
Using the Transformational Approach to Build a Safe and
Generic Data Synchronizer

Pascal Molli
molli@loria.fr

Gérald Oster
oster@loria.fr

Hala Skaf-Molli
skaf@loria.fr

Abdessamad Imine
imine@loria.fr

ECOO & CASSIS Team
INRIA Lorraine

FRANCE

ABSTRACT
Reconciliating divergent data is an important issue in concurrent
engineering, mobile computing and software configuration man-
agement. Currently, a lot of synchronizers or merge tools perform
reconciliations. However, they do not define what is the correct-
ness of their synchronisation. In this paper, we propose to use a
transformational approach as the basic model for reasonning about
synchronisation. We propose an algorithm and specific transfor-
mation functions that realize a file system synchronisation. Unlike
classic synchronizers, our synchronizer ensures properties of con-
vergence, causality and intention preservation and is extensible to
new data types.

Categories and Subject Descriptors
D.2 [Software Engineering]: Distribution, Maintenance, and En-
hancement

General Terms
Algorithms, Reliability

Keywords
Synchronization, Operational transformation

1. INTRODUCTION
Generally, users involved in mobile computing, collaborative com-

puting and concurrent engineering work on replicas of shared data.
They can make updates while working disconnected or insulated.
This generates divergence on replicas that has to be reconciliated
later. Synchronization is a critical application. If safety is not en-
sured, users can loose data, read inconsistent data and propagate
inconsistencies. This can be dramatic in the context of distributed
software engineering or mobile computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GROUP' 03, Novem ber 9–12, 2003, Sanibel I s land, Florida, USA.
Copyright 2003 ACM 1-58113-693-5/03/0011 ...$5.00.

Many systems exist today for reconciliating divergent data: file
synchronizers, tools for PDAs, configuration management tools with
merge tools, optimistic replication algorithms in databases, group-
ware algorithms in CSCW and distributed systems algorithms. How-
ever, an important issue is still open: what is a correct synchroniza-
tion ? How to write a safe synchronizer ? In this paper, we propose
to use the transformational approach[6, 25, 21, 24] as a theoretical
foundation for a safe and generic data synchronizer. This approach
allows to define general correctness criteria for synchronizing any
kind of data. To validate this approach, we developed a prototype
that allows to synchronize with the same algorithm a file system
and file’s contents for text files and XML files. The same cor-
rectness properties are ensured at all levels of synchronization. Of
course, we can extend this prototype for more data types. In this
paper, we present the transformational model and how we can use
it for building a safe and generic data synchronizer.

The paper is organized as follows: Section 2 details the prob-
lems with current synchronizers. Section 3 gives an overview of
the transformational approach. Section 4 presents the generic inte-
gration algorithm. Section 5 and 6 detail transformation functions
for a file system and text files. Section 8 presents related works.
The last section concludes with some points to future works.

2. WHY A SAFE AND GENERIC SYNCHRO-
NIZER ?

Synchronization is a process that takes two divergent copies as
inputs and makes them identical. Unfortunately, for two divergent
data, there are many states of convergence. A correct synchronizer
must force convergence towards a state that enforces predefined
properties.

Current synchronizers do not define such properties, they propa-
gate non-conflicting updates to other copies and delegate resolution
of conflicting updates to users [1]. So two different existing syn-
chronizers will not produce the same results in the same situation.

Another important issue is the granularity of reconciliation. Sup-
pose two text files edited in parallel by two users, one is appending
a new chapter, the other one is checking the grammar. Current file
synchronizer will ask to choose between the two versions. In fact,
reconciliation is performed at wrong level of granularity. To be
more precise, reconciliation must be done at all levels of granular-
ity; at the file system level and at the file content level and maybe
at the character level. This leads to another important issue: the
genericity of the synchronization. Is the algorithm of reconciliation

212

the same for two integers, blocks of text, XML Trees, Databases ta-
bles ? Currently, in software configuration environments, different
tools are used to merge objects at different levels of genericity. One
reconciles the file system and the other one reconciles file text. Un-
fortunately, they do not apply the same strategy. For example, with
CVS [2], if a conflict occurs at the file system level, users are re-
quired to solve the conflict. If a conflict occurs at the content of
text file, a merge is done automatically and users can compensate
system decisions after synchronisation completion. This raises two
new questions : 1) who will resolve conflicts ? the synchronizer,
the user or the system administrator. 2) when conflicts have to be
resolved ? during the synchronization or after.

In distributed systems like CODA[13] or Bayou[15], when a
conflict is detected, the system tries to solve it automatically. But if
it fails, the system delegates conflicts resolution to the administra-
tor, data remains frozen until the conflicts are solved. In replicated
Database Systems[8], when a conflict is detected, the system tries
to perform automatic merge procedures. But these procedures are
not defined for all kind of conflicts and so convergence is not en-
sured in all cases.

In this paper, we propose to use the transformational approach
to build a synchronizer that forces convergence in all cases and
reconciles divergent data at all possible levels of granularity. The
synchronizer resolve all conflicts automatically without delegating
them to users nor administrator. Users can compensate system de-
cisions after synchronization completion.

