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On Consistency and Network Latency in
Distributed Interactive Applications: A Survey—
Part I

Abstract

This paper is the first part of a two-part paper that docu-
ments a detailed survey of the research carried out on con-
sistency and latency in distributed interactive applications
(DIAs) in recent decades. Part I reviews the terminology
associated with DIAs and offers definitions for consistency
and latency. Related issues such as jitter and fidelity are also
discussed. Furthermore, the various consistency mainte-
nance mechanisms that researchers have used to improve
consistency and reduce latency effects are considered.
These mechanisms are grouped into one of three catego-
ries, namely time management, information management,
and system architectural management. This paper presents
the techniques associated with the time management cate-
gory. Examples of such mechanisms include time warp, lock
step synchronization, and predictive time management. The
remaining two categories are presented in part II of the
survey.

1 Introduction

Human interaction with computers has evolved
from centralized batch processing using Hollerith cards
to virtual reality systems in which users can be fully im-
mersed. The origins of virtual reality technology can be
traced back to vehicle simulation research in the 1920s
(Ellis, 1994) and since then, virtual environments have
spread to areas such as military simulations, cooperative
whiteboards, and architectural design.

The first distributed software virtual environment was
SIMNET, a United States research program initiated in
1983 to train soldiers in battlefield tactics (Calvin, Dick-

ens, Gaines, Metzger, Miller et al., 1993) and which
culminated in the development of the DIS protocol
standard in 1993 (IEEE, 1993). Since then numerous
academic, military, and commercial distributed applica-
tions have been developed and documented (Joslin, Di
Giacomo, & Magnenat-Thalmann, 2004). The diverse
applications that exploit distributed virtual technology
have been referred to using various terms. In this paper
they will be referred to as distributed interactive applica-
tions or DIAs.

DIAs are subject to many problems. However, the
authors believe that the key common objective running
through most of the research in the area of DIAs is re-
lated to the issue of consistency and the maintenance of
adequate consistency among all participants of the DIA
in spite of demands on system resources. In addition
they believe that the single greatest contributing factor
to spatial and temporal inconsistencies experienced by
end users in the virtual world is network latency or lag.

The issue of consistency has been the subject of much
research in the field of distributed systems for the past
few decades. However, no single detailed survey of
these techniques has been produced, although some
publications summarize a number of the issues and ap-
proaches taken (Snowdon, Greenhalgh, Benford, Bul-
lock, & Brown, 1996; Macedonia & Zyda, 1997; Sin-
ghal & Zyda, 1999; Joslin et al., 2004; Roberts, 2004).
This paper aims to bridge this gap and provide a concise
summary of the issues and the approaches taken to
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tackle the problem of maintaining consistency in the
presence of network latency. It also reviews the termi-
nology associated with the domain of distributed inter-
active applications and proposes definitions for the
terms consistency and latency. This survey is not in-
tended to be comprehensive in bibliographic terms; in-
stead references are selected to best illustrate, in our
opinion, the different concepts.

The next section looks at some basic terminology.
This is provided for ease of reference. Section 3 investi-
gates what is meant by the term distributed interactive
application. Sections 4 and 5 define and review the in-
herent problems of consistency and network latency in
such applications. In Section 6 we provide a classifica-
tion for various mechanisms that have been employed to
mask network latency and improve consistency in DIAs.
The first of these classifications, time management tech-
niques, is then presented. The remaining two classifica-
tions are presented in part II of the survey.

2 Terminology

To facilitate discussion of DIAs, the following
terms derived from the world of modeling and simula-
tion are listed (Zeigler, Praehofer, & Kim, 2000). The
terms listed here are used extensively in referring to
DIAs, but are rarely defined. Other terms will be de-
fined as they are encountered.

2.0.1 State. A complete description of a virtual
entity at a single moment in time (Churchill, Snowdon,
& Munro, 2001). In a DIA information pertaining to
state variations in the virtual environment should be
shared among all participants. This information is often
referred to as dynamic shared state (Singhal & Zyd,
1999; Qin, 2002).

2.0.2 Entity or Object. An element of the syn-
thetic environment that is created and controlled by a
simulation application through the exchange of infor-
mation (IEEE, 1993). We consider entity and object as
synonymous, and we adopt the term entity throughout
this paper. Entities may be passive or active (Singhal &

Zyda, 1999). A passive entity is one that is either en-
tirely stationary or moves deterministically. The behav-
ior of an active entity is nondeterministic, although it
may be predictable in the sense that its motion is a func-
tion of the constraints imposed by the environment, the
objectives/abilities of the participant and the initial con-
ditions. A similar classification describes entities as either
static (passive) or dynamic (active) (Lui, 2001). The
state of a static entity never changes with time whereas
the state of a dynamic entity can.

2.0.3 Environment. The information needed to
render an application’s time-constant state (Mauve,
Hilt, Kuhmunch, & Effelsberg, 2001).

2.0.4 Event. The state of a DIA may change for
two reasons, as a result of the passage of time or the oc-
currence of events. An event causes a state change that
is not a fully deterministic function of time (Mauve,
2000). Between successive events the state of the me-
dium is a fully deterministic function of time. Events
can be separated into external events and internal events.
External events are caused by (user) interactions with
the medium, whereas internal events are nondeterminis-
tic internal changes in the state of the application. Events
may also be viewed as deterministic or nondeterministic
(Roberts & Sharkey, 1997a; Sharkey, Ryan, & Roberts,
1998). Deterministic events can be fully predicted whereas
nondeterministic events cannot be reliably predicted
because they result from real-time interaction between
the DIA and human participants.

2.0.5 Node. A node refers to a computing device
connected to the communications network. A node can
be a source or destination machine, a router, or any
other device that processes data.

2.0.6 Dead Reckoning. Dead reckoning exploits
information about current user dynamics to make a
short-term prediction of user movement based on ex-
trapolation techniques. It is formally defined in the DIS
protocol (IEEE, 1993). It was first implemented as the
Players and Ghosts paradigm in the VERN (Virtual En-
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vironment Realtime Network) test bed, developed by
Blau, Hughes, Moshell, & Lisle (1992).

3 Distributed Interactive Application

A distributed interactive application (DIA) is best
defined by considering the three terms that comprise its
title:

1. A system is distributed if there is a message trans-
mission delay between parts of the system that is
not negligible compared to the time between
events in a single process (Lamport, 1978).

2. Interactive refers to an input-output process in-
volving input from a user through a human-
computer-interface with an appropriate output
response from the system (Broll, 1997; Natrajan &
Reynolds, 1999; Manninen, 2000; Zhou, Cai,
Lee, & Turner, 2001). Interaction is also defined
as truly concurrent object manipulation (Margery,
Arnaldi, & Plouzeau, 1999), as distinct from the
cooperative sequential object manipulation defined
in Broll.

3. The application is a software system built for a
specific purpose. It is usually a virtual environment
that, in some way, reflects the physical world and
interfaces to the physical world.

