
Edgar H. Sibley
Panel Editor

Although individual use of computers is fairly widespread, in meetings we
tend to leave them behind. At Xerox PARC, an experimental meeting room
called the Colab has been created to study computer support of collaborative
problem solving in face-to-face meetings. The long-term goal is to
understand how to build computer tools to make meetings more effective.

BEYOND THE CHdLKBOARD:
COMPUTER SUPPORT FOR COllA0ORATlON
AND PROBLEM SOlVlhIG /IV MEETINGS

MARK STEFIK, GREGG FOSTER, DANIEL G. BOBROW, KENNETH KAHN,
STAN LANNING, and LUCY SUCHMAN

Meetings are used for virtuall:y any intellectual task
that requires the coordination or agreement of sev-
eral people. Statistical studies suggest that office
workers spend as much as SO--TO percent of their
time in meetings [26]. Paradoxically, even with the
widespread distribution of computers, most com-
puter systems in use aid the work of separate indi-
viduals rather than their work in groups. In meet-
ings, computers are typically left behind in favor
of more passive media like chalkboards* and flip
charts.

Media influence the course of a meeting because
they interact strongly with participants resources
for communication and memory. Chalkboards, for
example, provide a shared and focused memory for
a meeting, allowing flexible placement of text and
figures, which complements our human capabilities
for manipulating spatial memories. However, space
is limited and items disappear when that space is
needed for something else, and rearranging items is

’ The term cknlkboard in this article refers to any of the wall-mounted erasable
writing surfaces commonly used in meeting rc~cxns, whether they are white,
black, or some other color and whether the marks are made with chalk,
crayon, or ink. We use this term to avoid misunderstandings about the word
blnckboard, which, among other things, can mean a commercially available
teleconferencing product, or B programming organization for artificial-
intelligence systems. We also avoid the term whiteboard, which can mean a
white metal writing surface on which colored pens are used, or a specific
graphical database tool developed at Xerox PARC (91.

0 1987 ACM OOOl-0782/87/0100-0032 75c

inconvenient when they must be manually redrawn
and then erased. Handwriting on a chalkboard can
be illegible. Chalkboards are also unreliable for in-
formation storage: They are used in rooms shared by
many groups, and text and figures created in one
meeting may be erased during the next. If an issue
requires several meetings, some other means must
be found to save information in the interim.

Many of the functions that are awkward or impos-
sible with chalkboards are implemented easily with
computers. Window systems and drawing aids, for
example, provide flexibility for rearranging text and
figures, and text can be displayed in fonts that are
crisp and reproducible. File systems make it possible
to retrieve information generated from previous
meetings, to revisit old arguments, to show the his-
tory of a series of arguments, and to resume discus-
sions. Independent workstations allow meeting
participants to share views, point to objects under
discussion, and work on different aspects of a prob-
lem simultaneously, with the result that participa-
tion can feel less like being a member of a commit-
tee, and more like acting as a collaborator at a barn
raising.

To explore these ideas, an experimental meeting
room known as the Colab has been set up at Xerox
PARC. In the Colab, computers support collaborative
processes in face-to-face meetings. The Colab is de-

32 Communications of the ACM January 1987 Volume 30 Number 1

Computing Practices

signed for small working groups of two to six persons
using personal computers connected over a local-
area network (Figure 1). In our design, we have
drawn on familiar elements from conventional meet-
ing rooms. The focus of the Colab project is to make
our own meetings among computer scientists more
effective and to provide an opportunity for conduct-
ing more general research on how computer tools
affect meeting processes.’

Much prior research has focused on the use of
computer and communication technology to support
teleconferencing [18, 191 and what is known as com-
puter conferencing [16, 171, which emphasizes the
use of computers to support asynchronous commu-
nication and discussion over a computer network.
The Colab, on the other hand, focuses on problem
solving in face-to-face meetings-the most common
kind of meeting in our research group and our start-
ing point.

In this article, we describe the meeting tools we
have built so far as well as the computational under-
pinnings and language support we have developed
for creating distributed software. Finally, we present
some preliminary observations from our first Colab
meetings and some of the research questions we are
now pursuing.

TOOLS FOR COLLABORATION
An office worker using a computer will choose dif-
ferent programs to achieve different purposes. Com-
pleting a single project may involve the use of sev-
eral different tools: a spreadsheet program, a text
editor, and a sketching program. In a similar vein,
activities arise in the course of a meeting that re-
quire different supporting programs. In this article,
we use the term meeting fools to refer to programs
that support group interaction and problem solving
in meetings, and the term Colab tools to refer to
meeting tools developed specifically for use in the
Colab.

A fundamental requirement for meeting tools is
that they provide a coordinated interface for all par-
ticipants. Such a multiuser interface is intended to let
meeting participants interact with each other easily
and immediately through a computer medium.

The term WYSIWYG (what you see is what you
get) is generally used to describe text editors in
which text appears the same during editing as it will
during printing. To describe an important abstrac-
tion for meeting tools, we have defined an analogous
term: WYSIWIS (what you see is what I see-pro-
nounced “whizzy whiz”), which refers to the presen-

‘Lucy Suchman. the last author of the present article. is an anthropologist for
whom the C&b represents part of a larger study of face-to-face collaboration
and its technology.

The Colab is an experimental meeting room designed for
typical use by two to six persons. Each person has a work-
station connected to a personal computer. The computers
are linked together over a local-area network (ethernet) that
supports a distributed database. Besides the workstations,
the room is equipped with a large touch-sensitive screen and
a stand-up keyboard.

FIGURE 1. A View of the Colab

tation of consistent images of shared information to
all participants. A meeting tool is strictly WYSIWIS if
all meeting participants see exactly the same thing
and where the others are pointing.

WYSIWIS creates the impression that members of
a group are interacting with shared and tangible ob-
jects. It extends to a group conversation the kind of
shared access to information that is experienced by
two people sitting together over a sketch. WYSIWIS
is the critical idea that makes possible the sense of
teamwork illustrated in the barn-raising metaphor. It
recognizes the importance of being able to see what
work the other members have done and what work
is in progress: to “see where their hands are.” With
meeting tools, this visual cue can be approximated
by providing pointers to work in progress and by
graying out objects that are being worked on.

Although strict WYSIWIS would give everyone the
same image on their displays, in practice we have

Iaway 1987 Volume 30 Number I Communications of the ACM 33

Computing Practices

found this too limiting and instead use relaxed ver-
sions of WYSIWIS [32]. For example, it can be useful
to differentiate between public interactive windows
that are accessible to the entire group, and private
windows with limited access (e.g., for personal elec-
tronic mail). Private windows violate the concept of
strict WYSIWIS, as does relaxation of pointer dis-
plays. Although pointing is an efficient way to refer
to things in conversa.tion, displaying the cursors of
all active participants is usually too distracting. Mak-
ing pointers visible only on request becomes an
effective compromise. Another WYSIWIS relaxation
permits public windows to appear at different places
on different screens so that public pointers can be
translated into window-relative coordinates. This
sacrifices some ability to refer lto things by screen
position, but it does permit personalized screen
layouts.