3. TRANSFORMATIONAL APPROACH
The model of transformational approach considers n sites. Each

site has a copy of the shared objects. When an object is modified
on one site, the operation is executed immediately and sent to oth-
ers sites to be executed again. So every operation is processed in
four steps: (a) generation on one site, (b) broadcast to others sites,
(c) reception by others sites, (d) execution on other sites.

The execution context of a received operation opi may be dif-
ferent from its generation context. In this case, the integration of
opi by other sites may lead to inconsistencies between replicas. We
illustrate this behavior in figure 1(a). There are two sites site1 and
site2 working on a shared data of type S tring. We consider that a
S tring object can be modified with the operation Ins(p, c) for in-
serting a character c at position p in the string. We suppose the
position of the first character in string is 0. user1 and user2 gener-
ate two concurrent operations: op1 = Ins(2, f) and op2 = Ins(5, s).
When op1 is received and executed on site2, it produces the ex-
pected string ”effects”. But, when op2 is received on site1, it does
not take into account that op1 has been executed before it. So, we
obtain a divergence between site1 and site2.

In the operational transformation approach, received operations
are transformed according to local concurrent operations and then
executed. This transformation is done by calling transformation
functions. A transformation function T takes two concurrent opera-
tions op1 and op2 defined on the same state s and returns op′1. op′1 is
equivalent to op1 but defined on a state where op2 has been applied.
We illustrate the effect of a transformation function in figure 1(b).
When op2 is received on site1, op2 needs to be transformed ac-
cording to op1. The integration algorithm calls the transformation
function as follows:

T (

op2
︷���︸︸���︷

Ins(5, s),

op1
︷����︸︸����︷

Ins(2, f)) =

op′2
︷���︸︸���︷

Ins(6, s)

The insertion position of op2 is incremented because op1 has in-
serted an f before s in state e f ect. Next, op′2 is executed on site1.

In the same way, when op1 is received on site2, the transformation
algorithm calls:

T (

op1
︷����︸︸����︷

Ins(2, f),

op2
︷���︸︸���︷

Ins(5, s)) =

op′1
︷����︸︸����︷

Ins(2, f)

In this case the transformation function returns op′1 = op1 because,
f is inserted before s. Intuitively we can write the transformation
function as follows:

T (I n s (p1 ,c1) , I n s (p2 ,c2)) :−
2i f (p1 < p2) then

re tu rn I n s (p1 , c1)
4e l s e

re tu rn I n s (p1 + 1 , c1)
6e n d i f

This example makes it clear that the transformational approach
defines two main components: the integration algorithm and the
transformation functions. The Integration algorithm is responsible
for receiving, broadcasting and executing operations. It is inde-
pendent of the type of shared data, it calls transformation func-
tions when needed. The transformation functions are responsible
for merging two concurrent operations defined on the same state.
They are specific to the type of shared data (S tring in our exam-
ple).

A more theoretical model is defined in [25, 21, 24, 23]. To be
correct, an integration algorithm has to ensure three general prop-
erties:

Convergence When the system is idle (no operation in pipes), all
copies are identical.

Causality If on one site, an operation op2 has been executed after
op1, then op2 must be executed after op1 in all sites.

Intention preservation If an operation opi has to be transformed
into op′i , then the effects of op′i have to be equivalent to opi.

To ensure these properties, it has been proved [25, 21] that the
underlying transformation functions must satisfy two conditions:

1. The condition C1 defines a state equivalence. The state gen-
erated by the execution of op1 followed by T (op2, op1) must be the
same as the state generated by the execution of op2 followed by
T (op1, op2):

C1 : op1 ◦ T (op2, op1) ≡ op2 ◦ T (op1, op2)

2. The condition C2 ensures that the transformation of an op-
eration according to a sequence of concurrent operations does not
depend on the order in which operations of the sequence are trans-
formed:

C2 : T (op3, op1 ◦ T (op2, op1)) = T (op3, op2 ◦ T (op1, op2))

In order to use the transformational model, we must follow these
steps:

1. Choose a integration algorithm. Depending of the algorithm,
C2 may be required or not on underlying transformation func-
tions.

2. Define shared data types with their operations
3. Write transformation functions for all combination of opera-

tions. For example, on a string object with Ins(p, c), Del(p),
we have to define:

T (I n s (p1 ,c1) , I n s (p2 ,c2)) :−

213

(a) Incorrect integration (b) Integration with transformation

Figure 1: Integration of two concurrent operations

2T (I n s (p1 ,c1) , Del (p2)) :−
T (Del (p1) , I n s (p2 ,c2)) :−

4T (Del (p1) , Del (p2)) :−
4. Prove the required conditions on these transformation func-

tions.

