

TurKit: Human Computation Algorithms
 on Mechanical Turk

Greg Little1, Lydia B. Chilton2, Max Goldman1, Robert C. Miller1

1MIT CSAIL
Cambridge, MA

{glittle, maxg, rcm}@mit.edu

2University of Washington

Seattle, WA
hmslydia@cs.washington.edu

ABSTRACT
Mechanical Turk (MTurk) provides an on-demand source
of human computation. This provides a tremendous oppor-
tunity to explore algorithms which incorporate human
computation as a function call. However, various systems
challenges make this difficult in practice, and most uses of
MTurk post large numbers of independent tasks. TurKit is
a toolkit for prototyping and exploring algorithmic human
computation, while maintaining a straight-forward impera-
tive programming style. We present the crash-and-rerun
programming model that makes TurKit possible, along
with a variety of applications for human computation algo-
rithms. We also present case studies of TurKit used for real
experiments across different fields.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Prototyping.

General terms: Algorithms, Design, Experimentation

Keywords: Human computation, MTurk, toolkit

INTRODUCTION
Human computation – delegating certain functions in a
computer system to human beings – has the potential to
collect, organize, and validate information where comput-
ers alone fall short. Several successful systems already illu-
strate the power of human computation [e.g. 1, 2, 3, 18],
but each has a particular workflow and interface for collect-
ing and using human input that is specific to its goals. As
we explore the growing potential of human computation,
new algorithms and workflows will need to be created and
tested. TurKit makes it easy to prototype new human com-
putation algorithms, as shown in Figure 1.

TurKit uses Amazon’s Mechanical Turk (MTurk): a flexi-
ble platform capable of supporting many kinds of human
computation. Requesters post short (as short as 10 second)
human intelligence tasks (HITs). Workers on MTurk (turk-

ers) get paid small amounts of money (as low as $0.01) to
complete HITs of their choice. Typical tasks include image
labeling, audio transcription, and writing product reviews.

Currently, MTurk is used almost exclusively for indepen-
dent tasks. Requesters post a group of HITs that can be
done in parallel, such as labeling 1000 images. These are
very simple processes – much simpler than other platforms
for human computation such as Wikipedia where contribu-
tors maintain and iterate on each other's work, and the ESP
game [2] where players work together to label images.
However, MTurk is a flexible platform, and given the right
tools, more sophisticated processes could be implemented.
Instead of independent, parallel tasks, MTurk could support
iterative, sequential tasks such as iterating on an image
description. More generally, we could write algorithms
dictating the flow of human computation to achieve larger
goals. Workers could generate many initial image descrip-
tions, other workers could then vote on the best of the set,
and begin iterating on the highest rated initial description.
Using a composition of primitive human computation tasks
such as soliciting content, voting, and improving content,
we can implement a rich space of algorithms that coordi-
nate human computation toward some larger goal.

ideas = []
for (var i = 0; i < 5; i++) {
 idea = mturk.prompt(
 "What’s fun to see in New York City?
 Ideas so far: " + ideas.join(", "))
 ideas.push(idea)
}

ideas.sort(function (a, b) {
 v = mturk.vote("Which is better?", [a, b])
 return v == a ? ‐1 : 1
})

Figure 1: A TurKit script for a human computation
algorithm with two simple steps: generating ideas
for things to see in New York City from 5 different
workers, and getting workers to sort the list by vot-
ing between ideas.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10...$10.00.

57

Unfortunately, MTurk tasks take time to complete, and cost
money to create, which makes programming complicated
workflows more difficult, while at the same time making
reliability more important. TurKit incorporates a unique
crash-and-rerun programming model to help overcome
these systems challenges. In this model, a program can be
executed many times, without repeating costly work.
Crash-and-rerun allows the programmer to write imperative
programs in which calls to MTurk appear as ordinary func-
tion calls, so that programmers can leverage their existing
programming skills.

TurKit's programming model allows exploration of new
ideas in human computation algorithms on MTurk, such as
iterative workflows and multi-phase task decompositions.
TurKit is already being used by researchers in computer
science and other fields to manage more sophisticated
coordination between workers than typical MTurk tasks.

This paper makes the following contributions:

 TurKit Script: An API for algorithmic MTurk tasks.