Meetings, like other processes, can be more effi-
cient when several things are done at once. Since
Colab tools support simultaneous action, a key issue
in tool design is recognizing and supporting those
activities that can be decomposed for parallel action.
For parallel action, a task must be broken up into
appropriately sized operations that can be executed
more or less independently by ‘different members of
the group. If the operations are too small, they will
be too interdependent, and interference will pre-
clude any substantial. parallelism. For example, to
create a shared text, interactions should not be at
the level of individual keystrokes. On the other
hand, if operations are needlessly large, opportu-
nities for synergy are lost.

The ability to act in parallel on shared objects also
brings with it potential for conflict. Conflict resolu-
tion strategies will become necessary in some cases,
but often we can rely on social constraints. A con-
flict detection system or “busy signal” graphically
warns users that someone else is already editing or
otherwise using an item; a busy item is grayed out
on all screens.

Our initial goal was to create tools to support the
kinds of meetings that our group has, which range
from the informal to the formal. One of the informal
meeting tools we have developed, Boardnoter,
closely imitates the functionality of a chalkboard
(Figure 2). It is intended for informal meetings that
rely heavily on inforrnal freestyle sketching. To
draw with Boardnoter, one uses; the “chalk,” to erase
one uses the “eraser,” to type one uses the miniature
“typewriter,” and to point one uses the “pointer.” To
sketch a square with Boardnoter, one simply “picks
up the chalk” and makes four strokes. A subsequent
version of Boardnoter will go beyond the chalkboard
by adding capabilities for copying, moving, resizing,

linking with rubber band lines, grouping, and
smoothing (neatening), and for using and scaling se-
lections from a set of predrawn images.

Other Colab tools are based on much more formal
models of the meeting process. In this article, we
focus our attention on two such tools: Cognoter, a
tool for organizing ideas to plan a presentation; and
Argnoter, a tool for considering and evaluating alter-
nate proposals. Although both tools are intended to
bring appropriate computational support to struc-
tured meeting processes, the contrast between the
two processes will highlight the range of opportu-
nities that exist for applying computer technology in
this medium.

ORGANIZING IDEAS FOR A PRESENTATION
USING COGNOTER
Cognoter3 is a Colab tool used to prepare presenta-
tions collectively. Its output is an annotated outline
of ideas and associated text. We have used Cognoter
to prepare outlines for talks and papers, including
this one. In some ways, it is similar to the Think-
Tank, Freestyle [25], and NoteCards [34] programs.
All are used to organize ideas, but Cognoter is
unique in that it is intended for collective use by a
group of people.

The Cognoter process imitates a meeting style for
collaborative writing that we have used at Xerox
PARC without computational support for several
years. Usually, we begin with a clear slate: The ideas
are in our heads and nothing is written down. The
problem at this point is how to get started: It is not
very helpful to begin by asking, “Well, we need an
outline. What should we put in I.A.l?” Rather, plan-
ning a presentation requires that the group decide
what the ideas are, which ideas go together, which
ideas come first, the order of presentation, and,
finally, which ideas warrant elimination.

Cognoter organizes a meeting into three distinct
phases-brainstorming, organizing, and evaluation-
each of which emphasizes a different set of activi-
ties. As the group advances through the respective
phases, the set of possible actions is expanded: For
instance, brainstorming, which is emphasized in the
first phase, is still possible in the last phase. Groups
that find the rigid enforcement of phases too pre-
scriptive can skip immediately to the last phase
where all the operations are possible. Our intention
is to experiment with methods for encouraging par-
ticular meeting processes and styles of behavior
without making the tools too inflexible and
prescriptive.

‘The name Cognoter comet from both cog-noter [a cognition noter) or
co-gno-ter (knowing together].

34 Communications of the ACM]anua y 1987 Volume 30 Number I

Computing Practices

Note: The actual screen colors for the current version of Colab are black on white;
in Figures 2-6, the color green has been added for editorial emphasis-Ed.

The Boardnoter meeting tool in the Colab is operational but clicking the mouse or pen over the chalk icon; to erase one
still in the early stages of development. A key feature is that picks up the eraser; to point one picks up the pointer. Since
it provides a large area for freestyle sketching. Below the more than one boardful of information may be needed in the
writing area is a “chalk tray” containing several implements: course of a meeting, the “stampsheet” of shrunken stamp-
a piece of chalk, an eraser, a miniature typewriter, and a sized boards at the bottom makes it possible to obtain a
pointer. To draw on the board, one picks up the chalk by fresh board or to switch back to a board created earlier.

FIGURE 2. Screen Image of Boardnoter

Brainstorming
Since the brainstorming phase involves the initial
generation of ideas used in the presentation, it is
important to encourage synergy in group interac-
tions and to not interfere with or inhibit the flow of
ideas [lo]. In Cognoter, therefore, ideas are not eval-
uated or eliminated in this phase, and little attention
is given to their organization (see Figure 3, next
page). Instead, there is one basic operation: A partici-
pant selects a free space in a public window and
types in a catchword or catchphrase characterizing
an idea. Participants may act simultaneously, adding
idea items and supporting text at any time, but may
not delete an item (even their own), although they
can move them around. Supporting text is used to
clarify the meaning of an item and to establish ter-
minology for the presentation. Once entered, it can
be publicly displayed or further edited by any par-
ticipant. As the window fills up to encompass what

appears to be a jumble of ideas on different levels,
begging for organization, pressure to move on to the
next phase begins to mount.

Organizing
In the organizing phase, the group attempts to estab-
lish an order for the ideas generated in the brain-
storming phase. With Cognoter, the order of ideas
can be established incrementally by using two basic
operations: linking ideas into presentation order and
grouping ideas into subgroups. In addition, the item-
moving operation allows these operations to be dis-
cussed prior to actually executing them by moving
items near each other before clustering or linking.

The basic operation is to simply assert that one
idea should come before another. Linking is usually
accompanied by some verbal discussion: For exam-
ple, a participant may say, “I’m putting Colab tools
before open issues because you need to understand

]anuary 1987 Volume 30 Number 1 Communications of the ACM 35

Computing Practices

In the brainstorming phase, participants may add ideas and
supporting text. Criticism or deletion of ideas is discouraged.
ideas are entered into the window by clicking the mouse in
the background of the window and typing in a short title or
phrase that stands for the idea. Text explaining the ideas in
more detail is entered by selecting the item with a mouse
and then using a text editor in a separate window.

FIGURE 3. Brainstorming with Cognoter

what we have done before you can understand what
comes next.” The ordering is indicated visually by
directed links between items as shown in Figure 4.
The meaning of the links is transitive, meaning that,
if X comes before Y, and Y comes before Z, then X
must come before Z. The links are used collectively
to determine a complete order of presentation. Items
can also be clustered into groups and moved to their
own windows as shown in Figure 5. When a group is
formed, a bracketed item standing for the whole
group is displayed in the window; the grouped items
themselves are displayed in an associated window.
Links are distributive across groups; a link to or from
a bracketed item is treated like a link to or from the
whole group. By these transitive and distributive op-
erations, a small nurnber of explicit links can highly
constrain the total order of ideas.

Evaluation
The third phase, evaluation, determines the final
form of the presentation. Participants review the

overall structure to reorganize ideas, fill in missing
details, and eliminate peripheral and irrelevant
ideas.