4. AN INTEGRATION ALGORITHM FOR
SYNCHRONIZATION

Sync (log , Ns) : −
2whi l e ((opr = getOp (Ns+1)) !=∅)

f o r (i =0; i<log.size() ; i ++)
4opl= l o g [i] ;

l o g [i]=T (opl ,opi)
6op′i=T (opi ,opl) ;

endfor
8e x e c u t e (op′i)

Ns=Ns+1
10endwhi le

12f o r (i =0; i<log.size() ; i ++)
op′l= l o g [i] ;

14i f send (op′l , Ns+1) then
Ns=Ns+1

16e l s e
e r r o r ’ need t o s y n c h r o n i z e ’

18e n d i f
endfor

Figure 2: Generic synchronization algorithm

In the transformational approach, the integration algorithm has
the responsibility of receiving, integrating, broadcasting and ex-
ecuting operations. Among the existing algorithms, SOCT4[28]
with its deferred broadcast is the most suitable algorithm for our
synchronization needs. SOCT4 is based on a continuous global
order of operations and requires only C1 to be verified by trans-
formation functions. Each operation is sent with a unique global
timestamp. An operation on a site S with a given timestamp cannot

be sent if all the preceding operations based on the timestamp order
have been received and executed.

Our synchronization algorithm based on SOCT4 is presented in
figure 2. Synchronizing a site S takes two parameters: log and Ns.
log is the sequence of operations executed locally since the last syn-
chronization. Ns is an integer which contains the timestamp of the
last operation received or sent by site s. We define two functions:

1. getOp(int ticket) →op: retrieves the operation identified
by the timestamp ticket. If no operation is available, getOp return
∅

2. send(Operation op, int ticket) →boolean: sends a local op-
eration with the timestamp ticket. If ticket already exists, it means
that a concurrent synchronization is in progress. In this case, the
operation send returns false. The current state is not corrupted, it
requires just to start again another synchronization.

site1 site2

op1 op3

op2 op4

s1 = synchronize
s2 = synchronize

s3 = synchronize
Figure 3: Scenario of integrations

Suppose we want to synchronize two sites as illustrated in fig-
ure 3. At the beginning, each site has Ns = 0. site1 performed two
local operations op1, op2, and site2 performed two concurrent local
operations op3, op4.

1. At point s1, site1 synchronizes. It calls sync([op1, op2], 0).
There is no concurrent operation available, so we just send op1, op2

as it is to site2. Now, Ns = 2 on site1.
2. At point s2, site2 synchronizes by calling sync([op3, op4], 0).

The following transformation functions are called:
op′1 = T (op1, op3)
op′3 = T (op3, op1)
op′′1 = T (op′1, op4)
op′4 = T (op4, op′1)
op′2 = T (op2, op′3)
op′′3 = T (op′3, op2)
op′′2 = T (op′2, op′4)
op′′4 = T (op′4, op′2)

214

op′′1 , op′′2 are executed on site2. op′′1 , op′′2 are sent to others sites.
Now Ns = 4 on site2.

3. At point S 3, site1 synchronizes again by calling sync([], 2).
There is no more local concurrent operations, so remote operations
are executed without transformation on site2 and Ns = 4.

4. After point S 3, site1 has executed the following sequence:
op1

op2

op′′3 = T (T (op3, op1), op2)
op′′4 = T (T (op4, op′1), op′2)

and site2 has executed the following equivalent sequence:
op3

op4

op′′1 = T (T (op1, op3), op4)
op′′2 = T (T (op2, op′3), op′4)

This equivalence is ensured if transformation functions verify C1.
It is clear in this example that conflicts detection and conflicts res-
olution are delegated to transformation functions. However, the
problem is now simpler. A transformation function detects and re-
solves conflicts for one combination of two concurrent operations
defined on the same state. If one transformed operation has an ef-
fect on the next operation, the cascading effects are handled by the
integration algorithm.

This algorithm is a safe generic synchronizer if underlying trans-
formation functions verify condition C1. It preserves convergence,
causality and intention.

5. TRANSFORMATION FUNCTIONS FOR
A FILE SYSTEM

We define transformation functions for a file system and for each
type of files. We limit our description to text files.

Writing correct transformation functions is complex. We have
to preserve convergence by verifying condition C1 and intention
by computing equivalent operations. Our general strategy when
writing transformation functions is to converge to a state in which
conflicts are represented. A merge tool does the same thing when
it merges two files. For example, rcsmerge [26] handles an update
conflict by producing the following output:

<<<<<<< testfile.txt

std::string LineReader::readLine()

{

return std::read_line(cin);

}=======

CString LineReader::ReadLine()

{

CString line;

m_archive >> line;

return line;

}>>>>>>> 1.1.1.1.2.1

Users resolve the conflict by just editing the file. We apply the
same principle for the file system. We handle conflicts on a file
system by renaming files or directories involved in this conflict. For
example, if two users create concurrently the same file in the same
directory we converge to a state where we have renamed one file.
Users can compensate this choice after synchronisation by using
the move operation and synchronize again.

The safety of the transformational approach relies on correctness
of transformation functions. If transformation functions do not ver-
ify C1 then the integration algorithm ensures nothing. Proving con-
dition C1 is error prone, time consuming and part of an iterative
process. It is nearly impossible to do this by hand. We made the

proof using SPIKE : an automatic theorem prover [20, 11, 10]. The
input of SPIKE is exactly the transformation functions written in
this paper.

We consider a file system like a tree where nodes are directories
and leaves are files. We define the following operations:

1. mf(int id , int pid , String name): m f stands for mkfile. It
creates a file identified with a unique id . pid is the parent identifier.
id is referenced with the name name in pid. m f has the following
preconditions: id does not exist, pid exists and name is not used by
pid.