What this paper refers to as DIAs have been referred
to using many different terms, as summarized in Table
1. These reflect the diverse applications of this paradigm
and the different research emphasis of each research
group: shared workspaces, networked games, distrib-
uted whiteboards, group editors, distributed architec-
tural design, education, telemedicine and simulations
(Bhola, Banavar, & Ahamad, 1998; Sun, Jia, Zhang,
Yang, & Chen, 1998; Bouras, Hornig, Triantafillou, &
Tsiatsos, 2001; Fujimoto, 2001; Riva & Gamberini,
2001; Tawfik & Fernando, 2001; McCoy, Delaney, &
Ward, 2003; Frécon, 2004). Several research teams have
developed experimental distributed virtual environment
platforms; some examples include RING (Funkhouser,
1995), NPSNET (Macedonia, Zyda, Pratt, Barham, &
Zeswitz 1994; Capps, McGregor, Brutzman, & Zyda

2000), MASSIVE (Greenhalgh & Benford, 1995;
Greenhalgh, Purbick, & Snowdon 2000), PaRADE
(Roberts, Sharkey, & Sandoz, 1995; Roberts & Shar-
key, 1997a, 1997b), SPLINE (Barrus, Waters, &
Anderson, 1996), CAVERNSoft (Leigh, Yu, Schonfeld,
Ansari, He et al., 2001), VELVET (de Oliveira & Geor-
ganas, 2002), PARADISE (Holbrook, Singhal, &
Cheriton, 1995; Singhal, 1996), DIVE (Frécon & Ste-
nius, 1998; Frécon, 2003; Frécon, 2004), QUICK
(Capps, 2000), VPark (Joslin, Molet, Thalmann, Es-
merado, Thalmann et al., 2001), MOVE (Garcia, Mon-
tala, Pairot, Rallo, & Skarmeta, 2002), ATLAS (Lee,
Lim, & Han, 2002), EQUATOR (MacColl, Millard,
Randell, & Steed, 2002) and PING (Roberts, 2004).

For the purposes of this paper we adopt the term dis-
tributed interactive application (Kelly, 1997; Diot &
Gautier, 1999; Lee, Yang, Yoon, Yu, & Hyun, 2000;
Zhou et al. 2001; Qin, 2002; Vogel, Mauve, Hilt, &
Effelsberg, 2003) as we consider it to be a generic term
that encapsulates all aspects of networked applications

Table 1. DIAs are referred to using various terms and
acronyms

DIAs

Distributed interactive simulation (DIS)
Networked virtual environment (NetVE; Singhal &

Zyda, 1999)
Distributed virtual environment (DVE; Stytz, 1996)
Distributed interactive media (DIM; Mauve et al. 2001)
Networked interactive entertainment (NIE; Capps,

McDowell, & Zyda, 2001)
Collaborative virtual environment (CVE; Park &

Kenyon, 1999; Vaghi, Greenhalgh, & Benford,
1999)

Distributed synthetic environments (DSE; Worthington
& Roberts, 2000)

Shared virtual environment (SVE; Waters & Barrus,
1997)

Computer supported cooperative work (CSCW; Greif,
1988)

Groupware systems (Ellis & Gibbs, 1989)
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that involve interaction, collaboration, cooperation and
communication. We define a DIA to be:

a networked software system that seeks to maintain
global consistency when responding to multiple si-
multaneous nondeterministic inputs.

A key aspect of a DIA is the participation of humans-
in-the-loop (Ellis & Gibbs, 1989). People interact with
the system in real time and they expect the system to
respond in real time to the actions they make. In addi-
tion they assume that other users of the system, particu-
larly those with whom they are interacting, share the
same view of the system state. In other words, users de-
mand consistency. The next section addresses this issue
in detail.

4 Consistency

The input from users of a DIA generates events
that then modify an underlying database that is shared
in some way by all users across a communications net-
work. An essential requirement of the DIA is that users
are informed of changes to this common database in
real time if the changes affect them or if they are inter-
ested in receiving the changes. Users of DIAs expect
both temporal and spatial consistency so that their expe-
rience of the virtual world can be the same as the users
with whom they are interacting.

Consistency is one of the key factors in providing a
truly interactive experience to users of DIAs (Vaghi et
al. 1999; Bowman, Johnson, & Hodges, 2001; Gutwin,
2001; Henderson, 2003). So, what exactly is consis-
tency? For Gautier, Diot, & Kurose (1999) it implies
that at any point in time, all players should ideally see
the same information at the same time independent of
the network. This is referred to as absolute consistency
and it has been defined mathematically by Qin (2002)
and Zhou et al. (2001). Absolute consistency in distrib-
uted applications is impossible to attain because of the
existence of network latency and the fact that the delay
in transmitting information across the application can-
not be ignored when compared to the time between
events.

Consistency refers to a number of aspects in DIAs
(Shneiderman, 1984; Dourish, 1995; Blakowski &
Steinmetz, 1996; Roberts, 2004):

1. Synchronization The maintenance of (a) tempo-
ral relations between events so that the time of
each event relative to other events across the DIA
is the same for all participants and (b) spatial rela-
tions so that entity positions are the same across
the DIA;

2. Causality or ordering Events cause the state of
the system to change to a new state. The order in
which events are received is thus important to
maintain a natural cause-effect order;

3. Concurrency The simultaneous execution of
events by different users on the same entity within
the application. Entity ownership conflicts have to
be resolved.

Linked to all of these aspects are the issues of respon-
siveness and fidelity. Responsiveness is the time taken
for the system to register and respond to a user event.
Fidelity is defined in the DIS standard as the degree to
which the representation within a simulation is similar
to a real-world object, feature, or condition in a measur-
able or perceivable manner (IEEE, 1995). Similarly the
Fidelity Definition and Metrics Implementation Study
Group (DM-ISG) defines fidelity as “the degree to
which a model or simulation reproduces the state and
behavior of a real-world object or perception of a real-
world object, feature, condition, or standard in a mea-
surable or perceivable manner.” The DM-ISG identifies
six components to fidelity: resolution, error, accuracy,
sensitivity, precision, and capacity (Roza, Voogd, Jense,
& van Gool, 1999). Stytz (1996) explores fidelity in
DIAs and lists a number of types of fidelity, such as
physics fidelity, time fidelity, and sensory fidelity.
Capps (2000) discusses the link between visual accu-
racy and fidelity and believes that visual accuracy is
only a “passing first-order approximation for fidelity.”
Fidelity is also referred to as level-of-detail or resolution
(Radhakrishnan & Wilsey, 1999).

Poor consistency can lead to fidelity problems and
fidelity is often sacrificed to maintain consistency and
responsiveness. In an ideal DIA absolute consistency
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could be obtained: all user clocks would be synchro-
nized, all events would be executed in the order they
occurred, conflicts over shared entities and the system
response time would satisfy normal user expectations,
and fidelity would be guaranteed. However, this ideal
cannot be achieved and the inconsistencies that result
manifest themselves in many different ways, resulting in
three noted phenomena (Schwarz & Mattern, 1994;
Dourish, 1995; Sun & Ellis, 1998; Vaghi et al., 1999;
Zhou et al., 2001; Zhou, Cai, Lee, & Turner, 2003):

1. Divergence This refers to the final temporal-spa-
tial state of the environment being different for
different participants. Users will thus unwittingly
be interacting with an inconsistent environment so
that their behavior will also be inconsistent, possi-
bly causing the states to diverge even further;

2. Causality violation Events may be received, exe-
cuted, and rendered out of their natural cause-
effect order, so that users notice the effect before
the cause;

3. Intention/expectation violation The actual effect
of an action may differ from the intended effect
because events may be generated concurrently.
This refers to something that is expected to hap-
pen based on real-world experience, but doesn’t
happen in the virtual world.