In Cognoter, the various decision-making pro-
cesses are separate and distinct operations. Delaying
deletion until the last phase, for example, provides a
more visible basis for argument in the sense that an
argument for deleting an idea because it is not rele-
vant may be more convincing when that idea is not
visibly linked with any others; or arguing the unim-
portance of an idea may be more convincing when
the competing ideas are available for comparison. In
the same sense, an argument that there is an excess
of material may be more compelling when all the
material can be seen, or a charge that an idea is
vague may be more convincing in the presence of
other ideas that are more fully substantiated.

Delaying deletion also has some beneficial effects
on group dynamics: Deleting an idea during the
brainstorming phase could easily be interpreted as
criticism and might either inhibit certain partici-
pants or provoke tangential argument, whereas argu-
ing that an idea does not fit or is insubstantial in the

Chalkboards -

In Cognoter, the order of ideas is established incrementally.
The basic operation is determining that one idea should
come before another, which is indicated visually by directed
links between items. The meaning is transitive, meaning that,
if X comes before Y, and Y comes before Z, then X must
come before Z. Collectively, the links determine the order of
idea presentation. Links are added or removed by clicking
the mouse on the desired items. Items will usually have one
or more links to other items.

FIGURE 4. Establishing the Order of Ideas

36 Con7n1unications of the A(:M]anuary 1987 Volume 30 Number I

Computing Practices

Items can be clustered into groups representing ideas that
will be worked on together. Each group has an associated
window for displaying its items. A group is named when it is

formed, and that name appears as
original window.

FIGURE 5. Grouping Items

evaluation phase may have the beneficial effect of
prodding other group members to clarify or extend
the idea.

Other operations besides deletion are also appro-
priately delayed until the evaluation phase. For ex-
ample, arguing that an idea is misplaced is more
compelling when alternate places to put it are visi-
ble; this is a good time to consider the reordering of
ideas. Since the linking operation that takes place in
the organizing phase is usually based on considera-
tions local to two ideas, seeing the entire presenta-
tion, with most of the links in place, allows the user
to appraise the overall structure and consider more
global concerns, such as balance.

Cognoter provides a systematic process for an-
swering the question, “What should we put in
I.A.l?” Starting points for a presentation can be iden-
tified systematically: These are the items with no
incoming links. Cognoter then helps in the final
ordering of ideas by preparing an outline and indi-
cating which ideas are ordered arbitrarily. By tra-
versing the item graph, an outline is generated, with
or without the attached text.

ThinkTank. Beyond the most obvious difference,
which is that Cognoter is designed for simultaneous
use by multiple participants (although the process it
embodies is also useful for single users), Cognoter
also divides the thinking process into smaller and
different kinds of steps that are incremental and effi-
cient. In ThinkTank, ideas are always organized in
an outline-there is no other place to put them-
whereas Cognoter separates the tasks of idea genera-
tion and ordering. Cognoter also provides for incre-
mental ordering through a link-forming operation
whereby a partial ordering of ideas is refined step-
wise toward a complete ordering. Transitivity and
grouping operations make it possible to organize the
ideas efficiently with a small number of links.

Some important parts of the presentation planning
process are not explicit in Cognoter: For example,
Cognoter does not inquire as to the audience, the
appropriate technical level, the goals of the paper, or
arguments for deleting or ordering ideas. Modifica-
tions to Cognoter could make such questions ex-
plicit, but they are now outside the scope of the
current tool.

In many respects, Cognoter supports a process that Cognoter is the first useful Colab tool developed
is quite different from that underlying tools like and is still evolving. We are now experimenting

a bracketed item in the

]anua y 1987 Volume 30 Number 1 Communications of the ACM 37

Computing Practices

with various relaxations of the WYSIWIS concept. In
the current version of Cognoter, for example, win-
dows showing links and items are public, but outline
and item editing windows are private. The absence
of visual cues indicating whic:h are public and
which private can be confusing for the first-time
users. With several months experience using Cogno-
ter’s multiuser interface, we are actively exploring
trade-offs in the design of the next generation of the
tool [32].

AN ARGUMENTATION SPR.EADSHEET
FOR PROPOSALS [ARGNOTER)
Argnoter,4 the Colab tool being developed for pre-
senting and evaluating proposals, is now in the early
stages of design and implementation and is pre-
sented here chiefly as a contrast to Cognoter. Imple-
menting and experimenting with Argnoter are
now major focuses of the Colab project. As with
Cognoter, the basic meeting process supported by
Argnoter has been used by our group without com-
putational aid for several years.

Proposal meetings start when one or more mem-
bers of the group have a proposal for something to be
done, typically a design for a -program or a plan for a
course of research. The goal of the meeting then
becomes to pick the best proposal. The proposals are
at least partially worked out before the meeting, as
opposed to Cognoter meetings, which begin with a
blank slate. Since Argnoter participants have already
invested some energy in the crreation of these pro-
posals, the meetings have a greater potential for dis-
pute and disagreement. Discovering, understanding,
and evaluating disagreement are therefore essential
parts of informed decision making in these meetings.

In developing a design-which is essentially a
dialectic between goals and possibilities-designers
usually begin without knowing exactly what is
wanted or what is possible. They explore parts of the
design space as driven by their current goals, and
sharpen their goals as they learn what is possible. In
collaborative design tasks, this interaction and ten-
sion between goals and alternatives must play itself
out in the communications arnong collaborators. At
the beginning, design goals are not necessarily
shared; the elaboration of a common set of goals is
part of the collaborative process and includes the
incremental development and selection of design
alternatives.

The intuition guiding the A.rgnoter process is the
recognition that much of the Idispute and misunder-
standing that arise in meetings about design propos-
als are due to three major causes: owned positions,
that is, personal attachment to certain positions; un-

‘The name Arpokv is intended to suggest quntenf rmfer, that is. a tool IO
help organize and evaluate arguments.

stated assumptions; and unstated criteria. Hence, a ma-
jor theme of Argnoter design is that alternatives be
made explicit: Proposals themselves are explicit, as
are assumptions and evaluation criteria.

In essence, the Argnoter meeting comprises three
distinct phases-proposing, arguing, and evaluating-
which in some respects are similar to the respec-
tive phases in Cognoter, but different enough to
warrant description.

Proposing
In the proposal phase, the proposals are stated ex-
plicitly: Each proposal is given a short text descrip-
tion, and perhaps a sketch, and is named according
to its features or functions. In Argnoter, a proposal
will be created in, and displayed by, a set of con-
nected windows called proposal “forms,” which can
be either private or public. Public proposal forms are
WYSIWIS, whereas a private form appears only on
the machine of the participant who controls it. Pri-
vate forms ensure that every participant can view or
create a new proposal without having to share its
use. Other windows will allow viewing any of the
proposals under consideration in the meeting. New
proposals are created by modifying an existing one
or combining features from two or more different
ones. A new proposal automatically inherits text,
sketches, and statements from its parent proposals.

Even with the high-resolution, wide-format dis-
plays used in the Colab, space for windows is lim-
ited: A proposal displayed with its text, sketch, and
arguments occupies about one-fourth of the screen.
The default configuration allows enough viewing
space for two public proposal forms, one private
form, and a variety of other forms. However, displays
of the kind available on most personal computers
would be inadequate for viewing even a single pro-
posal and would not work well for most Colab tools.

