recovery from user
actions. For example, adding a
new user to a set of users issuing
database transactions is not nor-
mally p rob lemat i c - -bu t adding a
part icipant to a groupware ses-
sion can result in a major system
reconfiguration. The system's
concurrency control algori thm
must adapt to such a reconfigura-
tion, recovering easily from such
unexpected user actions as ab-
rup t session entries or depar-
tures.
We will now describe several con-

currency control methods. Of par-
ticular interest are techniques use-
ful to real-time groupware, because
real-time systems exaggerate the
concurrency problems we have jus t
outlined. The discussion begins
with tradit ional distr ibuted systems
techniques and ends with the newer
groupware approaches, which
strive for greater f reedom and
sharing.

Simple Locking
One solution to concurrency is sim-
ply to lock data before it is written.
Deadlock can be prevented by the
usual techniques, such as two-phase
locking, or by methods more suited
to interactive environments. For
example, the system might visually
indicate locked resources [58], de-

creasing the l ikelihood of requests
for these resources.

Locking presents three prob-
lems. First, the overhead of re-
questing and obtaining the lock,
including wait time if the data is al-
ready locked, causes a degradat ion
in response time. Second, there is
the question of granulari ty: for
example, with text edit ing it is not
clear what should be locked when a
user moves the cursor to the middle
of a line and inserts a character.
Should the enclosing paragraph or
sentence be locked, or jus t the word
or character? Participants are less
constrained as the locking granu-
larity increases, but f ine-grained
locking adds system overhead. The
third problem involves the t iming
of lock requests and releases.
Should the lock in a text edi tor be
requested when the cursor is
moved, or when the key is struck?
The system should not bu rden
users with these decisions, but it is
difficult to embed automatic lock-
ing in edi tor commands. I f locks
are released when the cursor is
moved, then a user might copy text
in one location, only to be pre-
vented from pasting it back into the
previous location. The system, in
short, hinders the free flow of
group activity.

More flexible locking mecha-
nisms have been investigated and
repor ted in the literature. Tickle
locks [28] allow the lock to be re-
leased to another requester after an
idle period; soft locks [17] allow
locks to be broken by explicit over-
r ide commands. Numerous other
schemes notify users when locks are
obtained or conflicting requests
submitted.

Transaction Mechanisms
Transaction mechanisms have al-
lowed for successful concurrency
control in non-real-t ime groupware
systems, such as CES [28] and Quilt
[22, 57]. For real-time groupware,
these mechanisms present several
problems. Distributed concurrency
control algorithms, based on trans-
action processing, are difficult to
implement , incurr ing a cost in user

C O M P U T I N G
P R A C T I C E S

response time. Transactions imple-
mented by using locks lead to the
problems described above. Other
methods, such as t imestamps, may
cause the system to abort a user's
actions. (Only user-requested
aborts should be shown by the user
interface.) Generally, long transac-
tions are not well-suited to interac-
tive use, because changes made
dur ing a transaction are not visible
to o ther users until the transaction
commits. Short (e.g., per-keystroke)
transactions are too expensive.

These problems point to a basic
philosophical difference between
database and groupware systems.
The former strive to give each user
the illusion of being the system's
only user, while groupware systems
strive to make each user's actions
visible to others. Shielding a user
from seeing the intermediate states
of others ' transactions is in direct
opposit ion to the goals of group-
ware. The re has been some work
on opening up transactions [4], but
the emphasis of this work has been
on coordinat ing nested transactions
and not on allowing for interactive
data sharing.

Turn-Taking Protocols
Turn- taking protocols, such as
floor control, can be viewed as a
concurrency control mechanism.
The main problem with this ap-
proach is that it is limited to those
situations in which a single active
user fits the dynamics of the ses-
sion. It is part icularly ill-suited for
sessions with high parallelism, in-
hibiting the free and natural flow of
information. Addit ionally, leaving
floor control to a social protocol can
result in conflicting operat ions:
users ofte~a er r in following the pro-
tocol, or they simply refuse to fol-
low it, and consequently, several
people act as though they have the
floor.

Centralized Controller
Another concurrency control solu-
tion is to introduce a centralized
control ler process. Assume that
data is replicated over all user
workstations. The controller r e -

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.l S 3

ceives user requests for operat ions
and broadcasts these requests to all
users. Since the same operat ions
are pe r fo rmed in the same o rde r
for all users, all copies of the data
remain the same.