2. md(int id , int pid , String name): md stands for mkdir. It
creates a directory. In order to represent the root of the tree, we
consider that a unique identifier 0 exists and represents the root.
The sequence m f (1, 0, a); md(2, 0, b); m f (3, 2, a); m f (4, 2, b) builds
the tree illustrated in figure 4(a):

3. mv(int pid1 , int id1 , String name1,int pid2 , String name2
). Moves the object identified by id1 referenced in pid1 with the
name name1 to the node identified by pid2 with name2. mv has
the following preconditions: pid1, id1, pid2 exist. id1 is referenced
with the name name1 in pid1. name2 is not used in pid2. If we
apply mv(2, 4, b, 0, c) on the tree illustrated in 4(a), we obtain the
state described in figure 4(b).
We do not define the remove operation, we consider that removing
is equivalent to moving a subtree to a directory representing the
garbage.

T (mf (id1 , idp1 ,n1 , s1) , mf (id2 , idp2 ,n2 , s2))=
2i f (idp1 == idp2) then

i f (n1 == n2) then
4i f (id1 < id2) then re tu rn

mf (id1 , idp1 ,max(s1) � id1 ,
6s1 ∪ {max(s1) � id1)

e l s e re tu rn
8mv(idp2 , id2 ,n2 , idp2 ,max(s2) � id2 ,

s2 \ {n2} ∪ {max(s2) � id2})
10� mf (id1 , idp1 ,n1 , s2 ∪ {max(s2) � id2})

e n d i f
12e l s e

re tu rn mf (id1 , idp1 ,n1 , s2 ∪ {n1})
14e n d i f

e l s e
16re tu rn mf (id1 , idp1 ,n1 , s1)

e n d i f ;

Figure 5: Transformation Function for mkfile-mkfile

Figure 5 represents the transformation function for mkfile-mkfile.
Renaming entries in a file system is a little tricky:

1. How to compute a new unique name in a directory ? In
order to represent conflicts by renaming files or directories,
we need to compute unique names within the transformation
function. This must be done using only the state informa-
tions where both concurrent operations are defined. Every
operation modifying a directory provides the set of names
contained in the directory after the execution of the opera-
tion. For example, on a directory identified by 1 and con-
taining names {a, b, c}, the operation m f (2, 1, d) is created
with a fourth parameter s containing the set {a, b, c, d}. On
this set, we define an extra operation max(s). It returns the
name with highest lexicographical value. If we append id of
the renamed object to max(s), we obtain a new unique name
max(s) � id. � is the append operator.

215

(a) Initial tree
(b) tree after mv(2, 4, b, 0, c)

Figure 4: File System Representation

T (mf (id1 , idp1 ,n1 , s1) ,
2mv(opid2 , id2 , nb , idp2 ,n2 , s2)) =

i f (idp1 == idp2) then
4i f (n1 == n2) then

i f (id1 < id2) then re tu rn
6mf (id1 , idp1 ,max(s1) � id1 ,

s2 ∪ {max(s1) � id1})
8e l s e re tu rn

mv(idp2 , id2 ,n2 , idp2 ,max(s1) � id2 ,
10s2 \ {n2} ∪ {max(s1) � id2})

� mf (id1 , idp1 ,n1 , s2 ∪ {max(s1) � id2)
12e n d i f

e l s e re tu rn
14mf (id1 , idp1 ,n1 , s2 � n1)

e n d i f
16e l s e re tu rn

mf (id1 , idp1 ,n1 , s1)
18e n d i f

Figure 6: Transformation Function for mkfile-move

2. Which entry to rename ? In order to converge, we must make
the same deterministic choice on all sites. We choose to re-
name the file with the least id. Thus, if we integrate two
concurrent operations creating the same file in the same di-
rectory, there are two cases: (a) we are transforming the op-
eration with the least id (cf line 5 in figure 5). In this case, we
just rename the file with max(s1)� id1. (b) we are transform-
ing the file with greatest id (cf line 8 in figure 5). In this case,
we rename the least, and create the greatest without modifi-
cations. By this way, the transformation function returns a
sequence of two operations. � is the sequence constructor.

Figures 6 and 7 describe transformation function for mkfile-move
and move-mkfile. We use these functions in section 7.

6. TRANSFORMATION FUNCTIONS FOR
TEXT FILES

On a text file, we define the following operations:
1. ab(id1,s1,os1,v1). Adds a block of text v1 to the file identified

by id1 at the insert point s1. os1 parameter is used to solve some
false ambiguous conflicting situation [22]. This parameter remem-
bers the original insertion point. When an operation ab is created,
os1 = s1. If the operation is transformed, os1 remains identical. In

T (mv(opid1 , id1 , na , idp1 ,n1 , s1) ,
2mf (id2 , idp2 ,n2 , s2)) =

i f (idp1 == idp2) then
4i f (n1 == n2) then

i f (id1 < id2) then re tu rn
6mv(opid1 , id1 , na , idp1 , max(s2) � id1 ,

s2 ∪ {max(s2) � id1} \ {na})
8e l s e re tu rn

mv(idp2 , id2 ,n2 , idp2 ,max(s2) � id2 ,
10s2 ∪ {max(s2) � id2} \ {n2})