 Crash-and-Rerun Programming: A programming
model suited to algorithmic use of human computation,
addressing issues related to high-cost and high-latency
steps involving humans.

 TurKit Online: A public web GUI for running and
managing TurKit scripts.

We also illustrate the power of TurKit in two ways:

 Example Applications: Examples of algorithmic tasks
explored in our lab, as well as algorithmic tasks ex-
plored by people outside our lab using TurKit.

 Performance Evaluation: An evaluation of TurKit's
performance drawn from a corpus of 20 scripts posting
almost 30,000 tasks over the past year.

In this paper we review work related both to human compu-
tation and to distributed programming models. We then
describe TurKit Script – a language for authoring human
computation algorithms – and detail how crash-and-rerun
programming achieves the guarantees of TurKit Script. To
demonstrate the uses of this toolkit, we present our own
experiments using iterative tasks and the results of inde-
pendent TurKit users.

RELATED WORK
Human Computation
All human computation systems involve many workers
making small contributions toward a goal. A variety of
platforms for human computation have been developed and
studied: Games with a Purpose [1], Wikipedia [5] [12], and
MTurk [10] [11] [16] [19] [20]. Quinn and Bederson give a
good overview of these and other distributed human com-
putation systems [17].

Many human computation tasks, such as image labeling,
are entirely parallel – tasks do not depend on each other.
Human computation algorithms involve more complicated
orchestration of human effort, where workers build on each

other’s work. Kosorukoff uses humans in genetic algo-
rithms [14]. Wikipedia is a platform for soliciting iterative
human computation. Each article involves many humans
adding, improving and moderating content. However, Wi-
kipedia does not contain an explicit algorithm to coordinate
worker’s efforts, but rather an interface that allows it.

TurKit is a toolkit for writing human computation algo-
rithms. TurKit can support both human genetic algorithms,
and Wikipedia-style iterative document editing. It can also
be used to experiment with new algorithms, application
areas and optimizations. Already Dai, Mausam and Weld
[7] have proposed decision-theoretic improvements to hu-
man computation algorithms that could be encoded and
tested empirically using TurKit. Soylent [4] uses TurKit to
explore human computation algorithms for word
processing, and proposes some high level design patterns
for algorithms in similar domains.

Programming Model
Crash-and-rerun programming is the backbone of TurKit
Script. It is a method for allowing a script to be re-
executed without re-running costly side-effecting functions.
It is unique because the challenges of operating with human
computation are unique, but it is related to programming
languages that store execution state, and resume execution
in response to events.

IGOR [9] supports reversible execution, where a debugger
can step-backward through steps in a program. Java Why-
line exhibits a caching behavior for answering causality
questions about a program after it has already executed
[13]. Our implementation is more light-weight, and does
not require instrumenting a virtual machine. Crash-and-
rerun programming is also similar to web application pro-
gramming. Web servers typically generate HTML for the
user and then “crash” (forget their state) until the next re-
quest. The server preserves state between requests in a da-
tabase. The difference is that crash-and-rerun programming
uses an imperative programming model, whereas web ap-
plications are generally written using an event-driven state-
machine model.

Some innovative web application frameworks allow for an
imperative model, including Struts Flow1 and Stateful
Django2. These and similar systems serialize continuations
between requests in order to preserve state; however, this
approach typically does not support modifications to the
program before restarting a continuation. This is less of an
issue for web services since the preserved state generally
deals with a single user over a small time-span, whereas
TurKit scripts may involve hundreds of people over several
days, where it is more important to be able to modify a
script between re-runs in order to fix bugs.

Crash-and-rerun programming is also related to scripting
languages for distributed systems, since they all need to

1 http://struts.apache.org/struts-sandbox/struts-flow/index.html
2 http://code.google.com/p/django-stateful/

58

deal with computation stretched over time. Twisted3 uses
“deferred computation” objects. SALSA4 uses an event-
driven model. Swarm5 uses Scala6, which implements port-
able continuations. TurKit's approach is similar to storing a
continuation, except that instead of storing the current state
of the program, it stores the trace leading up to the current
state. This approach is not suitable for many distributed
applications because it consumes more memory over time.
However, this simple implementation leads directly to the
ability to modify programs between re-runs, which turns
out to be useful for prototyping algorithms.