This solution introduces the
usual problems associated with cen-
tralized components (e.g., a single
point of failure, a bottleneck). Sev-
eral ot]her problems also arise. Since
operat ions are pe r fo rmed when
they come back f rom the controller
ra ther than at the time they are re-
questecl, responsiveness is lost. The
interface of a user issuing a request
should be locked until the request
has been processed; otherwise, a
subsequent request refer r ing to a
part icular data state might be per-
formed when the data is in a differ-
ent state.

Dependency-Detection
The dependency-detec t ion model
[79] is another approach to concur-
rency control in mult iuser systems.
Dependency detection uses opera-
tion t imestamps to detect conflict-
ing operat ions, which are then re-
solved manually. The great
advantage of this method is that no
synchronization is necessary:
nonconflicting operat ions are per-
formed immediately upon receipt,
and response is very good. Mecha-
nisms involving the user are gener-
ally valuable in groupware applica-
tions, however, any method that
requires user intervention to assure
data integrity is vulnerable to user
error .

Reversible Execution
Reversiible execution [73] is yet an-
o ther approach to concurrency
control in groupware systems. Op-
erations are executed immediately,
but informat ion is re ta ined so that
the operat ions can be undone later
if necessary. Many promising con-
currency control mechanisms fall
within this category. Such mecha-
nisms def ine a global t ime order ing
for the. operations. When two or
more interfer ing operat ions have
been executed concurrently, one
(or more) of these operat ions is

undone and reexecuted in the cor-
rect order .

Similar to dependency-detect ion,
this method is very responsive. The
need to globally o rde r operat ions is
a disadvantage, however, as is the
unpleasant possibility that an oper-
ation will appear on the user's
screen and then, needing to be
undone, disappear .

Operation Transformations
A final approach to groupware
concurrency control is opera t ion
t ransformation. Used in GROVE,
this technique can be viewed as a
dependency-detec t ion solution with
automatic, ra ther than manual ,
conflict resolution.

Ope rauon t ransformat ion allows
for high responsiveness. Each user
has his or her own copy of the
GROVE editor, and when an oper-
ation is requested (a key is typed,
for example), this copy locally per-
forms the opera t ion immediately. It
then broadcasts the operat ion,
along with a state vector indicating
how many operat ions it has recently
processed from other workstations.
Each edi tor-copy has its own state
vector, with which it compares in-
coming state vectors. I f the received
and local state vectors are equal, the
broadcast operat ion is executed as
requested; otherwise it is trans-
formed before execution. The spe-
cific t ransformat ion is dependen t
on opera t ion type (for example, an
insert or a delete) and on a log of
operat ions already pe r fo rmed [19].

c n ' ~ e r SlCJ~'em amsueB
As this article has shown, group-
ware encompasses a wide range of
sys t ems- - f rom relatively straight-
forward electronic mail systems to
state-of-the-art, real-time, multi-
user tools. Regardless of a system's
place on the groupware spectrum,
groupware designers face a com-
mon set of implementat ion issues.
Some of these issues are described
in this section.

Communication Protocols
Effective communicat ion is vital to
successful groupware. U nfor tu -

nately, current communicat ions
technology is not as fully capable of
suppor t ing groupware as one
might hope.

First, fully integrated data com-
munications and digitized audio/
video is not universally available.
Groupware developers need proto-
cols that account for the differ ing
requirements of the various media.
With audio or video, for example,
the occasional loss of data is not dis-
astrous, but a short transmission
time is crucial. Addit ionally, the tel-
ephone and the workstation need
to be in tegrated at the system level.
Existing prototypes, such as the
Etherphone TM [82], are promising,
but there is no single network and
addressing scheme with an inclu-
sive protocol suite that is accepted
as a s tandard.

A second problem is inadequate
suppor t for mult ipar ty communica-
tion [73]. Real-time compute r con-
ferences often require that mes-
sages be sent to a specific set of
addresses; such restricted broad-
casts are called multicasts. Curren t
protocols, whether virtual circuit or
da tagram based, are bet ter suited
for communicat ion between two
parties than for general multicasts.

Finally, s tandardizat ion o f data
exchange formats is essential if
g roupware systems are to be useful
across organizat ional boundaries .
The office document architecture
[41] and o ther informat ion ex-
change protocols are steps in this
direction.