� mv(opid1 , id1 , na , idp1 ,n1 ,
12s2 ∪ {max(s2) � id2} \ {na})

e n d i f
14e l s e re tu rn

mv(opid1 , id1 , na , idp1 ,n1 , s2 ∪ {n1} \ {na})
16e n d i f

e l s e re tu rn
18mv(opid1 , id1 , na , idp1 ,n1 , s1)

e n d i f ;

Figure 7: Transformation Function for move-mkfile

order to simplify the transformation functions, we use l1 to repre-
sent the number of lines of block v1. id1 and s1 have to exist.

2. db(id1,s1,ov1). Deletes the block of text ov1 from the file iden-
tified by id1 at the delete point s1. l1 is used to represent the number
of lines of block ov1. id1 and s1 have to exist.

Figure 8 presents the transformation function for addblock-addblock.
As for the file system, our general strategy for writing transfor-
mation function is to converge towards a state where conflicts are
represented. In case of conflict, we will produce a block of text
containing the effects of both operations like rcsmerge[26]. Con-
flicts occur when the effects of two concurrent operations are over-
lapping. For example, a db operation can delete lines added con-
currently by a ab operation. The overlapping between these two
concurrent operations can be partial or complete.

For addblock-addblock, a conflict occurs only if both operations
insert at the same line two different texts. In this case, we delete the
block previously inserted and insert a new block containing both
texts. If there is no overlapping, we just manage the insert point.
The same strategy is applied for addblock-delblock in figure 9 and
for delblock-addblock in figure 10.

For space reasons, we do not present transformation functions
for delblock-delblock and move-move. All others transformation

216

T (ab (id1 , s1 ,os1 ,v1) ,
2ab (id2 , s2 ,os2 ,v2)) : −

i f (id1 !=id2) then
4re tu rn ab (id1 , s1 ,os1 ,v1)

e l s e
6i f (s1<s2) then

re tu rn ab (id1 , s1 ,os1 ,v1)
8e l s e i f (s1 > s2) then

re tu rn ab (id1 , s1+l2 ,os1 ,v1)
10e l s e

i f (os1 < os2) then
12re tu rn ab (id1 , s1 ,os1 ,v1)

e l s e i f (os1 > os2) then
14re tu rn ab (id1 , s1 + l2 ,os1 ,v1)

e l s e
16i f (v1 == v2) then

re tu rn Id (ab (id1 , s1 ,os1 ,v1)
18e l s e

re tu rn db (id2 , s2 , l2 ,v2)
20� ab (id1 , s1 ,os1 ,v1 � v2)

e n d i f
22e n d i f

e n d i f
24e n d i f

Figure 8: Transformation Function for addblock-addblock

T (ab (id1 , s1 ,os1 ,v1) , db (id2 , s2 ,ov2)) :−
2i f (id1 != id2) then

re tu rn ab (id1 , s1 ,os1 ,v1)
4e l s e

i f (s1 < s2) then
6re tu rn ab (id1 , s1 ,os1 ,v1)

e l s e i f (s1 > s2 + l2 − 1) then
8re tu rn ab (id1 , s1 − l2 ,os1 ,v1)

e l s e
10re tu rn ab (id1 , s2 , s2 ,ov2 � v1)

e n d i f
12e n d i f

Figure 9: Transformation Function for addblock-delblock

functions T (op1, op2) (for example T (op1 = move, op2 = addblock))
return op1.

7. EXAMPLE
We suppose three users working concurrently on the same ini-

tial state (cf. figure 12(a)): mf(1,0,a ,{ a }) , ab (1,0,0,{” gaspard
”,” melchior ”,” balthazar ”}) .

On this state, users produce concurrent operations described in
figure 11. After the synchronization s5, all users observe the same
state (cf. figure 12(b)).

This scenario illustrates how the synchronizer handles conflicts
between op1 and op3 and between op2 and op5. We describe now
the effects of each synchronize command.

s1 At this point, there is no concurrent operation. Merge is
straightforward. op1 and op2 are just sent to the other sites.

s2 The synchronizer merges the sequence op1; op2 to the local
log op3; op4. If we execute the integration algorithm described in
figure 2, we obtain the following calls to transformation functions.