TURKIT SCRIPT
TurKit Script is an extension of JavaScript that introduces
functions for interacting with the MTurk platform. MTurk
provides an API for creating and removing HITs. TurKit
provides a thin wrapper around these basic features, and
also provides crucial higher-level calls not part of the
MTurk API. The most important of these functions is
waitForHIT, which allows a script to wait until a HIT is
completed. Without this, iterative programming would be
impossible. TurKit Script also provides several generally
useful functions: prompt, vote, and sort. Supporting
common subroutines helps make writing human computa-
tion algorithms easier. Additionally, TurKit supports fork
and join features for more easily implementing parallel
algorithms.

Turkit Script introduces the crash-and-rerun programming
model. Crash-and-rerun is an essential usability feature for
running and debugging human computation algorithms. It
affords the ability to do post-hoc print line debugging, edit-
and-continue style execution, and is highly fault tolerant.

CRASH-AND-RERUN PROGRAMMING
In crash-and-rerun programming, the script is executed
until it crashes. Every line that is successfully run is stored
in a database. After a crash, the program will automatically
rerun from the beginning. However, some of the steps of
the program may cost actual money and should not be re-
peated. In order to avoid the cost of rerunning human
computation steps, we look up the previous result in the
database. The programmer has control over whether a pre-
viously executed line is retrieved from the database or eva-
luated afresh. This control is primarily embodied in the
TurKit Script language feature once.

As an example of crash-and-rerun programming, consider a
standard quicksort algorithm that outsources comparisons
to MTurk (see Figure 2). In this scenario, a local algorithm
is making calls to an external system. Local computation is
cheap but the external calls cost money and must wait for
humans to complete work. The algorithm may need to run
for a long time waiting on these results.

3 http://twistedmatrix.com/
4 http://wcl.cs.rpi.edu/salsa/
5 http://code.google.com/p/swarm-dpl/
6 http://www.scala-lang.org/

The challenge in this scenario is managing state over a long
running process. This state can be kept in the heap, but this
is dangerous in case the machine reboots or the program
encounters an error. The error may be easy to fix, but all
the state up to that point is lost. State can be managed in a
database, but this complicates the programming model,
since we need to think about how to record and restore
state. This can be particularly cumbersome for recursive
algorithms like quicksort, which would require storing
some representation of the call stack in the database.

The insight of crash-and-rerun programming is that if our
program crashes, it is cheap to rerun the entire program up
to the place it crashed, since local computation is cheap.
This is true as long as rerunning does not re-perform all of
the costly external operations from the previous run.

The latter problem is solved by recording information in a
database every time a costly operation is executed. Costly
operations are marked by a new primitive called once,
meaning they should only be executed once over all reruns
of a program. Subsequent runs of the program check the
database before performing operations marked with once
to see if they have already been executed.

Note that this model requires the program to be determinis-
tic, since we are essentially storing complicated state in the
logic of the program itself, rather than storing it explicitly
in a database. Hence, once is important in these conditions:

 Non-determinism. Since all calls to once need to hap-
pen in the same order every time the program is ex-
ecuted, it is important that execution be deterministic.
Wrapping non-deterministic calls in once ensures that
their outcomes are the same in all subsequent runs of
the program (e.g. once Math.random()).

 High cost. The whole point of crash-and-rerun pro-
gramming is to avoid incurring more cost than neces-
sary. If a function is expensive (in terms of time or
money), then it is important to wrap it in once so that

quicksort(A)
 if A.length > 0
 pivot � A.remove(once A.randomIndex())
 left � new array
 right � new array
 for x in A
 if compare(x, pivot) A
 left.add(x)
 else
 right.add(x)
 quicksort(left)
 quicksort(right)
 A.set(left + pivot + right)
A

compare(a, b) A
 hitId � once createHIT(...a...b...)
 result � once getHITResult(hitId)
 return (result says a < b) A

Figure 2: Quicksort algorithm that outsources com-
parisons to MTurk, augmented with once to store
costly or nondeterministic results for later runs.

59

the program only pays that cost the first time the pro-
gram encounters the function call.