Access Control
Access control de termines who can
access what and in what manner .
Effective access control is impor tan t
for groupware systems, which tend
to focus activity and to increase the
l ikelihood of user- to-user interfer-
ence. Theoret ical and appl ied re-
search on protect ion structures,
such as capability lists, has dealt
only with non-real- t ime mult iuser
systems where users are not tightly
coupled [23]. These results need to
be thought about in the context of
groupware 's requirements .

Groupware 's access control re-

S4 January 1991/Vol.34, No.!/COMMUNICATIONS OF T H E A C M

Effective access control is impor-
tant for groupware systems,
which tend to focus activity and
to increase the likelihood of user-

to-user interference.
quirements have been described in
other l i terature [27]. For example,
if a group task is viewed in terms of
its part icipants ' roles, access con-
straints are usefully specified in
terms of roles ra ther than individu-
als. Access permissions are not
static, but can be granted and re-
voked. A system can simplify the
process of obtaining appropr ia te
access rights by suppor t ing negotia-
tion between parties.

Groupware 's requirements can
lead to complex access models, a
complexity that must be managed.
Since access information changes
frequently, there must be lightweight
access control mechanisms that
allow end-users to easily specify
changes. User interfaces should
smoothly mesh the access model
with the user's conceptual model of
the system. Changing an object's
access permissions should, for ex-
ample, be as easy as dragging the
object from one container to an-
other.

Notification
In a single-user environment , it is
impor tant to notify the user when
constraints are being violated, or
when automatic operat ions pro-
voke triggers or alerters. Notifica-
tion is even more vital in a multi-
user environment , because users
must know when other users make
changes that affect their work. This
points out the need for a notification
mechanism--a way of alert ing and
modifying one user's interface in
response to actions pe r fo rmed by
someone at another interface.

In synchronous interactions,
real-time notification is critical; in
fact, notification and response

times should be comparable. The re
are different granularit ies of notifi-
cation; at the finest level, any user
ac t ion--keyst rokes , mouse m o t i o n - -
results in notification. For example,
GROVE is based on keystroke-level
notification: as one user types a
character, this text becomes visible
to the other users. Coarser levels of
notification occur as user actions
are chunked into larger aggregates.
A text-editing system, for instance,
could notify once a line or para-
graph is completed. Factors such as
performance, group size, and task
are involved in choosing an appro-
priate level and style of notification.
In general , however, we suggest
that a f ine-grained level of notifica-
tion is useful for groups working in
a tightly coupled manner , such as
when reviewing a document or
joint ly opera t ing a spreadsheet . As
the focus shifts from group tasks to
individual t asks- - lead ing toward
more asynchronous in t e rac t ion - -
coarser notification becomes more
appropr ia te .

C o n c l u d i n g R e m a r k l
We have shown how the conceptual
underp inn ing of g r o u p w a r e - - t h e
merging of computer and commu-
nications technology--appl ies to a
broad range of systems. We have
explored the technical problems
associated with designing and
building these systems, showing
how groupware casts a new light on
some tradit ional computer science
issues. Informat ion sharing in the
groupware context leads, for exam-
ple, to unexplored problems in dis-
t r ibuted systems and user interface
design that emphasize group inter-

COMPUTING
ORACTICES

action.
Al though the prospects of

groupware appear bright, we must
take into account a history of ex-
pensive and repetit ive failure [30].
Applications such as video confer-
encing and on-line calendars have
largely been disappointments.
These failures are not simply the
result of poor technology, but can
also be traced to designers ' naive
assumptions about the use of the
technology [7].

Thus, an impor tant area not cov-
ered in this article is the social and
organizational aspects of group-
ware des ign- - in t roduc t ion , usage,
and evolution. It should be noted
that frequently a tool's effect on a
group is not easily predicted or well
unders tood [46]. As ment ioned
earlier, the system and the group
are intimately interacting entities. A
substantial l i terature explores the
impact of computer technology on
organizations and individuals
[34,52,53,66]. Ultimately, group-
ware should be evaluated along
many dimensions in terms of its
utility to groups, organizations and
societies.

Groupware research and devel-
opment should proceed as an inter-
disciplinary endeavor. We use the
word interdisciplinary as opposed
to multidisciplinary to stress that
the contributions and approaches
of the many disciplines, and of end
users, must be integrated, and not
simply considered. I t is our belief
that in groupware design, it is very
difficult to separate technical issues
from social c onc e rns - - a nd that the
methods and theories of the social
sciences will prove critical to group-
ware's success.