T (db (id1 , s1 ,ov1) , ab (id2 , s2 ,os2 ,v2)) :−
2i f (id1 != id2) then

re tu rn db (id1 , s1 ,ov1)
4e l s e

i f (s1 > s2) then
6re tu rn db (id1 , s1 + l2 ,ov1)

e l s e i f (s1 + l1 − 1 < s2) then
8re tu rn db (id1 , s1 ,ov1)

e l s e
10re tu rn db (id2 , s2 ,v2)

� db (id1 , s1 ,ov1)
12� ab (id1 , s1 , s1 ,ov1 � v2)

e n d i f
14e n d i f

Figure 10: Transformation Function for delblock-addblock

(a) Initial State
(b) State after s5

Figure 12: Initial and Final State of the Scenario

Operations Result
op1

1 = T (op1, op3) mv(0, 1, a, 0, b1, {b, b1})
op1

3 = T (op3, op1) mv(0, 1, b, 0, b1, {b1})
�m f (2, 0, b, {b, b1})

op2
1 = T (op′1, op4) mv(0, 1, a, 0, b1, {b, b1})

op1
4 = T (op4, op′1) ab(2, 0, 0, {”zidane”})

op1
2 = T (op2, op′3) db(1, 2, {”melchior”, ”balthazar”})

op2
3 = T (op′3, op2) mv(0, 1, b, 0, b1, {b1})

�m f (2, 0, b, {b, b1})
op2

2 = T (op′2, op′4) db(1, 2, {”melchior”, ”balthazar”})
op2

4 = T (op′4, op′2) ab(2, 0, 0, {”zidane”})
For s3 to s5 we re-execute the integration algorithm as for s2.

After s5, each site has executed a sequence of operations equivalent
to:

mf(1,0,a,{a}),
2ab(1,0,0,{”gaspard”,”melchior”,”balthazar”}),

op1=mv(0,1,a,0,b,{b}),
4op2=db(1,2,{”melchior”,”balthazar”}),

op2
3=mv(0,1,b,0,b1,{b1}) � mf(2,0,b,{b,b1}),

6op2
4=ab(2,0,0,{”zidane”}),

op4
5=ab(1,2,2,{”>>”,”melchior”,

8”balthazar”,”=”,”abdou”,”<<”});
LibreS ource is a platform for hosting virtual teams. It provides

a web service of synchronization based on the transformational ap-
proach 1. Users can register and create channels for synchronizing

1You can try the LibreSource prototype online at
http://woinville.loria.fr/ls. It requires to have the jdk1.4.+
installed on your computer.

217

u1 u2 u3

op1 = mv(0, 1, a, 0, b, {b}) op3 = m f (2, 0, b, {a, b}) op5 = ab(1, 3, 3, {”abdou”})
op2 = db(1, 2, {”melchior”, ”balthazar”}) op4 = ab(2, 0, 0, {”zidane”})
s1 = synchronize

s2 = synchronize
s3 = synchronize

s4 = synchronize
s5 = synchronize

Figure 11: Integration Scenario

data. A channel is a queue of timestamped operations. Once a
channel is created, users can create replicas on their local disks and
start synchronizing.

We use diff algorithms [3, 14] to detect changes since last syn-
chronization. Diff algorithm generates the local logs required by
the integration algorithm.

We have used LibreS ource for several months now, and we ob-
served that the number of operations is growing fast. On some
channels we have more than 4000 operations. An algorithm for
compressing log of operations using the transformational approach
has been developed in [19]. We plan to implement it in order to
compress channel queues.

8. RELATED WORKS
Many tools exist in different research areas dealing with synchro-

nizations. We compare our work with file synchronizers, PDAs
synchronizers, configuration management tools, synchronization
issues in distributed systems and replication in database systems.

File Synchronizer The overall goal of a file synchronizer is to
detect conflicting updates and propagate non conflicting ones. To
achieve this goal, the semantic of the file system primitives must
be well defined as in Unison [1]. However, this approach presents
several drawbacks: (a) the approach is restricted to a file system.
(b) Synchronization is often limited to two replicas. (c) Recon-
ciliation is coarse grained. It does not attempt to synchronize file
contents. (d) A general correctness criterion is not defined. (e) The
system interacts with user each time a conflict is detected. If there
are 100 conflicts, the system will interact 100 times with the user. If
we just make the comparison between S 5 and this kind of synchro-
nizers, S 5 handles n replicas, ensures convergence, causality and
intention preservation, synchronizes files contents, resolves con-
flicts automatically in all cases.

PDA synchronizer ActiveSync, HotSync, I-Sync are now largely
used to synchronize data between desktop computers and PDAs.
These synchronizers allow to synchronize several kind of data like
address books, calendars, tasks, notes , bookmarks, files and so on.
However, this approach is an extension of the file synchronizer ap-
proach: it detects conflicting updates and propagates non conflict-
ing ones. So we have exactly the same problems: no correctness
criteria, problems with conflict resolution . . .
The genericity of transformational approach makes it easy to write
such synchronizers. We can define a type calendar with three op-
erations: AddRendezVous, RemoveRendezVous and UpdateRen-
dezVous. Then we define all transformation functions and make
the proof of the condition C1. The result is a safe synchronizer,
ensuring convergence, causality and intention preservation.