Consistency therefore needs to be controlled within
the DIA. This is achieved by using consistency mainte-
nance mechanisms. In this paper these are defined as:

any element employed to ensure a sufficient, uni-
form dynamic shared state for all participants in a
DIA.

While absolute consistency is impossible to achieve in
practical DIAs because of their dynamic nature, a hypo-
thetical DIA in which the environment remains totally
static and unchanging would achieve absolute consis-
tency. At one extreme therefore is the dynamic DIA
with continuous state changes that requires a high
throughput of update packets and that never achieves
absolute consistency; at the other is the totally static
DIA where no update packets are required and so abso-

lute consistency can be achieved. This is known as the
Consistency-Throughput Trade-off (Singhal & Zyda,
1999). There is also a conflict between system respon-
siveness and consistency. High responsiveness can be
achieved locally, but with the risk that the global state
of the DIA becomes inconsistent because of network
latency (Cheshire, 1996). This conflict has been docu-
mented as the consistency-responsiveness trade-off
(Zhou et al., 2001; Mauve, Vogel, Hilt, & Effelsberg,
2002; Qin, 2002).

The principal cause of inconsistencies is ironically
linked to the network that actually facilitates DIAs.
Therefore the relationship that exists between the physi-
cal network and consistency needs to be explored. In
particular we focus on the most important aspect of the
physical network affecting consistency: latency. The next
section describes this phenomenon.

5 Latency

A review of the research literature reveals that a
commonly agreed definition of latency does not exist.
Latency has sometimes been defined as the amount of
time required to transfer a bit of data from one point to
another (Singhal & Zyda, 1999). This definition leaves
the word point open to several possible interpretations.
Latency is also defined in Smed, Kaukoranta, & Ha-
konen (2001) as the length of time (or delay) that a
message incurs during transmission from one designated
node to another. Again, the definition is open to differ-
ent interpretations of the word node. A similar problem
exists in the following definition: the time taken by data
to travel from the source to the destination (Dutta-Roy,
2000). Meehan et al. incorporate the delay associated
with graphics rendering in their definition (Meehan,
Razzzaque, Whitton, & Brooks, 2003). Tse-Au and
Morreale interpret latency as the time required for one
bit to propagate round-trip between two nodes, similar
to a ping time (Tse-Au & Morreale, 2000). Pullen and
Wood define it as the time delay that occurs between
the output of a data packet at the application level of
one simulator and the input of that data packet at the
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application level of another simulator (Pullen & Wood,
1995). We have taken this definition as a basis to pro-
pose the following definition for network latency based
on the ISO OSI reference model:

Network Latency is the time taken from the start
of exchange of an application protocol data unit
(APDU) at the application layer of one participating
node to the end of the exchange of the same APDU
with the application layer of a second participating
node.

This definition is similar to that put forward by
de Oliveira, Shirmohammadi, and Georganas (1999)
and excludes latency due to any other source, for exam-
ple, computations in the application, graphics render-
ing, or user reaction time. These other sources are also
included in local latency, which is the latency involved
in representing a user’s actions back to that user (Rob-
erts et al., 1995). For the rest of the paper the term la-
tency will refer to network latency.

Latency is particularly problematic in interactive ap-
plications where the network delays are comparable to
the interaction time or speed (Sharkey et al., 1998).
Typical latency values to maintain real-time interaction
fluctuate between 40 and 300 ms (Diot & Gautier,
1999). Cheshire (1996) suggests that the round-trip
latency of 100 ms should be the maximum delay,
whereas both Wloka (1995) and Diot and Gautier aim
for a one-way delay of 100 ms. Conscious awareness of
latency by users of a DIA depends on the application.
For voice interaction a maximum latency of 100 ms is
sufficient (Cheshire, 1996) and Mauve et al. report val-
ues of 120 ms for visual data (Mauve et al., 2002). In
teleoperation control loops, instability occurs when total
system latency exceeds 100 ms. For motor-driven tasks
human reaction time is on the order of 200 ms (Krumm-
Heller & Taylor, 2000).

5.1 Components of Latency

To assist in the understanding of latency, it is con-
venient to analyze the factors that comprise it. The main
contributors to latency are:

1. Queuing and processing at routers, bridges, and
gateways within the network and at source and
destination nodes. Packet loss and timeouts may
be considered to introduce infinite latency;

2. Transcoding delays associated with encryption/
decryption of information and compression/de-
compression of data;

3. Propagation and transmission delays due to the
finite speed of light and the speed of the commu-
nications link. (Martin, McGregor, & Cleary,
2000)

This paper decomposes latency into three types ac-
cording to the source of the delay:

1. Packet processing delay;
2. Bit propagation delay;
3. Packet propagation delay.

The latency �total associated with a single packet can
therefore be expressed as the sum of these three compo-
nents. This is illustrated in Figure 1 and is represented
by the following equation:

�total � �
i�1

N

�process
i � �

i�1

N�1

��i
i�1 � �

i�1

N�1 M
Bi

i�1

1 1 1
Packet Bit Packet

Processing Propagation Propagation
Delay Delay Delay

(1)

where
�process

i is the time to process a packet at node i;

Figure 1. Illustration of network nodes. B refers to bandwidth, �

refers to processing time and �� refers to propagation delay.
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N is the number of nodes, including source and desti-
nation nodes;

��i
i�1 is the transmission time between nodes i and

i�1;
Bi

i�1 is the bandwidth between nodes i and i�1;
M is the number of bits in the packet.
The packet processing delay refers to the time taken to

manage and process the data as it migrates through the
network hardware and to process and parse the data at
both source and destination nodes. This includes com-
pressing, decompressing, encrypting, decrypting, and
any processing performed by the operating system or
network hardware at the end-point computers. It also
includes the time delay associated with flow control and
congestion control, buffering, and packet queuing.

The bit propagation delay refers to the delay associ-
ated with the physical speed of transmission (about 5 �s
per km).

The packet propagation delay refers to the time re-
quired for all bits in a packet to be transmitted across
the network from source to destination node consider-
ing only the internode bandwidth.

From this division of latency the following may be
noted:

1. The bit propagation delay cannot be eliminated
and it has a lower theoretical limit imposed by the
speed of light in a vacuum;

2. The packet processing delay can be reduced in a
number of ways: by reducing the quantity of data
on the network, by increasing the processing
power at routers and source/destination nodes,
and by using more efficient processing algorithms;

3. The packet propagation delay can be reduced by
increasing the available network bandwidth and by
reducing the amount of data that must be trans-
mitted between nodes.

Points 2 and 3 explain why most of the techniques
and approaches that have been explored to combat the
effects of network latency focus on reducing the quan-
tity of network traffic and improving software architec-
ture to reduce both the packet processing delay and the
packet propagation delay.

The division of latency given here facilitates a more

accurate understanding of latency and the impact of
latency reducing techniques and is similar to that es-
poused by Jehaes et al. (2003). Other divisions of la-
tency have been presented elsewhere. Tse-Au and Mor-
reale (2000) view latency as being tunable or untunable.
Untunable latency refers to the sum of the signal propa-
gation delay and the equipment processing delay in
transmitting one bit across the network. Tunable la-
tency is the time taken for one bit of data to propagate
through all the queuing delays between the two com-
municating nodes. In Hecker and Simpson (2001) la-
tency is split between path latency and queuing latency.
Path latency is the time taken for a message to get from
one place to another. Queuing latency is the resultant
delay when the data sent exceeds the bandwidth. Two
kinds of latency are also described by Mauve et al.
(2004): observation lag and influence lag. Observation
lag is the delay between an event’s occurrence and its
display, whereas influence lag is the delay between our
attempt to influence the world and the time taken for
the influence to actually occur.