Arguing
The next phase consists of presenting reasons for
choosing or not choosing individual proposals. Rea-
sons must be written down. On the chalkboard, the
reasons are written as statements underneath the
respective proposals. Each statement is identified as
either pro or con and consists of a short text descrip-
tion like “very expensive” or “can’t be done in less
than six months.” The structure of Argnoter encour-
ages participants to write pro and con statements
about all proposals, not just pro statements for the
ones they are in favor of and con statements for the
rest. Since the pro and con statements are there for
all to see and contemplate, participants tend to take
the time to formulate them carefully. Insubstantial
statements like “I just don’t like proposal X” will
carry less weight than ones that are specific and
focused.

30 Communications of the ACM lanua y 1987 Volume 30 Number 1

Computing Practices

This shared use of a chalkboard to present propos-
als and arguments has been used habitually and suc-
cessfully by other groups that we know about. The
following anecdote about another laboratory illus-
trates this:

On any given morning at the Laboratory of Molecular
Biology in Cambridge, England, the blackboard of
Francis Crick or Sidney Brenner will commonly be
found covered with logical trees. On the top line will be
the hot new result just up from the laboratory or just in
by letter or rumor. On the next line will be two or three
alternative explanations, or a little list of “what he did
wrong”. Underneath will be a series of suggested experi-
ments or controls that can reduce the number of possi-
bilities. And so on. The tree grows during the day as one
man or another comes in and argues about why one of
the experiments wouldn’t work, or how it should be
changed. [27]

For comparative purposes, it is possible in the ar-
gument phase to categorize pro or con statements
across proposals in terms of categories like compati-
bility, cost, development time, efficiency, feasibility,
simplicity, and utility. With computational support,
it is possible to automatically create auxiliary tables
that compare proposals on the basis of these cate-
gories.

In the argument stage, participants can add state-
ments or modify existing proposals. This tends to
foster a synergy among ideas, joint contributions to
proposals and reasons, and the systematic develop-
ment of parallel reasoning across proposals. Accord-
ing to Platt 1271, this kind of group participation in
the articulation of multiple proposals and arguments
often leads to a very productive decision-making
process:

The conflict and exclusion of alternatives that is neces-
sary for sharp inductive inference has been all too often
a conflict between men, each with his single Ruling The-
ory. But whenever each man begins to have multiple
working hypotheses, it becomes purely a conflict be-
tween ideas. . . . In fact, when there are multiple hy-
potheses which are not anyone’s “personal property” and
when there are crucial experiments to test them, the
daily life in the laboratory takes on an interest and ex-
citement it never had, and the students can hardly wait
to get to work to see how the detective story will come
out.

The articulation of multiple proposals and their ar-
guments leads naturally into the next phase-evalu-
ation-in the sense that proposals are being evalu-
ated indirectly by analyzing the reasons behind them.
Moreover, this articulation encourages a style of de-
cision making that separates arguments about evalu-
ation criteria from arguments about the proposals
themselves.

Evaluating
First, the evaluation considers the assumptions be-
hind individual arguments. Assumptions in Argnoter
are expressed as statements about statements: For
example, the statement “this assumes that labor
costs can be ignored” could refer to the statement
“this proposal is inexpensive.” Whereas historically
we might have written such assumptions on the
chalkboard next to the corresponding arguments,
with Argnoter, we will ultimately provide facilities
for viewing the structure of arguments in terms of
the connections between these statements.

Meeting participants often disagree about the va-
lidity of statements: One person might believe that
“sixteen million bit memory chips will be readily
available in six months” and another may not. In
Argnoter, we will try to model these differences
with explicit “belief sets,” a belief set being a map-
ping of a set of statements into valid (believed) or
invalid (not believed) categories. This kind of model-
ing is something that cannot effectively be done on
chalkboards.

The act of making belief sets explicit enables
Argnoter to act as a kind of argumentation spreadsheet
where a proposal is viewed and evaluated in rela-
tion to a specified set of beliefs. The proposal display
is generated by stepping through the arguments
about the proposal, looking up the assumptions,
and then displaying those arguments that are sup-
ported in the specified belief set. Multiple belief sets
may coexist, and any participant is able to create
(or specialize) belief sets. The belief sets are intended
to characterize different generic points of view
(e.g., liberal versus conservative, marketing versus
development).

Just as a numerical spreadsheet program provides
a way of exploring entailments of hypothetical nu-
merical relationships, an argumentation spreadsheet
like Argnoter provides a way of exploring belief en-
tailments. A numerical spreadsheet program pro-
vides no in-depth understanding of the meanings of
interest rate, tax rate, or monthly income, but it
does compute the necessary sums and display
changes in the derived values when the input values
are changed. In the same way, Argnoter need not
understand the meanings of design proposals: It need
only differentiate between proposals, arguments, as-
sumptions, and belief sets, and compute the relevant
logical support relationships. One should be able to
change a belief assignment and then immediately
see the relevant changes in the proposal display. Dif-
ferences in point of view can also be highlighted
(e.g., by displaying a proposal under different belief
sets). Other evaluations, like sensitivity analyses,
can be done using the same information.

Next, evaluation criteria are selected and ranked.

]arluary 1987 Volume 30 Number I Communications of the ACM 39

Communications of the ACM 41

Computing Practices

Computing Practices

stamp describing the author and time of the change.
Every request to change data broadcasts several
things: the new data, its stamp, and the stamp of the
previous version of the data on the originating ma-
chine. When a machine receives a message request-
ing a change, it first checks whether the previous
stamp in the request is the same as the stamp in its
database. If they are different, a “dependency con-
flict” is signaled. The conflict is then resolved by a
process that involves human intervention (at least to
temporarily suspend activity), followed by propaga-
tion of the resolved values for data or the creation of
multiple versions of the data.

The advantage of the dependency-detection ap-
proach is responsiveness. Changes to data do not
first require serialization or the delay of obtaining a
lock. The system assumes thLat a change can always
be made, but it may have to fix things later if a
conflict is detected.

Like the cooperative model, the dependency-
detection model contains inherent race conditions,
but it is able to detect them after the fact. If two
participants change data at the same time, at least
one of the machines will detect a dependency con-
flict as described above. However, it is possible to get
“false alarms” if messages about changes to data
from different sources arrive out of order; a depen-
dency conflict would then be incorrectly signaled.
Similarly, if two participants made a series of nearly
simultaneous changes to a datum, multiple false
alarms might be signaled. The ability to distinguish
false alarms can be enhanced by keeping a longer
history of changes. We do not yet have enough expe-
rience to decide whether the dependency-detection
model (which is closely related to an approach
called certification [2]) is necessary or practical.

Roving-Locks Model. The roving-locks model tries to
reduce the delay in obtaining locks that is incurred
with the centralized-lock model by distributing the
lock-granting processes along with lock ownership.
This is different than simply locating locks with the
data; the intention. here is to distribute control over
specific data items to their last user, leading to a sort
of “working set” [8] for locks. In this scenario, a
participant’s machine would tend to acquire the set
of locks for that subset of the database on which it is
actively working. Most lock requests would require
no communication with other machines. After the
first access, delay in getting a lock would be signifi-
cant only in those cases where the lock is on a re-
mote machine, that is, when two or more partici-
pants are actually competing for the same parts of
the database.