Acknowledgments.
The authors would like to thank
Les Belady, Pete Cook and Bill
Curtis for encouraging and sup-
por t ing groupware research at
MCC. Michael Begeman, Kim Fair-
child, John Fehr, Mike Graf, Bill
Janssen and Tom Smith provided
many contributions to MCC's early
groupware projects. For their many
thought-provoking conversations,

COMMUNICATIONSOFTHEACM/January 1991/Vol.34, No.l SS

we th~,nkJeff Conklin, Ira Forman,
Jona than Grudin, Nancy Penning-
ton, Steve Poltrock and Baldev
Singh. We are indebted to Peter
Marks, Glenn Bruns, Nancy Gore,
as well as numerous colleagues at
other institutions, and anonymous
referees for their constructive re-
views ,of early drafts of this article.
Finally we would like to express our
appreciation to those people who
provided us with excellent technical
support at MCC. []

References
1. Ahuja, S.R., Ensor, J.R., and Horn,

D.N. The Rapport multimedia con-
ferencing system. In Proceedings of
the Conference on Office Information
Systems (Palo Alto, Calif., Mar. 23-
25). ACM, New York, 1988, pp. 1-
8.

2. Applegate, L.M., Konsynski, B.R.,
and Nunamaker, J.F. A group deci-
sion support system for idea gener-
ation and issue analysis in organiza-
tion planning. In Proceedings of the
First Conference on Computer-
Su~orted Cooperative Work (Austin,
Tex., Dec. 3-5). ACM, New York,
1986, pp. 16-34.

3. Balzer, R., Process programming:
passing into a new phase. In Pro-
ceedings of the Fourth International
Software Process Workshop (Devon,
UK, May 11-13). Softw. Eng. Not.,
ACM SIGSOFT 14, 4 (June 1989),
43--45.

4. Bancilhon, F., Kim, W., and Korth,
H. A model of CAD transactions. In
Proceedings of the Eleventh Interna-
tior~l Conference on Very Large Data
Bas,;s (Stockholm, Sweden, Aug.
21-.23). Very Large Data Base En-
dowment, Saratoga, Calif., 1985,
pp. 25-33.

5. Barber, G. Supporting organiza-
tional problem solving with a work
statJion. ACM Trans. Off. Inf. Syst. 1,
1 (]an 1983), 45-67.

6. Birrel, A.D., Levin, R., Needham,
R.M., and Schroeder, M.D. Grape-
vine: An exercise in distributed
computing. Commun. ACM 25, 4
(Apr. 1982), 260-274.

7. Bodker, S., Knudsen, J.L., Kyng,
M., Ehn, P., and Madsen, K.H.
Computer support for cooperative
design. In Proceedings of Conference
on Computer-Supported Cooperative
Work (Portland, Oreg., Sept. 26-
28). ACM, New York, 1988, pp.

377-394.
8. Byte. December, 1988.
9. Card, S., Henderson, D.A. The use

of multiple virtual workspaces to
reduce space contention in a graph-
ical user interface. ACM Trans.
Graphics. ACM, New York, 1987.

10. Cashman, P.M., Stroll, D. Develop-
ing the management systems of the
1990s: The role of collaborative
work. In Technological Support for
Work Group Collaboration. M.H.
Olson, Ed., Lawrence Erlbaum As-
sociates, Publishers, Hillsdale, N.J.,
1989, 129-146.

11. Conklin, J., and Begeman, M.
gIB1S: A hypertext tool for explor-
atory policy discussion. In Proceed-
ings of Second Conference on Com-
puter-Supported Cooperative Work
(Portland, Oreg., Sept. 26-28).
ACM, New York, 1988, pp. 140-
152.

12. Cook, P., Ellis, C., Graf, M., Rein,
G., and Smith, T. Project Nick:
Meetings augmentation and analy-
sis. ACM Trans. Off. Inf. Syst. 5, 2
(Apr. 1987), 132-146.

13. Croft, B.W., and Lefkowitz, L.S.
Task support in an office system.
ACM Trans. Off. Inf. Syst. 2, 3 (July
1984), 197-212.

14. Crowley, T. et.al. MMConf: An in-
frastructure for building shared
multimedia applications. In Proceed-
ings of the Third Conference on Com-
puter-Supported Cooperative Work (Los
Angeles, Calif., Oct. 8-10). ACM,
New York, 1990.

15. DeCindio, F., DeMichelis, G., Si-
mone, C., Vassallo, R., Zanaboni,
A.M. CHAOS as coordination tech-
nology. In Proceedings of the First
Conference on Computer-Supported
Cooperative Work (Austin, Tex, Dec.
3-5), 1986, pp. 325-342.