Network latency varies with prevailing network condi-
tions. This variation in latency results in a phenomenon
called jitter, which is described below.

5.2 Jitter

All information transmitted across the network is
carried in the form of data packets. Each packet may
follow a different route through the network and the
order of arrival of packets at the destination node is not
guaranteed by the network layer. The network is heter-
ogeneous in nature with continuous variations in router
queue lengths, buffering times, and routing paths for
packets. Packet sizes also vary greatly and similarly the
time to process packets as they migrate through the net-
work and reorder packets to rebuild complete packets
at the destination also varies significantly (Dutta-Roy,
2000). Depending on network conditions, this may re-
sult in a different latency for each transmitted packet
and gives rise to a phenomenon known as jitter (Blow,
1998; Smed et al., 2001). For the purposes of this paper
the following definition will be used:
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Jitter refers to the unpredictable variation in latency
with time.

The effects of network latency and jitter on end-users
were examined in an interesting suite of qualitative ex-
periments performed by Vaghi et al. (1999). They ex-
amined the effects of gradually increasing network de-
lays for one of the two participants in a networked
virtual ball game to establish how delays affect the per-
formance of the players, how performance breakdowns
manifest themselves, and how players adapt to delays.
Park and Kenyon (1999) assessed the effects of latency
and jitter on executing a cooperative task and found
that from a psycho-perceptual viewpoint, jitter has the
greatest impact when latency is high and the collabora-
tive task is difficult. Jitter has a much greater impact
than latency on performance. Gutwin (2001) investi-
gated the effects of latency and jitter on two types of
user interaction: prediction of movement and moving a
shared object. He found that both performance and
user strategy were affected. Other work has been carried
out by Henderson (2003), who investigated how users
adapt to latency in distributed games, Bowman et al.
(2001), who analyzed interaction in virtual environ-
ments and Mauve (2000a), who examined the effects on
interaction in a 3D tele-cooperation application when
local lag is introduced to offset the effects of jitter.

Latency prevents the possibility of achieving an abso-
lute consistent dynamic shared state across a DIA. As
the quantity of data to be managed by the DIA in-
creases (an issue called scalability; Macedonia, 1995) and
due, for example, to an increase in the number of active
entities and participants or the spatial extent of the DIA or
the complexity of the tasks involved), maintaining consis-
tency across the DIA becomes even more difficult. The
following section examines the various methods, mecha-
nisms, and approaches for controlling consistency in DIAs
in the face of this inherent network latency.

6 Consistency Maintenance Mechanisms

A DIA can be viewed as a distributed database
with multiple simultaneous users modifying it in real

time. The key problem then becomes that of ensuring
that the database is consistent for all users, so that they
are interacting with an up-to-date source of informa-
tion. Consistency maintenance mechanisms refer to any
element employed to ensure a sufficient, uniform dy-
namic shared state for all participants in a DIA. Consis-
tency maintenance mechanisms are also referred to as
latency hiding techniques (Cheshire, 1996), consistency
control algorithms (Roberts & Sharkey, 1997b), distrib-
uted synchronization mechanisms (Diot & Gautier,
1999), and object synchronization (Lui, 2001). Of the
many existing mechanisms, most of them are band-
width-saving mechanisms and combat latency by reduc-
ing the number of packets being sent across the network
as explained previously. Each consistency maintenance
mechanism falls into one of two general categories (Jef-
ferson, 1990; Blanchard & Lake, 1997; Fujimoto,
2001; Cronin, Filstrup, Kurc, & Jamin, 2002):

1. Optimistic/aggressive This is a mechanism that
takes risks by performing speculative computation,
which, if subsequently determined to be correct,
saves time, but if incorrect must be rolled back and
corrected;

2. Pessimistic/conservative This is a mechanism
that never indulges in speculative computation and
hence never has to roll back. These algorithms
perform poorly in fast-paced interactive applica-
tions where a constant rate of simulation is impor-
tant.

Systems can employ a hybrid approach, applying opti-
mistic and conservative mechanisms at different points
in the DIA, depending on the type of DIA. The various
mechanisms may be further classified into three general
classes:

1. Time management techniques These all manipu-
late time to mask the effects of latency. Examples
include synchronization, time warp, and local per-
ception filtering;

2. Information management techniques These all
reduce the amount of data that has to be managed
by the network. Examples include relevance filter-
ing and compression;
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3. System architecture techniques These all aim to
improve the efficiency of processing and dissemi-
nating data. Examples include protocols and net-
work architectures.

This rest of this paper will focus on the first of these
three categories and the other two categories will be
discussed in Part II of the survey. It should be noted
that the techniques are not mutually exclusive and the
DIA designer can mix techniques across categories to
suit each particular application.

6.1 Time Management Techniques

Time is a fundamental attribute of all distributed
interactive applications, although the exact meaning of
time may vary from one application to another. There
are two dominant concepts of time for distributed appli-
cations:

1. Absolute time or wall clock time The time is
based on the concept of a periodic clock, which is
synchronized to coordinated universal time (UTC)
across the DIA. For example in the internet this
time is maintained by a network of servers that can
communicate precise UTC time using the network
time protocol (NTP; Mills, 1991; Cox, Luiijf, van
Kampen, & Ripley, 1996);

2. Virtual Time or Causal Time The time in this
case is based on a logical, loosely synchronized
clock. Time is seen as a sequence of ordered events
and stands still if no new events occur (Lamport,
1978).

The link between time and consistency in DIAs is
important. In a perfectly consistent DIA all participants
would be rendered the same global state at the same
absolute time. Network latency ensures that this can-
not be achieved and inconsistencies therefore occur.

The concept of time within a DIA depends on
whether the DIA is continuous or discrete (Roberts &
Sharkey, 1997a, 1997b; Mauve et al., 2001; Zhou et
al., 2001) and the events that are driving the state
changes of the DIA. Events may be deterministic (e.g., a
bouncing ball) or nondeterministic (e.g., an action by a

user or network jitter). This categorization of events
allows more efficient use of bandwidth by transmitting
nondeterministic events to other users and allowing de-
terministic events to be computed locally (Roberts et
al., 1995). In a discrete DIA the state changes in re-
sponse to nondeterministic user events. The correct or-
der of events is therefore important but the exact time
of each event is not. In this case an asynchronous model
of time such as the logical clock is sufficient. In a con-
tinuous DIA the state changes as a result of nondeter-
ministic events caused by a user or by the passing of
time, and so wall clock synchronization is important. In
this case a correct order of all events must be main-
tained and the resulting state of the system must be the
same as if all the events had been executed in the correct
order at the time identified by their timestamps.

The foundations of time within DIAs were laid by
Lamport (1978) who examined global time and the
ordering of events in distributed systems. The underly-
ing assumption is that events are related, that local
events can be ordered sequentially, and that the future
cannot influence the past. This is referred to as the cau-
sality relation (before-after relation) and formed the ba-
sis for the concept of a logical clock. In such a clock
the notion of time is based on the order in which local
events occur. Time is therefore asynchronous among all
participating nodes in the DIA. Virtual time differs from
real time in that it doesn’t flow and it stands still if no
events occur.