Even if the working-set model is valid for locks,
we suspect that the success of this model may de-

pend on its having a preemptive scheduler to bound
the delays in obtaining remote locks. More experi-
ence with the model is needed to determine
whether roving locks is a practical solution.

Language Support
Colab software is built on Xerox Lisp Machines con-
nected by an Ethernet [23]. The software is written
in Loops 143, an object-oriented extension of Lisp
[28] that resembles Smalltalk- [l4] in that pro-
grams are organized in terms of objects that can hold
data. Computation proceeds as objects send mes-
sages to each other. Loops supports the notion of
permanent objects whose identity is specified by a
unique identifier that is guaranteed to be unique
across machines. Versions of these permanent ob-
jects can exist on several machines simultaneously.
An association is a set of representations on multiple
machines that stand for the same object; the individ-
ual representations are called associates and have the
same unique identifier.

In the Colab, we use the term conversation to refer
to the combination of a set of machines, Colab tools,
and participants working together to solve a prob-
lem. When a new participant is added to a conversa-
tion, all participants find out about the newcomer,
and the newcomer finds out about the other partici-
pants; the newcomer’s machine gets copies of the
object that represent the database.

In a conversation, communication is implemented
by a combination of system facilities and program-
ming abstractions and is supported over the Ethernet
by several layers of protocols. Our implementation
rests on a protocol for remote procedure calls [3]. On
top of this, we have added a mechanism for sending
messages to an object on a remote machine, and
another for sending messages to all the associates of
an object in a conversation.

Colab tools communicate via a programming ab-
straction that we call broadcast methods. Broadcast
methods extend the object-oriented notion of meth-
ods from a single machine to multiple machines in a
conversation. When a method is annotated as being
a broadcast method, invoking it on one machine
means that it will be run on all machines in the
conversation, For example, if Move is a broadcast
method in a Cognoter window for moving an item in
the window, and item37 receives a Move message on
one of the machines, then item37’s associates on all
the other machines will also receive the same mes-
sage. All the details of queueing and transmitting the
message to the relevant machines are handled auto-
matically without further specification by the pro-
grammer.

Broadcast methods provide a simple abstraction
for organizing communication, and a mechanism for

Computing Practices

efficient communication about changes to the data- messages between machines. The viewer shows
base. Colab tools assume that the software is loaded when messages are queued, sent, and received, as
on the machines of all participants. In most cases, well as the identity of the other machines. Using the
the bandwidth of network communication can be viewer, we can often detect cases of unnecessary or
reduced by sending instructions rather than data. incorrect message sending.

Ideally, one should be able to take a program writ-
ten for a single machine and change it into a distrib-
uted program by annotating some of the methods so
that they will broadcast. In practice, this has worked
out rather well. To support this facility, we have
found it useful to establish a discipline for deciding
which methods should be broadcast.

Methods are categorized roughly into three differ-

We have also developed tools for propagating pro-
gram changes between machines. In debugging ses-
sions, we have found it useful to make program
changes on one machine and then to broadcast the
changes to the other machines.

ent sets that are treated differently with respect to
conversion to broadcast methods: user input, semantic
actions, and display actions. User-input methods con-
trol user interaction that specifies a change to be
made to the database; they are run at the user’s
request (e.g., caused by mouse action) and are used
to determine the nature and scope of a change. User-
input methods are not made into broadcast methods
because only the user initiating the change wants to
engage in the interaction. The actual changes to the
database are made by the semantic-action methods,
which are broadcast so that the changes to the data-
base will propagate to all machines containing the
meeting database. Display-action methods update
the displays and are not broadcast because the dis-
play is updated as a side effect of changing the data-
base. If the image in more than one window depends
on the value of a datum, then multiple display-
action methods should be triggered by a single
semantic-action method.

PRELIMINARY OBSERVATIONS
AND RESEARCH QUESTIONS
If computers are to provide more effective meeting
tools, we need a commensurately more adequate un-
derstanding of meeting processes. Although meetings
are something that most of us know well, they come
under the heading of those everyday activities that,
because we know them so well, remain largely
unexamined. Designing the Colab has required that
we look again at the organization of meetings and
meeting technology; at the same time, the Colab cur-
rently in place provides an experimental setting for
pursuing these lines of research. In this section we
present our preliminary observations about the
Colab and describe the research issues that have
been raised by these observations.

In some cases, the appropriate partitioning of
methods into these categories can be subtle. For ex-
ample, windows for displaying data can be parame-
terized (as in the case of proposal forms for Argno-
ter), thereby altering their display according to dis-
play parameters that specify belief sets or rankings
of evaluation criteria. Maintaining WYSIWIS for
these windows requires that changes to these pa-
rameters be considered part of the database and be
broadcast as semantic actions; the subtlety arises to
the extent that “display parameters” might be con-
fused with display-action methods, which are not
broadcast. Furthermore, when semantic actions can
be derived from more primitive ones, only the prim-
itive ones need be broadcast.

In their current form, Colab tools reflect our expe-
rience of, and ideas about, our own work processes,
in particular those aimed at collaborative writing
and argumentation. Our research strategy is to draw
upon familiar practices first, and then to locate those
practices within a wider range of face-to-face meet-
ings in different settings and with different partici-
pants. The Colab was used early on to produce the
present article, and even though the Colab was not
yet fitted with audiovisual recording equipment or
documenting software, these early sessions did pro-
vide a set of preliminary observations about the rela-
tionship between Cognoter tools and the writing
process, and their relation to the process of collabo-
rative writing.

The Structure of the Writing Process
The current Cognoter design reflects a set of conjec-
tures regarding the writing process, from the early
stage of idea generation and development through
the generation of a path or outline for a final presen-
tation. The actual use of Cognoter revealed not only
the points of fit between design and process, but
some subtle disjunctures as well.

Support for Debugging
To make the debugging process more manageable,
we have created tools for tracing and intercepting
messages on the network. To monitor message trans-
mission between machines, we use a conversation
viewer. It works for all Colab tools, letting us moni-
tor the broadcast queues and processes used to send

For example, the design premise for Cognoter was
that the brainstorming window be an unstructured
repository for ideas. The availability of a public win-
dow, into which people could easily and sponta-
neously enter new text, would allow the group to

]auuary 1987 Volume 30 Number 1 Communications of the ACM 43

Compufiq Practices

put a large number of ideas “Ionto the table” with-
out a great deal of discussion or negotiation. Ideally,
this initial brainstorming phase is followed by an
organizing phase, in which group members elaborate
the relationships between ideas and debate their co-
gency. However, in early sessions with Cognoter, we
found that even before moving on to the organizing
phase, members began using spatial grouping in the
brainstorming window to display relationships be-
tween ideas. Even after items were explicitly linked,
the spatial cues helped to display the relationships
between items; these spatial cues, in turn, were
important to the elaboration of meaning.