16. Dennis, A.R., Joey, F.G., Jessup,
L.M., Nunamaker, J.F., and Vogel,
D.R. Information Technology to
Support Electronic Meetings. MIS
Quarterly 12, 4 (December 1988),
pp. 591-619.

17. Ege, A., and Ellis, C.A. Design and
implementation of GORDION, an
object base management system. In
Proceedings of the International Con-
ference on Data Engineering (Los
Angles, Calif., Feb. 3-5). IEEE,
Washington, D.C., 1987, pp. 226-
234.

18. Egido, C. Video conferencing as a
technology to support group work:
A review of its failures. In Proceed-
ings of the Second Conference on Corn-

puter-Supported Cooperative Work
(Portland, Oreg., Sept. 23-25).
ACM, New York, 1988, pp. 13-24.

19. Ellis, C.A., and Gibbs, S.J. Concur-
rency control in groupware systems.
In Proceedings of the ACM SIGMOD
'89 Conference on the Management of
Data (Seattle Wash., May 2-4 1989)
ACM, New York.

20. Ellis, C.A., Gibbs, S.J., and Rein,
G.L. Design and use of a group edi-
tor. In Engineering for Human-
Computer Interaction. G. Cockton,
Ed., North-Holland, Amsterdam,
1990, 13-25.

21. Engelbart, D.C., and English, W.K.
A research center for augmenting
human intellect. In Proceedings of the
Fall Joint Computer Conference (San
Francisco, Calif., Dec . 9-11).
AFIPS, Reston, Va., 1968, pp. 395-
410.

22. Fish, R., Kraut, R., Leland, M., and
Cohen, M. Quilt: A collaborative
tool for cooperative writing. In Pro-
ceedings of the Conference on Office
Information Systems (Palo Alto, Calif.
Mar. 23-25). ACM, New York,
1988, pp. 30-37.

23. Fites, P.E., Kratz, P.J., and Brebner,
A.F. Control and Security of Computer
Information Systems, Computer Sci-
ence Press, Rockville, Md, 1989.

24. Flores, F., Graves, M., Hartfield, B.,
and Winograd, T. Computer sys-
tems and the design of organiza-
tional interaction. ACM Trans. Off.
Inf. Syst. 6, 2 (Apr. 1988), 153-172.

25. Gibbs, S.J. LIZA: An extensible
groupware toolkit. In Proceedings of
the ACM S1GCHI Conference on
Human Factors in Computing Systems
(Austin, Tex., April 30-May 4).
ACM, New York, 1989.

26. Goodman, G.O., and Abel, M.J.
Collaboration research in SCL. In
Proceedings of the First Conference on
Computer-Supported Cooperative Work
(Austin, Tex. Dec. 3-5). ACM, New
York, 1986, pp. 246-251.

27. Greif, I., and Sarin, S. Data sharing
in group work. In Proceedings of the
First Conference on Computer-
Supported Cooperative Work (Austin,
Tex., Dec. 3-5). ACM, New York,
1986, pp. 175-183.

28. Greif, I., Seliger, R., and Weihl, W.
Atomic data abstractions in a dis-
tributed collaborative editing sys-
tem. In Proceedings of the 13th An-
nual Symposium on Principles of
Programming Languages. (St. Peters-
burg, Fla., Jan. 13-15). ACM, New
York, 1986, pp. 160-172.

S 6 January 1991/Vo1.34, No.I/COMMUNICATIONS OF T H E A C M

29. Greif, I., Ed., Computer-Supported
Cooperative Work: A Book of Readings.
Morgan Kaufmann, San Mateo,
Calif., 1988.

30. Grudin, J. Why CSCW applications
fail: Problems in the design and
evaluation of organizational inter-
faces. In Proceedings of the Second
Conference on Computer-Supported
Cooperative Work (Portland, Oreg.,
Sept. 26-28). ACM, New York,
1988, pp. 85-93.

31. Grudin, J., Poltrock, S. Computer-
supported cooperative work and
groupware. Tutorial presented at
the ACM S1GCHI Conference on
Human Factors in Computing Systems.
(Seattle, Wash., Apr. 2). ACM, New
York, 1990.

32. Harper, R.R., Hughes, J.A., Sha-
piro, D.Z. Working in harmony: An
examination of computer technol-
ogy in air traffic control. In Proceed-
ings of the First European Conference
on Computer-Supported Cooperative
Work. (Gatwick, London, UK, Sept.
13-15). 1989.