Lamport’s concept of scalar time as a totally ordered
sequence of causal events is not always correct. With
scalar time, all processes share the same global logical
clock. This means that two or more events generated by
different processes can have an identical timestamp, with
the possible loss of causal dependency information
(Raynal & Singhal, 1996). For example, if a process
generates an event based on a set of events it has re-
ceived, but that new event is received at another node
that hasn’t received the same set of prior events, then a
causality violation occurs. To solve this problem, a con-
cept of time based on vector timestamps was developed
independently by Mattern (1988) and Fidge (1988).
With vector clocks, the time domain is represented by a
set of vectors, one for the causal time of each process.
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This set of vectors represents the global time and each
node maintains a vector clock for all processes. In a DIA
the problem is then to disseminate the local vector clock
to all other nodes. Various algorithms exist to do this.
For example, the vector can get piggybacked on data
packets.

For continuous DIAs, there is an additional con-
straint—it must appear as if the events have been exe-
cuted at the correct point in time. In this case absolute
time is needed and events are defined as a function of a
wall clock, independently of the rendering frame rate.
Various mechanisms exist for managing the clocks in the
participating nodes. All clocks may be completely syn-
chronized by using the network time protocol (Mills,
1991) or GPS (Cox, Luiijf, van Kampen, & Ripley,
1996). Lui (2001) derived an optimal synchronization
interval based on subgraph communication algorithms
so that every participating node has a consistent view of
the virtual world.

Roberts and Sharkey (1997a) combined the concepts
of absolute and virtual time into a sufficiently causal
time stamp. In doing so they modified the causality (be-
fore-after) relation, allowing the application to decide
when to apply the causality relation to events. Some
events may thus be ignored if a later event is absolute
and the transitory state of no consequence. The order-
ing of events is termed sufficient causal ordering or par-
tial causal ordering (Roberts & Sharkey).

The following sections describe the approaches that
have been taken to maintain consistency in DIAs using
both logical and wall clocks.

6.1.1 Lockstep Synchronization. This is the
most basic way to ensure consistency and, being a con-
servative algorithm, avoids roll-back at the expense of
system response (Funkhouser, 1995). It operates by
preventing the generation of out-of-order events and
achieves this by preventing any participating node from
advancing its simulation clock until all other nodes have
acknowledged that they have completed their computa-
tion. This scheme guarantees consistency but does not
guarantee real-time consistency, as network latency re-
sults in acknowledgment delays and the DIA clock in-
terval is not constant.

6.1.2 Imposed Global Consistency. Tech-
niques that impose delays rely on delaying the execution
or rendering of both local and remote events until an
upper latency bound is reached. In this way the state
information generated at remote nodes has sufficient
time to be incorporated into the local computation of
the global DIA state. The objective is to maintain syn-
chronized global consistency at the expense of reduced
responsiveness. This technique is a form of buffering
and includes bucket synchronization and local lag.

In bucket synchronization, time is assumed to be syn-
chronized and is divided into intervals or buckets of
length T. The bucket frequency is thus 1/T. All events
are assigned to a bucket. The local view of the global
state is then calculated using all the events generated
locally and by remote nodes during the time interval
[i – D, i – D � T], where i is the current time interval
and D is an added delay to compensate for network la-
tency (Gautier et al., 1999). Events are therefore de-
layed for a length of time that should prevent any mi-
sorderings and hence avoid any rollbacks. The bucket
synchronization algorithm, as applied to the distributed
multiplayer game MiMaze, has been shown to provide
acceptable consistency even in high latency situations
(Gautier & Diot, 1998; Diot & Gautier, 1999).

The concept of local lag is related to the work of
Cristian, Ahali, Stron, and Dolev (1985). Events initi-
ated by the local user are not executed immediately but
are delayed for a length of time dependent on network
latency, thus reducing the responsiveness of the system.
Each event is timestamped at a time later than the time
the event actually occurred. An upper bound on the
network delay is assumed so that events can be guaran-
teed to occur after a certain time. An event prologue
can be added between the actual local event and its local
occurrence, which appears natural to the local user. The
trade-off between short-term global inconsistencies and
responsiveness when using local lag in replicated contin-
uous applications was examined in Mauve (2000b). A
minimal value for local lag was based on the maximum
of the average network delay between two users, whereas
the highest acceptable response time was based on hu-
man perception and application type, ranging from 100
ms for drag operations to 400 ms for click operations.
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The determination of an optimum local lag value was
left to future work.

6.1.3 Delayed Global Consistency. In contrast
to imposed global consistency, here the objective is to
maintain asynchronous global consistency. Users will
perceive the same consistent world but at different
times.

Work by Qin (2002) on distributed whiteboards is
based on the fact that it is not necessary that users have
the same state at exactly the same time. Different nodes
can share the same view of the objects but at a time
shift. Each event is therefore timestamped so that the
global state can be reconstructed locally, albeit at a later
time. This shift is specified at the design stage of the
DIA. Qin refers to this as delayed consistency.

A similar idea was proposed by Sharkey et al. (1998).
They employed the concepts of relativity to DIAs to
warp time and limit the maximum speed of objects
within the virtual world. Each user is at the origin of a
temporal-spatial framework and all other users are at a
relative temporal-spatial position. This allows causal sur-
faces and volumes to be defined and associated critical
velocities for virtual objects to be determined. The
causal volumes define the regions in which past events
can affect present events and present events can affect
future events. The critical velocity determines the maxi-
mum speed of information transmission between two
users of the DIA, hence delimiting the causal bound-
aries to produce causal surfaces. Based on these causal
surfaces, a 31⁄2D perception filter is proposed to intro-
duce a continuously differentiable delay contour over
the virtual environment. Each local user perceives other
(remote) users interacting smoothly and dynamically
with their local environment in real time, but delayed by
the particular latency between them and the local user.
As users get closer and begin to interact, the delays be-
tween them are interpolated to zero. The causal vol-
umes and the perception filter may potentially cause
distortions in virtual time-space, leading to objects hav-
ing apparent stiffness. Sharkey refers to this as distrib-
uted stiffness. In effect, a new set of consistent physics is
established where users can understand delays and in-
consistencies within the context of a relativistic physics

paradigm, leading to constraints on time and space
within the virtual world and as a result a new form of
virtual physics fidelity.

6.1.4 Time Warp. The Time Warp mechanism,
first proposed by Jefferson (1985, 1989), is an optimis-
tic synchronization mechanism that relies on general
lookahead-rollback to maintain consistency in the DIA
(Fujimoto, 1990). It operates by executing each mes-
sage as soon as it arrives. When a message arrives that
has a time stamp earlier than a message already exe-
cuted, it undoes all the events back to that message
(rollback) and starts execution again from that message.
It must also send messages to undo any incorrect out-
put messages that were communicated to other nodes
while it was in an incorrect state, a process known as
rollback propagation (Lin & Lazowska, 1991). To assist
in rollback a snapshot of each state is taken after execu-
tion of each message. Jefferson extended the Time Warp
mechanism to include optimal memory management
and introduced the cancelback and the fossil collection
protocols to facilitate this (Jefferson, 1990). Jefferson’s
Time Warp mechanism was described using a formal
model by Leivent and Watro (1993).

The Breathing Time Warp algorithm is a variation of
the Time Warp algorithm. This limits the amount of
execution that can be done optimistically by restricting
the rollback time to events that occur within an event
horizon (Steinman, 1993).