The process of organizing and evaluation made it
easier to see whether or not the set of ideas gener-
ated during brainstorming was complete. Although
our initial design assumption was that use of the
outlining tool would follow completion of the evalu-
ation phase, in practice, participants found the out-
lining tool useful for displaying intermediate states
of the emerging structure as well. These observa-
tions suggest slightly different “joints” in the process
than we had originally assumed. In future sessions,
we will look carefully at the natural organization of
the group writing process, the way people use the
available tools to see the developing structure of
their collective argument, and the relationship be-
tween the initial design assumptions and the actual
uses people make of the tools.

Maintaining the Collaboration
The Colab’s starting premise was that serial access to
problem-solving technology obstructs the kind of
equal participation that ideally characterizes collab-
oration, particularly for an activity like writing,
where collaboration seems ideally not to involve any
predetermined or fixed division of labor among par-
ticipants. The multiuser interface was designed to
overcome this obstacle by letting participants act
simultaneously, write independently, and enter new
text into a shared database-virtually at the same
time. By equalizing access of all participants to dis-
plays and shared data, the Colab’s interface en-
hances flexibility as to roles and discourages control
over the activity by any one participant.

However, our early sessions demonstrated that the
constraints imposed by current technologies are not
just a limitation on collaboration but in some ways a
resource as well. In particular, the fact that a writing
technology allows only one person to enter text at a
time enforces a kind of shared. focus (i.e., a focus on
that person’s actions) that maintains a common con-
text for the group. Where only one person at a time
has access to the writing technology, roles are in a
very real sense visible at a glance; moreover, what is
being done to the text is transparent in the actions of

whomever controls the writing technology. Many of
the accompanying practices-rising to go to the
chalkboard, taking over the keyboard-can also be
viewed as resources for the participants in the sense
of seeing what is going on and providing a basis for
the smooth exchange of roles. The possibility of in-
dependent writing activity and simultaneous entry
of new text brings new demands on participants to
stay informed about what others are doing. Relaxing
the requirements on turn taking by allowing parallel
actions necessitates alternative ways of accomplish-
ing what the turn-taking system accomplishes:
namely, an orderly transition from one participant to
the next, and an incremental, sequentially coherent
development of the joint activity.

In early Cognoter meetings, the work of maintain-
ing a shared focus was evident in the ebb and flow
of meeting activity. During the ordering phase par-
ticularly, where ideas are elaborated, participants
tended to interact verbally for a few minutes, ex-
plaining immediate goals and making short-term
plans of action, after which the group settled into
their “assignments,” typing intently for a while.
After a few minutes of parallel editing, people would
lose track of what the others were doing and, there-
fore, of what to do next. The group would then stop
interacting with the system and again discuss where
they were and what they should do. These transi-
tions between parallel and convergent activity some-
times required negotiation. In particular, individuals
engaged in different activities might not arrive at
transition places simultaneously and might not be
equally interruptable at any given time. The early
Cognoter sessions encompassed several such cycles
of regrouping, summarization, joint planning, and
then parallel action.

Along with personal interaction, shared focus is
achieved by means of reference to common objects.
Cognoter’s goal, as with a chalkboard, is to enable
participants to refer to common objects through var-
ious kinds of efficient reference such as deixisS and
pointing. Although the WYSIWIS idealization recog-
nizes that efficient reference depends on a common
view of the work at hand, a distinctive problem
arises in computer-based environments in that the
boundary between logical and physical objects is
blurred. This represents a tremendous advantage, on
one level, in that relaxations of WYSIWIS allow par-
ticipants to tailor their individual display of the
shared view to their own specifications. However, it
also means that, although people may be referring to
the “same” piece of text, the text may be in an en-
tirely different location on their respective displays.
With the use of windows that can be moved, re-

5Deixis means referring to something either verbally (e.g., “the gray house
across the street”) or by pointing.

44 Comtnunications of the ACM /away 1987 Volume 30 Number 1

Coniputiq Practices

shaped, and scrolled, conventions are required to
avoid situations in which one person tries to see
some text at the top of a long passage while another
tries to see text at the bottom, or one member of the
group puts up a very large public window, obscuring
everyone else’s view (situations that we have infor-
mally dubbed “Scroll Wars” and “Window Wars”).

As well as confirming the usefulness of a single
view of the public record, our early experience with
Cognoter identified a more subtle element of shared
focus. With a single display device (e.g., a chalk-
board or workstation), it is common for one person
to be assigned the task of actually entering new text
into the record; typically, not only the new text, but
the writing activity itself, is visible to the other par-
ticipants. In the current design of Cognoter, how-
ever, the actual editing is done in private windows,
with only the finished text broadcast to copartici-
pants. This design decision, while encouraging paral-
lel activity, poses some interesting new problems for
the collaborative process. In particular, participants
in the early sessions expressed frustration at not
being able to see what the others were doing; specifi-
cally, at not being able to watch when others were
engaged in writing. To an important degree, it seems
that participants need access not only to the product
of each others’ writing, but to the writing process
itself. The unanticipated usefulness of the video
switch, which allows one to switch between dis-
plays6 underscores the importance of a shared view
for maintaining the joint focus. User frustrations in
this regard reopen the question as to the ideal grain
size at which individual and group transactions take
place, and the relationship between private and
public views.

In general, these early observations were con-
firmed by a small set of controlled experiments run
at UC Berkeley. In the trials, several pairs of student
collaborators unfamiliar with the Colab used either
Cognoter or a chalkboard to plan article outlines.
The outcomes showed that the interface of Cognoter
is complicated enough to require practice to be used
effectively [13]. More extensive trials with larger
groups will await the completion of video recording
and meeting analysis tools that are now being
created.

Research Questions
Our guiding question has been, What are the pro-
cesses of collaboration for which the computer is an
appropriate tool, and what particular Colab tools
could be designed to support these processes? As a
first approximation, Cognoter and Argnoter have as-

‘The Colab video switch allows the content of any screen to be directed to
another screen: it was originally designed to aid in debugging across multiple
machines.

sumed two contrasting processes of collaborative
writing and argumentation, both drawn from our
own experience. Cognoter takes a joint presentation
as its object and encourages consensus by supporting
a single viewpoint, whereas Argnoter encourages
competing proposals and delayed consensus by al-
lowing the display and comparison of multiple
views.

Having identified the collaborative processes and
refined the associated tools, we need next to ques-
tion the generality of our assumptions. To what ex-
tent do our work practices compare and contrast
with other settings and other participants? Does a
tool, by reifying a process and making it explicit,
thereby also make it portable across groups? Or do
we need a set of tools that can be customized to
different users in different settings? Under what
circumstances are explicit structures desirable, and
under what circumstances do we want to minimize
the amount of structure we build into our tools?
These questions and others will be explored as we
extend the design and experiment with its use.

RELATED WORK
The possibility that computers might be used to sup-
port group problem solving was appreciated by early
visionaries long before it was practically feasible. In
1946, Bush presented a hypothetical system called a
“Memex” that included an interactive database [6]
by which associative “trails” of exploration could be
saved to be recalled and retraced at a later time.
Bush believed that a common encyclopedic database
of information integrated from many areas of human
activity would enhance the quality of societal prob-
lem solving.