33. Hewitt, C. Offices are open systems.
ACM Trans. Off. Inf. Syst. 4, 3 (July
1986), 271-287.

34. Hiltz, S.R. Online Communities: A
Case Study of the Office of the Future.
Ablex Press, 1984.

35. Hiltz, S.R,, Turoff, M. The Network
Nation: Human Communication via
Computer. Addison Wesley, 1978.

36. Hiltz, S.R., and Turoff, M. The evo-
lution of user behavior in a comput-
erized conferencing system. Com-
mun. ACM24, 11 (Nov. 1981), 739-
751.

37. Hiltz, S.R., and Turoff, M. Struc-
turing computer-mediated commu-
nication systems to avoid informa-
tion overload. Commun. ACM 28, 7
(July 1985), 680-689.

38, Hogg, J. Intelligent message sys-
tems. In Office Automation, D.
Tsichritzis, Ed. Springer-Verlag,
New York, 1985, pp. 113-133.

39. Holt A.W. Diplans: A new language
for the study and implementation
of coordination. ACM Trans. Off.
Inf. Syst. 6, 2 (April 1988), 109-125.

40. Holt, A.W., Ramsey, H.R., and
Grimes, J.D. Coordination system
technology as the basis for a pro-
gramming environment. Electrical
Commun. 57, 4 (1983), 307-314.

41. Horak, W. Office document archi-
tecture and interchange formats:
Current status of international
standardization. IEEE Comput. 18,

10 (Oct. 1985), 50-60.
42. Ishii, H. Design of Team WorkSta-

tion: A realtime shared workspace
fusing desktops and computer
screens. In Proceedings of the IFIP
WG 8.4 Conference on multi-User In-
terfaces and Applications (Heraklion,
Greece, Sept. 24-26). IFIP, 1990.

43. Johansen, R. Teleconferencing and
Beyond: Communications in the Office
of the Future. McGraw-Hill, N. Y.,
1984.

44. Johansen, R. Groupware: Computer
Support for Business Teams. The Free
Press, N. Y., 1988.

45. Johansen, R. Leading Business Teams.
Addison-Wesley, Reading, Mass. (to
be published 1991).

46. Johnson-Lentz, P. and Johnson-
Lentz, T. Groupware: The process
and impacts of design choices. In
Computer-Mediated Communication

\ .

Systems: Status and Evaluation, E.B.
Kerr, and S.R. Hiltz, Academic
Press, New York, N. Y., 1982.

47. Kaiser, G.E., Kaplan, S.M., and
Micallef, J. Multiuser, distributed
language-based environments.
IEEE Softw. 4, 6 (Nov. 1987), 58-
67.

48. Karbe, B. Ramsperger, N. Weiss, P.
Support of cooperative work by
electronic circulation folders. In
Proceedings of the Conference on Office
Information Systems (Cambridge,
Mass., April 25-27). ACM, New
York, 1990, pp. 109-117.

49. Knister, M.J., Prakash, A. DistEdit:
A distributed toolkit for supporting
multiple group editors. In Proceed-
ings of the Third Conference on Com-
puter-Supported Cooperative Work (Los
Angeles, Calif., Oct. 8-10). ACM,
New York, 1990.

50. Koszarek, J.L. et.al. A multi-user
document review tool. In Proceed-
ings of the IFIP WG 8.4 Conference on
Multi-User Interfaces and Applications
(Heraklion, Greece, Sept. 24-26).
IFIP, 1990.

51. Kraemer, K.L., and King, J.L.
Computer-based systems for coop-
erative work and group decision
making. ACM Comput. Surv. 20, 2
(June 1988), 115-146.

52. Kraut, R.E. Social issues and white-
collar technology: an overview.
Technology and the Transformation of
White-Collar Work, Erlbaum Associ-
ates, Hillsdale, Calif., 1987, 1-21.

53. Kraut, R., Egido, C., and Galegher,
J. Patterns of contact and communi-
cation in scientific research collabo-
ration. In Proceedings of the Second

COMPUTING
PRACTICES

Conference on Computer-Supported
Cooperative Work (Portland, Oreg,
Sept. 26-28). ACM, New York,
1988, pp. 1-12.