Another optimistic variation on the Time Warp algo-
rithm called Trailing State Synchronization was pro-
posed in Cronin et al. (2002) for distributed first-person
shooter games. This requires less memory and processor
time compared to Time Warp. A complete time-delayed
copy of the game state is maintained in parallel with the
main game. This copy has more time to reorder events
and is a more accurate version of the game state, al-
though delayed in time. This trailing state is used to
detect inconsistencies. When an inconsistency is de-
tected in the actual game, the correct state can then be
directly copied from the trailing state.

6.1.5 Predictive Time Management. In pre-
dictive time management future events are pre-empted
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and both the event and its expected time of occurrence
are transmitted before they actually occur. This is an
optimistic technique for maintaining DIA consistency.
The concept of predictive time management in DIAs
was first proposed by Roberts et al. (1995) as part of the
PaRADE system. A key motivation of their work was
the issue of maintaining consistency among collaborat-
ing participants in the face of inherent network latency.
Their prediction depends on knowledge of delays. They
describe a study of round trip time (RTT) values to esti-
mate delays (Roberts et al.). In PaRADE they use a
sample set of message RTTs together with a robust line
fitting algorithm to compute network latency between
nodes. This technique relies on messages being time-
stamped, and thus a global wall clock is required. The
prediction of events is limited to collision prediction
(Sandoz, Sharkey, & Roberts, 1996) or predictions
based on heuristics such as knowledge of intent, interest
group or spatial proximity (Roberts & Sharkey, 1997a).
This is because sudden non deterministic events cannot
be predicted and deterministic events are computed lo-
cally as the effects of the event can be described mathe-
matically. Although the occurrence of non deterministic
events, initiated by humans-in-the-loop, are unpredict-
able certain long-term behaviors and strategies can be
anticipated, and the user can be locked into a course of
action in these cases (Delaney, Ward, & McLoone,
2003).

Events that are predicted locally are timestamped and
may be sent to other nodes where they are executed at
the appropriate time. When using prediction it must be
possible to predict further ahead than the network de-
lay, so that messages sent to other participants arrive
before the event occurs locally. The execution of local
events can also be delayed so that the same event will be
executed at the same time across the entire DIA. In this
case additional filler events, known as event prologues,
can be added between the initiation and the occurrence
of local events to compensate for the local reduced re-
sponsiveness (Worthington & Roberts, 2000). If the
prediction is incorrect, rollback strategies are needed to
return the DIA to a consistent state. To minimize the
use of state rollback in PaRADE, events are sent just-
in-time by using knowledge of network delays.

6.1.6 Concurrency. The existence of latency
means that if high performance interaction is required
within the DIA, then the application state will probably
be replicated at each participating node (Greenberg &
Marwood, 1994; Snowdon et al., 1996; Sun & Chen,
2002). However, the replication of states increases the
possibility of inconsistencies and this is further exacer-
bated by network latency due to geographical separa-
tion. These inconsistencies can generally be corrected by
using an appropriate synchronization algorithm such as
Time Warp. However, when inconsistencies result from
conflicts over ownership of objects, specific concurrency
control mechanisms are required. Such mechanisms may
be optimistic (continue until a conflict is found then roll
back) or pessimistic (check for conflict before allowing
event). Concurrency is an important aspect of consis-
tency and it is highly susceptible to network latency,
especially when closely-coupled interaction is involved.
Margery et al. (1999) define interaction as truly concur-
rent object manipulation, such as two or more users
manipulating a shared object. Interaction may also be
sequential, with different users interacting with the
same, shared object but at different times. In DIAs, the
issue of two or more users trying to access the same ob-
ject in the DIA at the same time, either to perform
some joint task or to obtain sole possession, must there-
fore be addressed.

Traditional concurrency control mechanisms used in
databases such as locking and serialization are not suited
to applications that require a fast response (Barghouti &
Kaiser, 1991). In groupware systems, a concurrency
control mechanism known as Operational Transform is
used (Ellis & Gibbs, 1989; Sun & Ellis, 1998). This is
an optimistic mechanism that replicates documents at
each node and allows local operations to be performed
immediately. Concurrent remote operations are trans-
formed before execution so that both local and remote
editing results are preserved. To resolve conflicting
events in a replicated DIA while minimizing latency and
maximizing response time, Roberts et al. (1995) pro-
posed a prediction-based concurrency control scheme.
For one object to interact with another object in a DIA,
the object initializing the interaction must possess a key
(or token) to obtain ownership of the other object. In a
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DIA there is therefore a delay in requesting and receiv-
ing this key as it must be sent across the network, which
makes it difficult to interact with the object on the first
attempt. To combat this delay, Roberts and Sharkey
used predictive time management to request the key
before the interaction actually takes place (Roberts &
Sharkey, 1997a). In their scheme the key unlocks a hier-
archy of related objects rather than just a single object.
They also propose a number of techniques to avoid un-
necessary passing of keys due to poor predictions.

In the prediction-based concurrency control scheme,
ownership requests for the key are multicast to all po-
tential owners of the object (Roberts & Sharkey,
1997a). The process associated with the entity gathers
all requests and predicts who the next owner will be.
Lee et al. (2000) extended this concurrency control
scheme by employing entity-based multicast and AOI.
The AOI defines a spatial distance around the entity
that currently possesses the key. All other entities in the
AOI are potential future owners of the key. As entities
enter/leave this AOI they join/leave the multicast
group associated with the entity. The next owner of the
key is then predicted from among all entities in the mul-
ticast group based on direction and predicted collision
time.

7 Concluding Remarks

This paper is Part I of a two-part paper that exam-
ines the issues of latency and consistency in the context
of distributed interactive applications. Furthermore it
describes various techniques and mechanisms that re-
searchers have used to improve consistency and reduce
latency effects. A classification for these mechanisms was
proposed, based on three distinct categories—time
management, information management, and system
architecture. Part I of this paper explored the category
of time management and the various forms that this has
taken in much of the research over recent decades. The
choice of technique depends on the application area
and, in particular, on the type of interaction required by
participants. Each technique has its advantages and dis-
advantages. Delaying the execution of events, rolling

back events, or warping the physical environment all
impact the experience of users participating in the DIA.
It is therefore in the interest of the designers of such
applications to balance consistency, responsiveness, and
fidelity in the face of network latency. Part II of this
paper continues with an examination of the two remain-
ing categories of consistency maintenance mechanisms.
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Frécon, E. (2004a). Dive on the internet. Doctoral disserta-
tion, Swedish Institute of Computer Science, IT University of
Goteborg, Goteborg, Sweden.
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Frécon, E., & Stenius, M. (1998). DIVE: A scalable network
architecture for distributed virtual environments. Distrib-
uted Systems Engineering Journal, 5, 91–100.

Fujimoto, R. M. (1990). Parallel discrete event simulation.
Communications of the ACM, 33(10), 30–53.

Fujimoto, R. M. (2001). Parallel and distributed systems.
Winter Simulation Conference, 147–157.

Funkhouser, T. A. (1995). RING: A client-server system for
multiuser virtual environments. Symposium on Interactive
3D Graphics, 85–92.

Garcia, P., Montala, O., Pairot, C., Rallo, R., & Skarmeta,
A. G. (2002). MOVE: Component groupware foundations
for collaborative virtual environments. 4th International

Delaney et al. 231



Conference on Collaborative Virtual Environments (CVE02),
55–62.