In the 196Os, experimental systems like the
NLS/AUGMENT [ll, 121 began to use computers to
support collaboration. The NLS/AUGMENT sup-
ported terminal linking, electronic mail, sharing of
files, and “televiewing”-the ability to “pass the
gavel” among several people working together at
separate terminals. Englebart saw machines as pro-
viding an important medium for communication and
was known for his development of novel user inter-
faces like the mouse. Englebart was also an early
worker in hypertext, systems that organize frag-
ments of text in annotated networks. This work has
been pursued in several other systems including
TEXTNET [33], Xanadu [24], NoteCards [34], and
Annoland.

At a time when time-shared systems like TENEX
[6] popularized electronic mail and shared files,
some observers (e.g., Lederberg [Zl]) reported a qual-
itative difference in the ways they were interacting
with colleagues. In the mid 1976.s, researchers at the
Stanford AI Lab built a video, audio, and keyboard

larluary 1987 Volume 30 Number 1 Communications of the ACM 45

Computing Practices

crossbar switch to allow uselrs at multiple worksta-
tions to collaborate from sep,arate workstations. At
the same time, another line of work pursued the use
of communications facilities to tie together people
working at different locations. Known as teleconfer-
encing [18, 191, this work eschewed much use of
computers and has developed slowly, due largely to
high communication costs fos video images. Mean-
while, others have developed systems for remote
conferencing that rely mostly on computers rather
than video: Known as computer conferencing, these
systems include electronic mail, editors, voting
mechanisms, shared files, and archiving, but do not
provide structure for the conferences based on any
models of group problem-solving processes. In [16],
Hiltz and Turoff review some of these systems and
provide an extensive bibliography; prime examples
are EIES [Ii’] and some parts of NLS/AUGMENT [ll].

Although computers have been used experimen-
tally in meetings to support specialized problem-
solving processes since at least 1972 [35], the impact
has been much less dramatic: than with other com-
puter applications (see [20]). Most of these systems
are organized around formal and mathematical
models of decision making like multiattribute utility
models and cost-benefit anal.yses. The Delphi
method [22] and the Nominal Group method [20],
for example, are techniques for structuring group
problem solving that have been used with and with-
out computer support. The Delphi model considered
by Turoff [35] is designed for technological forecast-
ing by a geographically dispersed group, while the
Nominal Group represents a consensus-forming
process for face-to-face meetings; both have been
characterized as “rational but naive” [20]. Since we
have little experience with them, we offer no inde-
pendent assessment; however, we note that the
meeting processes used in the Colab are similar to
the meeting methods commonly taught in corporate
training programs.

RTCAL/IOLC, a somewhat analogous system to
the Colab that was developed at MIT by Sunil Sarin
[SO], allows a group of users to synchronously ex-
change information from personal calendar data-
bases to schedule a future meeting. It differs from
the Colab in particular trade-offs of computer com-
munication (e.g., RTCAL has a centralized database
management scheme) and the absence of process
models for problem solving, but is similar in that it
uses personal computers, works in real time, and
maintains consistent views by message passing over
a local network [29]. Another research project re-
ported by Applegate, Konsynski, and Nunamaker [l]
also resembles the Colab in that it provides personal
computers to meeting participants around a confer-
ence table and uses a video projector to provide

large public views; it also provides tools for brain-
storming and analysis. However, unlike the Colab, it
is oriented around decision support models for plan-
ning and quantitative analysis. Also, since it is built
using microcomputers with very limited display
space, there has been little opportunity to experi-
ment with private and public windows or multiuser
interfaces.

Kraemer and King [20] observe that there are very
few successful computer conference rooms, if any,
and that even these systems have been plagued by
hardware difficulties. As the primary obstacles to
success, they cite inaccessibility of computing re-
sources, unreliable video projectors, and limited
graphics capabilities. However, they quite rightly
note that in recent years computing and projection
technology have become much more reliable and
also less expensive. We agree with them that most of
the activity with computer-supported conferences
over the next three to four years will center on re-
search and development.

In terms of technology, there have been several
advances that will enable this work to proceed at a
much more rapid pace: among them, more powerful
personal workstations, local-area networks, ad-
vanced programming environments [31], distributed
programming, and interface technology. These ad-
vances will make it possible to develop prototype
systems quite rapidly and thus to experiment readily
with new tools.

CONCLUSIONS
Focusing on developing and understanding “team
computers” (i.e., collaborative systems for group
meetings), the Colab project has produced a usable
meeting room and several operational tools. The
liveboard is operational but not fully integrated with
our software. As we begin to use the Colab on a
regular basis, it will afford a laboratory for studying
the effects of the tools on collaborative meetings.
The Colab meeting room is now being fitted with the
video equipment necessary to record working Colab
sessions. We will use the Colab to try to understand
why collaborative problem solving is organized as it
is, the relationship of that organization to existing
technology, and the trade-offs involved in displacing
old practices with new technology.

Upon hearing about the Colab, a manager from a
large American corporation whose job it is to intro-
duce appropriate computing technology at the exec-
utive staff level told us an interesting story. After
working diligently for several months to bring things
up-to-date and to revitalize operations with tools
like electronic mail, document processing, databases,
and automatic spreadsheets, he remained unsure
about the degree of success he had achieved. One

46 Communications of the ACM January 1987 Volume 30 Number 1

Confputir~g Practices

day, in a burst of frank evaluation, one of his
charges told him that, despite the best intentions, he
felt the computer was not making a difference and
did not expect it to save him more than 30 minutes a
day, even if he did learn how to use it. The reason
was that this individual was not in his office for
more than 30 minutes; he spent almost his entire
day in meetings! Morul: Office automation simply does
not reach people who are away from their offices, which
brings us back to the premise of the Colab project:
Meetings are important. They are at the core of the
way most organizations do business. As such, tools
like the Colab touch fundamentally the ways we
meet and make decisions collectively.

Acknowledgments. This article has benefited
greatly from the suggestions and criticisms of
Agustin Araya, John Seely Brown, Richard Fateman,
John Florentin, Mark D. Hill, Bernard0 Huberman,
Randy Katz, Mark Miller, Sanjay Mittal, Ted Selker,
Jeff Shrager, and Mike Stonebraker.

Many thanks to Bill Volkers for creating the live-
board, and to Stu Card and Jeff Shrager for early
ideas for the liveboard. We wish to acknowledge
Ted Selker for his suggestions about many aspects of
the Colab and for designing electronic chalk for the
liveboard; Steve Osburn, Joan Osburn, Gene Hall,
and Lee Anderson for creating the Colab physical
setting; and Steven Levy for his contributions to the
first implementations of Colab software.

Special thanks to John Seely Brown for his ideas,
criticisms, and encouragement on the Colab project.
Without his support, the project could never have
been launched nor could the initial momentum
have been sustained. Thanks also to Bill Spencer
and George Pake for creating an environment at
Xerox PARC that makes projects like this possible.

32. Stefik, M.. Foster. G.. Lanning. S.. and Tatar. D. The scope of
WYSIWIS: Early experiences with multi-user interfaces. In Proceed-
irtgs of fhe Corrfererlce otr Computer-Supported Cooperative Work (Aus-
tin. Tax., Dec.). ACM. New York. To be published.