CM and Merge Tools In Configuration Management Environ-
ments [2, 27, 4, 7] users can work in parallel, produce data diver-
gence and reconciliate later using the copy-modify-merge paradigm.
If we look closer on how things are done, we observe that recon-
ciliation is done by tight cooperation between version manager and
merge tools. (a) When a reconciliation is required (i.e. often when

a user updates his workspace), version managers provides required
version to merge tools [14]. Merge is done locally, in the workspace
of the user. (b) Merge tools extract from different versions, concur-
rent logs of operations using Diff algorithms [3]. Of course, diff
algorithms are specific to data types. (c) Finally, concurrent opera-
tions are merged using ad-hoc algorithm specific to data types.
The transformational model is more general, more uniform and
safer than this model. In this approach, each merge tool has its own
merge algorithm. One tool merges two divergent file systems, an-
other tool merges two divergent text files, another one merges two
divergent XML files. Maybe, they are not consistent together, they
do not apply the same strategy. For example, with CVS, compen-
sation is used by the text file merge tool and not by the file system
merge tool.
In the transformational approach, the merge algorithm is shared
by all transformation functions. It preserves Convergence, Causal-
ity and Intention (CCI) if underlying transformation functions en-
sure condition C1. By this way, we can extend the synchronizer by
adding new transformation functions without violating CCI prop-
erties.

Distributed systems Maintaining consistency of shared data is
a big issue in distributed systems. Coda[13], Bayou[15], Ficus[17]
allow users to work disconnected and use reconciliation procedures
when people reconnect.
Bayou[15] first used an epidemic algorithm to propagate changes
between weakly consistent replicas. When a conflict is detected,
merge procedures associated with operations are executed. If the
merge procedure cannot find a solution, conflict resolution is del-
egated to users. Bayou use a total update ordering. Other sys-
tems [18] use a partial update ordering and then take advantages
of update commutativity. Causality is used to determine the partial
ordering.
Distributed systems and transformational approach are similar in
many points: both approaches detect conflicts, merge procedures
and transformation functions looks identical, commutativity and
condition C1 are quite similar and causality are used in both ap-
proaches. However, the transformational approach allows to trans-
form operations. C1 is some sort of ”transformational commuta-
tivity”. It allows to compute more complex state of convergence.
Unlike merge procedures, transformation functions ensure conver-
gence in all cases.
The IceCube [12] is a generic approach for reconciliating diver-
gent data. IceCube does not define a general correctness criterion
for synchronization but uses semantic constraints that the reconcil-
iation algorithm has to preserve. IceCube considers two kind of
constraints: (a) Static constraints can be evaluated without using
the state of replica. Commutativity of operations can be expressed
as a static constraint. (b) Dynamic constraints can refer to the state
of replicas.
Basically, IceCube explores all possible combinations of concur-
rent actions. First, IceCube rejects all combinations violating static
constraints. For the others, IceCube simulates integrations on repli-

218

cas and reject combinations violating dynamic constraints. Result-
ing combinations are ranked and proposed to user.
This approach is interesting because, IceCube is looking for the
combinations of concurrent operations that minimize conflicts of
reconciliation. Maybe, on this point, transformational approach
will not find the optimal reconciliation. On the other hand, Ice-
Cube has some intrinsic drawbacks: (a) Combinatorial explosion
can occur during the first stage of reconciliation, even if static con-
straints restrict the number of possible schedules. (b) Constraints
are specific to applications and have to be defined. (c) IceCube is
interactive, (d) IceCube does not transform operations. What hap-
pens if there are just two concurrent operations mk f ile(”/a”) and
mkdir(”/a”). All possible schedules are bad. In this situation, Ice-
Cube will just ask users what it has to do as a classical file synchro-
nizer.

Database Systems Replication and database consistency has been
investigated extensively [8, 16]. Replication conflicts can occur in
a replication environment that permits concurrent updates to the
same data at multiple sites. If two transactions working on two dif-
ferent replicas, update the same row at the same time, a conflict can
occur.
Oracle[5] provides built-in resolution methods for resolving up-
date conflicts. The “latest timestamp” value resolves a conflict
based most recent update. the Additive method adds the differ-
ence of two conflicting “update value” operations to the current
value. The “overwrite” method replaces the current value with the
new value. Users can define their own conflict resolution meth-
ods. If convergence cannot be achieved, then a notification is sent
to the administrator. Some built-in resolution methods seem to pre-
serve convergence but not for any kinds of conflicts (uniqueness
and delete/update) and not for any configuration of replicas. Trans-
formational approach is more general than replicas management in
database systems. We can implement built-in or user defined res-
olution methods of Oracle as transformation functions and prove
formally the convergence.

9. CONCLUSION AND PERSPECTIVES
Transformational Approach can be considered as a theoretical

foundation for synchronizing data. We propose a generic and safe
synchronizer ensuring convergence, causality and intention preser-
vation. It relies on underlying specific transformation functions
verifying condition C1. We write proved correct transformation
functions for a file system, text files, XML files [9], String. . . . We
validate our approach with the LibreS ource prototype.

We have several research directions:
1. We plan to develop transformation functions for handling more

shared data types like database primitives, DTDs in XML. . .
2. We are currently building network of synchronizations. It im-

plies that a single replica can be synchronized with several times-
tampers. By this way, we can develop the dataflow part of a soft-
ware process.

3. A lot of work has been done for undoing operations in real-
time groupware[23]. It requires that at least transformation func-
tions verifies condition C2. We have started to improve our trans-
formation functions to handle the undo operation. This approach
can be used as an alternative to compensation.

4. We are currently modifying the SPIKE theorem prover in or-
der to build an integrated development environment for transfor-
mation functions. Within this environment a user enters functions
like in this paper and calls the theorem prover like a compiler. If
there are errors, the environment gives counter-examples immedi-
ately. We believe that this kind of environment can greatly improve
the process of production of transformation functions.