Gautier, L., & Diot, C. (1998). Design and evaluation of
MiMaze, a multi-player game on the internet. International
Conference on Multimedia Computing and Systems (ICMCS
’98), 233–236.

Gautier, L., Diot, C., & Kurose, J. (1999). End-to-end trans-
mission control mechanisms for multiparty interactive appli-
cations on the internet. 18th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM
’99), 1470–1479.

Greenberg, S., & Marwood, D. (1994). Real time groupware
as a distributed system: Concurrency control and its effect
on the interface. Computer Supported Cooperative Work
(CSCW ’94), 207–218.

Greenhalgh, C., & Benford, S. (1995). MASSIVE: A collabo-
rative virtual environment for teleconferencing. ACM
Transactions on Computer-Human Interaction (TOCHI),
2(3), 239–261.

Greenhalgh, C., Purbick, J., & Snowdon, D. (2000). Inside
MASSIVE-3: Flexible support for data consistency and
world structuring. 3rd International Conference on Collabo-
rative Virtual Environments, 119–127.

Greif, I. (1988). Computer-supported cooperative work: A
book of readings. San Mateo, CA: Morgan Kaufmann.

Gutwin, C. (2001). The effects of network delays on group
work in real-time groupware. Seventh European Conference
on Computer-Supported Cooperative Work (ECSCW ’01),
(pp. 299–318) Dordrecht, The Netherlands: Kluwer.

Hecker, C., & Simpson, Z. B. (2001). Dead reckoning a.k.a.
motion prediction. Game Developer, 8(2), 10.

Henderson, T. N. H. (2003). The effects of relative delay in
networked games. Doctoral dissertation, Department of
Computer Science, University College, London.

Holbrook, H. W., Singhal, S. K., & Cheriton, D. R. (1995).
Log-based receiver-reliable multicast for distributed interac-
tive simulation. ACM SIGCOMM Computer Communica-
tions Review, 25(4), 328–334.

IEEE. (1993). IEEE standard for distributed interactive simu-
lation—Application protocols. IEEE Std 1278-1993I. New
York: IEEE.

IEEE. (1995). IEEE standard for distributed interactive simu-
lation—Application protocols. IEEE Std 1278.1-1995 (Revi-
sion of IEEE Std 1278-1993). New York: IEEE.

Jefferson, D. R. (1985). Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3), 404–425.

Jefferson, D. R. (1989). Virtual time. ACM Transactions on
Programming Languages and Systems, 7(1), 404–425.

Jefferson, D. R. (1990). Virtual time II: Storage management
in distributed simulation. 9th Annual Symposium on Princi-
ples of Distributed Computing, 75–89.

Jehaes, T., De Vleeschauwer, D., Coppens, T., Van
Doorselaer, B., Deckers, E., Naudts W., et al. (2003). Ac-
cess network delay in networked games. 2nd Workshop on
Network and System Support for Networked Games (Net-
Games ’03), 63–71.

Joslin, C., Di Giacomo, T., & Magnenat-Thalmann, N.
(2004). Collaborative virtual environments: From birth to
standardization. IEEE Communications Magazine, 44, 28–
33.

Joslin, C., Molet, T., Thalmann, N., Esmerado, J., Thalmann,
D., Palmer, I., et al. (2001). Sharing magnetic attractions
on the net with VPark. IEEE Computer Graphics and Appli-
cations, 21(1), 61–71.

Kelly, T. (1997). Dr. T: A communications infrastructure for
distributed interactive applications. Available at http://
ai.eecs.umich.edu/�kelly/papers/.

Krumm-Heller, A., & Taylor, S. (2000). Using determinism
to improve the accuracy of dead reckoning algorithms. Sim-
TecT2000—The Simulation Technology and Training Con-
ference.

Lamport, L. (1978). Time clocks and the ordering of events
in a distributed system. Communications of the ACM, 21(7),
558–565.

Lee, D., Lim, M., & Han, S. (2002). ATLAS—A scalable net-
work framework for distributed virtual environments. 4th
International Conference on Collaborative Virtual Environ-
ments (CVE02), 47–54.

Lee, D., Yang, J., Yoon, H. Y., Yu, C., & Hyun, S. J. (2000).
Entity-centric scalable concurrency control for distributed
interactive applications. International Performance, Com-
puting, and Communications Conference (IPCCC ’00),
544–550.

Leigh, J., Yu, O., Schonfeld, D., Ansari, R., He, E., Nayak,
A., et al. (2001). Adaptive networking for tele-immersion.
5th Immersive Projection Technology/7th Eurographics Vir-
tual Environments Workshop (IPT/EGVE).

Levient, J. I., & Watro, R. J. (1993). Mathematical founda-
tions for time warp systems. ACM Transactions on Program-
ming Languages and Systems, 15(5), 771–794.

Lin, Y.-B., & Lazowska, E. D. (1991). A study of time warp
rollback mechanisms. ACM Transactions on Modelling and
Computer Simulation, 1(1), 51–72.

232 PRESENCE: VOLUME 15, NUMBER 2



Lui, J. C. S. (2001). Constructing communication subgraphs
and deriving an optimal synchronization interval for distrib-
uted virtual environment systems. IEEE Transactions on
Knowledge and Data Engineering, 13(5), 778–792.

MacColl, I., Millard, D., Randell, C., & Steed, A. (2002).
Shared visiting in EQUATOR City. 4th International Con-
ference on Collaborative Virtual Environments (CVE02),
88–94.

Macedonia, M. R. (1995). A network software architecture for
large scale virtual environments. Doctoral dissertation, De-
partment of Computer Science, Naval Postgraduate School,
Monterey, California.

Macedonia, M., & Zyda, M. (1997). A taxonomy for networked
virtual environments. IEEE Multimedia, 4(1), 48–56.

Macedonia, M. R., Zyda, M. J., Pratt, D. R., Barham, P. T.,
& Zeswitz, S. (1994). NPSNET: A network software archi-
tecture for large scale virtual environments. Presence: Teleop-
erators and Virtual Environments, 3(4), 265–287.

Manninen, T. (2000). Interaction in networked virtual envi-
ronments as communicative action: Social theory and multi-
player games. 6th International Workshop on Groupware
(CRIWG2000), 154–157.

Margery, D., Arnaldi, B., & Plouzeau, N. (1999). A general
framework for cooperative manipulation in virtual environ-
ments. Eurographics Workshop, 169–178.

Martin, H. S., McGregor, A. J., & Cleary, J. G. (2000). Anal-
ysis of internet delay times. 1st Passive and Active Measure-
ments Workshop (PAM ’00), 141–149.

Mattern, F. (1988). Virtual time and global states of distrib-
uted systems. International Workshop on Parallel and Dis-
tributed Algorithms, 215–226.

Mauve, M. (2000a). Consistency in replicated continuous in-
teractive media. Computer Supported Cooperative Work
(CSCW ’00), 181–190.

Mauve, M. (2000b). Distributed interactive media. Doctoral
dissertation, University of Mannheim, Berlin.

Mauve, M., Hilt, V., Kuhmunch, C., & Effelsberg, W.
(2001). RTP/I — Towards a common application level
protocol for distributed interactive media. IEEE Transac-
tions on Multimedia, 3(1), 152–161.

Mauve, M., Vogel, J., Hilt, V., & Effelsberg, W. (2002). Local-
lag and timewarp: Providing consistency for replicated contin-
uous applications. IEEE Transactions on Multimedia, 2002.