54. Krueger, M.W. Artificial Reality.
Addison-Wesley, Reading, Mass.,
1983.

55. Krueger, M.W., Gionfriddo, T., and
Hinrichsen, K. VIDEOPLACE: An
artificial reality. In Proceedings of the
CHI '85 Conference on Human Factors
in Computing Systems (San Francisco,
Calif., April 14-18). ACM, New
York, 1985, pp. 35-40.

56. Lantz, K. An experiment in inte-
grated multimedia conferencing. In
Proceedings of the First Conference on
Computer-Supported Cooperative Work
(Austin, Tex., Dec. 3-5) ACM, New
York, 1986, pp. 267-275.

57. Leland, M.D.P., Fish, R.S., and
Kraut, R.E. Collaborative document
production using Quilt. In Proceed-
ings of the Conference on Computer-
Supported Cooperative Work (Port-
land, Oreg., Sept. 26-28). ACM,
New York, 1988, pp. 206-215.

58. Lewis, B.T., and Hodges, J.D.
Shared Books: Collaborative publi-
cation management for an office
information system. In Proceedings
of the Conference on Office Information
Systems (Palo Alto, Calif., Mar. 23-
25). ACM, New York, 1988, pp.
197-204.

59. Lochovsky, F.H., Hogg, J.S.,
Weiser, S.P., Mendelzon, A.O.
OTM: Specifying office tasks. In
Proceedings of the Conference on Office
Information Systems (Palo Alto, Calif.,
March 23-25). ACM, New York,
1988, pp. 46-53.

60. L6wgren, J. History, state and fu-
ture of user interface management
systems. SIGCHI Bulletin 20, 1 (July
1988), 32-44.

61. Madsen, C.M. Approaching group
communication by means of an of-
rice building metaphor. In Proceed-
ings of the First European Conference
on Computer-Supported Cooperative
Work (Gatwick, London, UK, Sep-
tember 13-15). 1989.

62. Malone, T., and Crowston, K. What
is coordination theory and how can
it help design cooperative work sys-
tems? In Proceedings of the Third Con-
ference on Computer-Supported Cooper-
ative Work (Los Angeles, Calif., Oct.
8-10). ACM, New York, 1990,
pp. 357-370.

63. Malone, T., Grant, K., Turbak, F.,
Brobst, S., and Cohen, M. Intelli-
gent information-sharing systems

COMMUNICATIONS OF THE ACM/January 1991/Vo1.34, No.1 5 7

Commun. ACM 30, 5 (May 1987),
390-402.

64. Mantel, M. Capturing the capture
lab concepts: A case study in the
design of computer supported
meeting environments. In Proceed-
ings of the Second Conference on Com-
puter-Supported Cooperative Work
(Portland, Oreg., Sept. 26-28).
ACM, New York, 1988, pp. 257-
270.

65. von Martial, F. A conversation
model for resolving conflicts among
distributed office activities. In Pro-
ceedings of the ACM Conference on
Office Information Systems (Cam-
bridge, Mass., Apr. 25-27). ACM,
New York, 1990,. pp. 99-108

66. Olson, M.H., and Lucas, H.C. Jr.,
The impact of office automation on
the organization: Some implications
for research and practice. Commun.
ACM 25, 11 (Nov. 1982), 838-847.

67. Opper, S. A groupware toolbox.
Byte (December, 1988).

68. Osterweil, L. Software processes are
software too. In Proceedings of the 3d
International Software Process Work-
shop (Breckenridge, Colo., Nov. 17-
19). Computer Society Press of the
IEEE, Washington, D.C., 1986, pp.
79-80.

69. Ost,erweil, L. Automated support
for the enactment of rigorously de-
scribed software processes. In Pro-
ceedings of the Fourth International
Software Process Workshop (Devon,
UK, May 11-13, 1988). Soft. Eng.
Not, ACM SIGSOFT 14, 4 (June
1989), 122-125.

70. Panko, R.R. 38 offices: Analyzing
needs in individual offices. ACM
Trans. Off. Inf. Syst. 2, 3 (July 1984),
226-234.

71. Rein, G., and Ellis, C. The Nick
experiment reinterpreted: implica-
tions for developers and evaluators
of groupware. Office: Tech. and Peo-
ple 5, 1 (January 1990), 47-75.

72. Root, R.W. Design of a multi-media
vehicle for social browsing. In Pro-
ceedings of the Second Conference on
Computer-Supported Cooperative Work
(Portland, Oreg., Sept. 26-28).
ACM, New York, 1988, pp. 25-38.