10. REFERENCES
[1] S. Balasubramaniam and B. C. Pierce. What is a file

synchronizer? In Mobile Computing and Networking, pages
98–108, 1998.

[2] B. Berliner. CVS II : Parallelizing Software Development. In
Proceedings of USENIX, Washigton D. C., 1990.

[3] S. S. Chawathe and H. Garcia-Molina. Meaningful change
detection in structured data. In Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data,
pages 26–37. ACM Press, 1997.

[4] R. Conradi and B. Westfechtel. Version models for software
configuration management. ACM Computing Surveys
(CSUR), 30(2):232–282, 1998.

[5] D. Daniels, L. B. Doo, A. Downing, C. Elsbernd,
G. Hallmark, S. Jain, B. Jenkins, P. Lim, G. Smith,
B. Souder, and J. Stamos. Oracle’s symmetric replication
technology and implications for application design. In
Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, page 467. ACM Press,
1994.

[6] C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In SIGMOD Conference, volume 18,
pages 399–407, 1989.

[7] J. Estublier. Software configuration management: a roadmap.
In ICSE - Future of SE Track, pages 279–289, 2000.

[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
pages 173–182. ACM Press, 1996.

[9] A. Imine, P. Molli, G. Oster, and M. Rusinowitch.
Development of transformation functions assisted by a
theorem prover. In Fourth International Workshop on
Collaborative Editing, New Orleans, Louisiana, USA,
November 2002.

[10] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving
correctness of transformation functions in real-time
groupware. In Proceedings of the 8th European Conference
on Computer-Supported Cooperative Work, Helsinki,
Finland, September 2003.

[11] A. Imine, P. Molli, G. Oster, and P. Urso. Vote: Group editors
analyzing tool. In International Workshop on First-Order
Theorem Proving, June 2003.

[12] A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel.
The IceCube approach to the reconciliation of divergent
replicas. In Proceedings of the Twentieth ACM Symposium
on Principles of Distributed Computing (PODC), Newport
RI, USA, August 2001.

[13] P. Kumar and M. Satyanarayanan. Flexible and safe
resolution of file conflicts. In USENIX Winter, pages 95–106,
1995.

[14] J. P. Munson and P. Dewan. A flexible object merging
framework. In Proceedings of ACM CSCW’94 Conference on
Computer-Supported Cooperative Work, Technologies for
Sharing I, pages 231–242, 1994.

[15] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible update propagation for weakly
consistent replication. In Proceedings of the 16th ACM
Symposium on Operating SystemsPrinciples (SOSP-16),
Saint Malo, France, 1997.

[16] M. Rabinovich, N. H. Gehani, and A. Kononov. Scalable
update propagation in epidemic replicated databases. In
Extending Database Technology, pages 207–222, 1996.

219

[17] P. L. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and
G. J. Popek. Resolving file conflicts in the ficus file system.
In USENIX Summer, pages 183–195, 1994.

[18] Y. Saito and H. M. Levy. Optimistic replication for internet
data services. In International Symposium on Distributed
Computing, pages 297–314, 2000.

[19] H. Shen and C. Sun. A log compression algorithm for
operation-based version control systems. In Proceedings of
IEEE 26th Annual International Computer Software and
Application Conference (COMPSAC 2002), Oxford,
England, august 2002.

[20] S. Stratulat. A general framework to build contextual cover
set induction provers. Journal of Symbolic Computation,
32(4):403–445, 2001.

[21] M. Suleiman, M. Cart, and J. Ferrié. Concurrent operations
in a distributed and mobile collaborative environment. In
Proceedings of the Fourteenth International Conference on
Data Engineering (ICDE’98), pages 36–45, Orlando,
Florida, USA, February 1998. IEEE Computer Society.

[22] M. Suleiman, M. Cart, and J. Ferrié. Serialization of
concurrent operations in a distributed collaborative
environment. In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work : The
Integration Challenge (GROUP’97), pages 435–445. ACM
Press, November 1997.

[23] C. Sun. Undo as concurrent inverse in group editors. ACM
Transactions on Computer-Human Interaction (TOCHI),
9(4):309–361, December 2002.

[24] C. Sun and D. Chen. Consistency maintenance in real-time
collaborative graphics editing systems. ACM Transactions on
Computer-Human Interaction (TOCHI), 9(1):1–41, March
2002.

[25] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving
convergence, causality-preservation and
intention-preservation in real-time cooperative editing
systems. ACM Transactions on Computer-Human
Interaction (TOCHI), 5(1):63–108, March 1998.

[26] W. F. Tichy. RCS – A system for version control.
Software–Practice and Experience, 15(7):637–654, July
1985.

[27] A. van der Hoek. International workshop on software
configuration management (scm-10): new practices, new
challenges, and new boundaries. ACM SIGSOFT Software
Engineering Notes, 26(6):57–58, 2001.

[28] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies
convergence in a distributed real-time collaborative
environment. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW’00),
Philadelphia, Pennsylvania, USA, December 2000.

220