Mauve, M., Vogel, J., Hilt, V., & Effelsberg, W. (2004). Lo-
cal-lag and timewarp: Providing consistency for replicated
continuous applications. IEEE Transactions on Multimedia,
6(1), 47–57.

McCoy, A., Delaney, D., & Ward, T. (2003). Game-state fi-
delity across distributed interactive games. ACM Crossroads,
Networking Issue, 9(4), 4–9.

Meehan, M., Razzzaque, S., Whitton, M. C., & Brooks,
F. P. J. (2003). Effect of latency on presence in stressful
virtual environments. Virtual Reality (VR ’03), 141–148.

Mills, D. L. (1991). Internet time synchronization: The net-
work time protocol. IEEE Transactions on Communications,
39(10), 1482–1493.

Natrajan, A., & Reynolds, P. F. Jr. (1999). Resolving concurrent
interactions. 3rd International Workshop on Distributed Simu-
lation and Real Time Applications (DS-RT ’99) 85–92.

Park, K. S., & Kenyon, R. V. (1999). Effects of network char-
acteristics on human performance in a collaborative virtual
environment. Virtual Reality (VR ’99), 104–111.

Pullen, J. M., & Wood, D. C. (1995). Network technology
and DIS. Proceedings of the IEEE 83(83), 1156–1167.

Qin, X. (2002). Delayed consistency model for distributed
interactive systems with real-time continuous media. Jour-
nal of Software, 13(6), 1029–1039.

Radhakrishnan, R., & Wilsey, P. A. (1999). Ruminations on
the implications of multi-resolution modelling on DIS/
HLA. 3rd International Workshop on Distributed Simulation
and Real Time Applications (DS-RT ’99), 101–108.

Raynal, M., & Singhal, M. (1996). Logical time: Capturing
causality in distributed systems. Computer, 29(2), 49–56.

Riva, G., & Gamberini, L. (2001). Virtual reality in telemedi-
cine. Telemedicine Journal and e-Health, 6(3), 327–340.

Roberts, D. J. (2004). Communication infrastructures for in-
habited information spaces. In D. N. Snowdon, E. F.
Churchill, & E. Frecon, (eds.), Inhabited information
spaces: Living with your data (Computer Supported Cooper-
ative Work), pp. 233–267. London: Springer-Verlag.

Roberts, D. J., & Sharkey, P. M. (1997a). Maximizing concur-
rency and scalability in a consistent, causal, distributed virtual
reality system, whilst minimizing the effect of network delays.
6th Workshop on Enabling Technologies on Infrastructure for
Collaborative Enterprises (WET-ICE ’97), 161–166.

Roberts, D. J., & Sharkey, P. M. (1997b). Minimizing the
latency induced by consistency control within a large scale
multi-user distributed virtual reality system. IEEE Confer-
ence on Systems, Man and Cybernetics, 5, 4492–4497.

Roberts, D. J., Sharkey, P. M., & Sandoz, P. D. (1995). A
real-time predictive architecture for distributed virtual real-
ity. 1st Workshop on Simulation and Interaction in Virtual
Environments, 279–288.

Roza, M., Voogd, J., Jense, H., & van Gool, P. (1999). Fidel-

Delaney et al. 233



ity requirements specification: A process oriented view. Fall
Simulation Interoperability Workshop, paper 99F-SIW-032.

Sandoz, P. D., Sharkey, P. M., & Roberts, D. J. (1996). Col-
lision prediction of a moving object within a virtual world.
Virtual Reality World 96.

Schwarz, R., & Mattern, F. (1994). Detecting causal relation-
ships in distributed computations: In search of the holy
grail. Distributed Computing, 7(3) 149–174.

Sharkey, P. M., Ryan, M. D., & Roberts, D. J. (1998). A local
perception filter for distributed virtual environments. Vir-
tual Reality Annual International Symposium (VRAIS ’98),
242–249.

Shneiderman, B. (1984). Response time and display rate in
human performance with computers. Computing Surveys,
16(3), 625–685.

Singhal, S. K. (1996). Effective remote modeling in large-scale
distributed simulation and visualization environments. Doc-
toral dissertation, Stanford University, Stanford, California.

Singhal, S. K., & Zyda, M. (1999). Networked virtual envi-
ronments. New York: ACM Press.

Smed, J., Kaukoranta, T., & Hakonen, H. (2001). Aspects of
networking in multiplayer computer games. International
Conference on Application and Development of Computer
Games in the 21st Century, 74–81.

Snowdon, D., Greenhalgh, C., Benford, S., Bullock, A., &
Brown, C. (1996). A review of distributed architectures for
networked virtual reality. Virtual Reality: Research, Develop-
ment and Applications, 2(1), 155–175.

Steinman, J. S. (1993). Breathing Time Warp. 7th Interna-
tional Workshop on Parallel and Distributed Simulation
(PADS93), 109–118.

Stytz, M. R. (1996). Distributed virtual environments. IEEE
Computer Graphics and Applications, 16(3), 19–31.

Sun, C., & Chen, D. (2002). Consistency maintenance in real-
time collaborative graphics editing systems. ACM Transactions
on Computer-Human Interaction (TOCHI), 9(1), 1–41.

Sun, C., & Ellis, C. A. (1998). Operational transformation in

real-time group editors: Issues, algorithms and achievements.
Computer Supported Cooperative Work (CSCW ’98), 59–68.

Sun, C., Jia, X., Zhang, Y., Yang, Y., & Chen, D. (1998).
Achieving convergence, causality preservation and intention
preservation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction (TOCHI),
5(1), 63–108.

Tawfik, H., & Fernando, T. (2001). A simulation environ-
ment for construction site planning. 5th International In-
formation Visualisation Conference, 199–204.

Tse-Au, E. S. H., & Morreale, P. A. (2000). End-to-end QoS mea-
surement: Analytic methodology of application response time vs.
tunable latency in IP neworks. IEEE/IFIP Network Operations
and Management Symposium (NOMS ’00), 129–142.

Vaghi, I., Greenhalgh, C., & Benford, S. (1999). Coping with
inconsistency due to network delays in collaborative virtual
environments. Symposium on Virtual Reality Software and
Technology (VSRT ’99), 42–49.

Vogel, J., Mauve, M., Hilt, V., & Effelsberg, W. (2003). Late
join algorithms for distributed interactive applications. Mul-
timedia Systems, 9(4), 327–336.

Waters, R. C., & Barrus, J. W. (1997). The rise of shared vir-
tual environments. IEEE Spectrum, 34(3), 20–25.

Wloka, M. (1995). Lag in multiprocessor VR. Presence: Tele-
operators and Virtual Environments, 4(1), 50–63.

Worthington, B. G., & Roberts, D. J. (2000). Encapsulating
network latency compensators in VRML. Virtual Worlds
and Simulation Conference (VWSIM ’00),

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of
modeling and simulation. San Diego, CA: Academic Press.

Zhou, S. P., Cai, W. T., Lee, F. B. S., & Turner, S. J. (2001).
Consistency in distributed interactive applications. European
Simulation Interoperability Workshop 2001 (Euro-SIW
2001), 01E-SIW-003.

Zhou, S., Cai, W., Lee, B.-S., & Turner, S. J. (2003). Time-
space consistency in large scale distributed virtual environ-
ment. ACM Transactions on Modeling and Computer Simu-
lation, 14(1), 31–47.

234 PRESENCE: VOLUME 15, NUMBER 2