33. Trigg. R.. and Weiser. M. TEXTNET: A network-based approach to
text handling. ACM Tram. Off. IIIJ Sysf. 4. 1 (Jan. 1986), l-23.

34. Trigg. K.. Suchman. L.. and Halasz, F. Supporting collaboration in
No&Cards. In Proceedings of the Cwference on Conlputer-Supported
Cwperafivr Work (Austin, Tex.. Dec.). ACM, New York. To be pub-
lished.

REFERENCES
1. Applegate. L.M., Konsynski, B.K.. and Nunamaker. J.F. A group deci-

sion support system for idea generation and issue analysis in organi-
zational planning. In Proceedings of the Conference ou Computer-
Supporfrd Cvoy~rutivr Work (Austin, Tex.. Dec.). ACM, New York. To
be published.

2. Bernstein, P.A., and Goodman, N. Concurrency control in distrib-
uted database systems. ACM Comput. Surv. 13, 2 (June 1981),
185-221.

35. Turoff. M. Delphi conferencing: Computer-based conferencing with
anonymity. Technol. Forecasfirlg Sot. Change 3 (1972), 159-204.

CR Categories and Subject Descriptors: H.1.2 [Models and Princi-
ples]: User/Machine Systems--hunIan factors; hunla~ information process-
~8; H.2.4 [Database Management]: Systems-distributed systems: H.4.m
[Information Systems Applications]: Miscellaneous

3. Birrell. A.D.. and Nelson, B.J. Implementing remote procedure calls.
Tech. Note CSL-83-7. Xerox PAKC. Palo Alto, Calif.. Dec. 1983.

4. Bobrow, D.G.. and Stefik, M.]. The Loops Manual. Xerox PARC, Palo
Alto, Calif.. 1983.

General Terms: Design, Human Factors. Languages
Additional Key Words and Phrases: Computer-supported collabora-

tion. computer-supported groups, computer-supported meetings, multi-
user interfaces

5. Bobrow. U.G.. Burchfiel. I.D.. Murphy, D.L., and Tomlinson, R.S.
TENEX. a paged time-sharing system for the PDP-10. Cornmun. ACM
15. 3 (Mar. 1972). 135-143.

Received l/85; accepted 7/&i

6. Bush, V. As we may think. Atlunlic Morn. 176, 1 (June 1945). 101-106.
7. Coffman. E.G., Elphick. M.J.. and Shoshani. A. System deadlocks.

ACM Con~put. Surv. 3. 2 (June 1971), 67-78.
8. Denning, P.1. Virtual memory. ACM Conlput. Sure. 2, 3 (Sept. 1970).

153-189.

Authors’ Present Addresses: Mark Stefik. Daniel G. Bobrow, Kenneth
Kahn. Stan Lanning. and Lucy Suchman, Intelligent Systems Laboratory,
Xerox Palo Alto Research Centar. 3333 Coyote Hill Road, Palo Alto, CA
94304: Gregg Foster, Computer Science Division. University of Califor-
nia. Berkeley. CA 94720.

9. Donahue. I.. and Widorn. 1. Whiteboards: A graphical database tool. Permission to copy without fee all OI part of this material is granted
ACM Tram. Off. Iuf Syst. 4. 1 (Jan. 1966). 24-41. provided that the copies are not made or distributed for direct commer-

10. Uoyle. M.. and Straus. D. How fo Make Meefings Work. Berkeley cial advantage, the ACM copyright notice and the title of the publication
Publishing Group. Naw York. 1984. and its date appear. and notice is given that copying is by permission of

11. Eoglebart. D.C. Collaboration support provisions in AUGMENT, the Association for Computing Machinery. To copy otherwise. or to
OAC 84 digest. In Procrrditlgs of the 1984 AFIPS Office Aufonrafio~~ republish. requires a fee and/or specific permission.

Cottfcrrnce (Los Angeles, Calif. Feb. 20-22). AFIPS. Reston. Va.. 1984.
pp. 51-58.

12. Englebart. D.C.. and English, W.K. Research center for augmenting
human intellect. In Proceedings of fhe Fall loint Computing Corlferetlce
(San Francisco. Calif.. Dec. Y-11). AFIPS, Reston, Va.. 1968,
pp. 395-410.

13. Foster. G. Collaborative systems and multi-user interfaces:
Computer-based tools for cooperative work. Doctoral dissertation,
Computer Science Division. Univ. of California at Berkeley, Dec.
1986. To be published.

14. Goldberg. A., and Robson. D. Smalltalk-80: The Language and Its Im-
plenwr~fatiwr. Addison-Wesley, Keading, Mass.. 1983.

15. Hansen. P.B. Operating System Principles. Prentice-Hall, Englewood
Cliffs, N.J., 1973.

16. Hiltz. S.R.. and Turoff, M. The Network Nation: Human Communica-
fiou via Computer. Addison-Wesley. Reading, Mass., 1978.

17. Hiltz. SK.. and Turoff, M. The evolution of user behavior in a com-
puterized confarencing system. Commun. ACM 24, 11 (Nov. 1981),
739-752.

18. Johansen. R. Telecotlferencing atfd Beyond: Conmumicatiom in the Of-
fice of fhr Future. McGraw-Hill, New York, 1984.

19. Johansen, R., Vallee. J., and Spangler, K. Electronic Meetings: Tech!&
sal Altenrafives atld Social Choices. Addison-Wesley. Reading, Mass.,
1979.

20. Kraemer, K.L.. and King, J.L. Computer supported conference rooms:
Final report of a state of the art study. Dept. of Information and
Computer Science, Univ. of California, Irvine, Dec. 1983.

21. Lederberg. 1. Digital communications and the conduct of science:
The new literacy. Proc. IEEE 66, 11 (Nov. 1976), 1313-1319.

22. Linstone. H.A.. and Turoff. M. The De/phi Mefhod: Techtiiques and
Applicatiorls. Addison-Wesley. Reading. Mass., 1975.

23. Metcalfe. R.M., and Bog& D.R. Ethernet: Distributed packet switch-
ing for local computer networks. Cunmnn ACM 19, 7 (July 1976),
395-404.

24. Nelson. T. Literary Machi,rrs. Ted Nelson, Swarthmore. Pa.. 1981.
25. O’Connor. R.J. Outline processors catch on. InfoWorld (July 2, 19841,

30-31.
26. Panko. R.R. Office work. Off. Techml. People 2 (1964). 205-236.
27. Platt. J.R. Strong Inference. Scie!Ice 146, 3642 (Oct. 1964). 347-353.
28. Sanella. M.. et al. Inferlisp Reference Manual. Xerox PARC, Palo Alto,

Calif.. 1983.
29. Sarin. SK. Interactive on-line conferences. Ph.D. thesis MIT/LCS/

TK-330. MIT. Cambridge. Mass., Dec. 1984.
30. Sarin. S.. and Greif, 1. Computer-based real-time conferencing sys-

tems. Conrpufer 18, 10 (Oct. 1985). 33-45.
31. Sheil, B. Power tools for programmers. Dafnmafiotl (Feb. 1983).

131-144.

]atluary 1987 Volume 30 Number 1 Communications of the ACM 47