73. Sarin, S., and Greif, I. Computer-
based real-time conferencing sys-
tem..s. IEEE Comput. 18, 10 (Oct.
1985), 33-45.

74. Scigliano, J.A., Centini, B.A., and
Joslyn, D.L. A Real-time Unix-
based Electronic Classroom. In Pro-
ceedings of the 1EEE Southeastcon '87
(Tampa, Fla., April 5-8). IEEE,

New York, 1987.
75. Searle, J.R. Speech Acts: An Essay in

the Philosophy of Language. Cam-
bridge University Press, 1969.

76. Singh, B. Invited talk on coordina-
tion systems at the Organizational
Computing Conference (November
13-14, 1989, Austin, Texas).

77. Sluizer, S., and Cashman P.M. XCP:
An experimental tool for managing
cooperative activity. In Proceedings
of the 1985 ACM Computer Science
Conference. ACM, New York, 1985,
pp. 251-258.

78. Stefik, M., Bobrow, D.G., Foster,
G., Lanning, S., and Tartar, D.
WYSIWIS revised: Early experi-
ences with multiuser interfaces.
ACM Trans. Off Inf. Syst. 5, 2 (Apr.
1987), 147-186.

79, Stefik, M., Foster, G., Bobrow,
D.G., Kahn, K., Lanning, S. , and
Suchman, L. Beyond the chalk-
board: Computer support for col-
laboration and problem solving in
meetings. Commun. ACM 30, 1 (Jan.
1987), 32-47.

80. Watabe, K., et.al. A distributed
multiparty desktop conferencing
system and its architecture. In Pro-
ceedings of the IEEE Phoenix Confer-
ence on Computers and Communica-
tions (Phoenix, Ariz., Mar.). IEEE,
New York, 1990, pp. 386-393.

81. Woo, C.C. SACT: a tool for auto-
mating semi-structured organiza-
tional communication. In Proceed-
ings of the Conference on Office
Information Systems (Cambridge,
Mass., Apr. 25-27). ACM, New
York, 1990, pp. 89-98.

82. Zelleger, P.T., Terry, D.B., and
Swinehart, D.C. An overview of the
Etherphone system and its applica-
tions. In Proceedings of the Second
IEEE Conference on Computer Work-
stations (Santa Clara, Calif., Mar. 7 -
10). IEEE, Washington, D.C., 1988,
pp. 160-168.

83. Zisman, M.D. Representation, spec-
ification, and automation of office
procedures. Ph.D. dissertation,
Wharton School, Univ. of Pennsyl-
vania, Philadelphia, Pa., 1977.

Categories and Subject Descriptors:
D.2.2 [Software Engineering]: Tools
and Techniques--user interfaces; H.1.2
[Models and Principles]: User/Machine
Systems--human information processing;
H.4.3 [Information Systems Applica-
tions]: Communications Applications;
K.4.0 [Computers and Society]: Gen-
eral

General Terms: Design, Human Fac-
tors

Additional Key Words and Phrases:
Computer-Supported Cooperative
Work, coordination, muhiuser inter-
faces, organizational interfaces

About the Authors:
CLARENCE ELLIS is a senior member
of the technical staff in the Software
Technology Program at the Microelec-
tronics and Computer Technology Cor-
poration (MCC) and adjunct professor
at the University of Texas. His research
efforts have recently been in the areas
of collaboration and coordination sys-
tems, office information systems, and
distributed systems.

SIMON GIBBS is an assistant professor
at the Centre Universitaire d'In-
formatique, University of Geneva, Swit-
zerland. He is currently working on
software information systems and mul-
timedia programming. Author's Present
Address: Centre Universitaire d'In-
formatique, University of Geneva, 12
Rue du Lac, Geneva 1207, Switzerland.
simon@cuisun.unige.ch

GAlL REIN is a member of technical
staff in the Software Technology Pro-
gram at Microelectronics and Computer
Technology Corporation (MCC). Her
research interests are in multiuser inter-
faces, visual languages, distributed sys-
tems, group work dynamics, and tech-
nology transfer.

Authors' Present Address: Clarence
Ellis and Gail Rein are with MCC, 3500
Balcones Center Drive, Austin, TX,
78759-6509. ellis@mcc.com, rein@
mcc.com

The Coordinator is a trademark of Action
Technologies, Inc.

ForComment is a trademark of Broderbund,
Inc.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© 1991 ACM0001-0782/90/1200-038 $1.50

S 8 January 1991/Vo1.34, No.1/COMMUNICATIONS OF THE ACM