 Side-effects. If functions have side-effects, then it may
be important to wrap them in once if invoking the
side-effect multiple times will cause problems. For in-
stance, approving results from a HIT multiple times
causes an error from MTurk.

We can add once to our quicksort algorithm by marking
the non-deterministic random pivot selection, as well as the
expensive MTurk calls (see Figure 2). These modifications
maintain the imperative style of the algorithm. If the pro-
gram crashes at any point, then subsequent runs will en-
counter all calls to once in the same order as before. Any
calls which succeeded on a previous run of the program
will have a result stored in the database, which will be re-
turned immediately, rather than re-performing the costly or
non-deterministic operation inside once.

Since crashing is so inexpensive in this model, we can
crash instead of blocking. For instance, we implement get-
HITResult by crashing if the results are not ready, rather
than blocking until the results are ready. This works be-
cause once only stores results if the operation succeeds.

If the user needs to change an algorithm so that it is incom-
patible with a recorded sequence of once calls, then they
can clear the database, and start afresh. Once also tries to
detect when the database is out of sync with the program by
recording information about each operation, and ensuring
that the same operation is performed on subsequent runs. If
not, the program crashes, and the user is notified that the
database and program no longer agree.

TURKIT SCRIPT IMPLEMENTATION
TurKit Script is an extension of JavaScript that relies on the
crash-and-rerun programming model. Users have full
access to JavaScript, in addition to a set of APIs designed
around crash-and-rerun programming and MTurk. TurKit
supports crash-and-rerun programming in JavaScript by
providing the once function described in the previous sec-
tion. Once accepts a function as an argument, and calls
this function. If it returns without crashing, then the return
value is recorded in the database, and returned back to the
caller. Subsequent runs return the recorded value without
re-calling the function. Once also records which function
was passed to it so that it can ensure that the same function
is passed again on subsequent runs of the program. The
user is alerted if a change is detected in the sequence of
once calls. Unfortunately, TurKit cannot detect all function
re-orderings. For instance:
var a = once(function () { return Math.random() })
var b = once(function () { return Math.random() })

and
var b = once(function () { return Math.random() })
var a = once(function () { return Math.random() })

If the first version assigns 5 to a and 7 to b, then re-running
with the second version will assign 5 to b and 7 to a.

TurKit also provides a convenient way to crash a script.
The crash function throws a "crash" exception. Crash is
most commonly called when external data is not ready,
e.g., tasks on MTurk are not complete.

TurKit automatically reruns the script after an adjustable
time interval. Rerunning the script effectively polls MTurk
to see if any tasks have completed. In addition, the online
version of TurKit receives notifications from MTurk when
tasks complete, and reruns any scripts waiting on these
tasks.

Parallelism
Although TurKit is single-threaded, and the programmer
does not need to worry about real concurrency in the sense
of multiple paths of execution running at the same time, it
does provide a mechanism for simulating simple paral-
lelism. This is done using fork, which creates a new
branch in the recorded execution trace. If crash is called
inside this branch, the script resumes execution of the for-
mer branch. Note that fork can be called within a fork to
create a tree of branches that the script will follow.

Fork is useful in cases where a user wants to run several
processes in parallel. For instance, they may want to post
multiple HITs on MTurk at the same time, and have the
script make progress on whichever path gets a result first.
For example, consider the following code:
a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B
c = createHITAndWait() // HIT C

Currently, HITs A and B must complete before HIT C is
created, even though HIT C does not depend on the results
from HITs A or B. We can instead create HIT A and C on
the first run of the script using fork as follows:
fork(function () {
 a = createHITAndWait() // HIT A
 b = createHITAndWait(...a...) // HIT B
})
fork(function () {
 c = createHITAndWait() // HIT C
})

The first time around, TurKit would get to the first fork,
create HIT A, and try to wait for it. It would not be done, so
it would crash that forked branch (rather than actually wait-
ing), and then the next fork would create HIT C. So on the
first run of the script, HITs A and C will be created, and all
subsequent runs will check each HIT to see if it is done.

TurKit also provides a join function, which ensures that a
series of forks have all finished. The join function ensures
that all the previous forks along the current path did not
terminate prematurely. If any of them crashed, then join
itself crashes the current path. In our example above, we
would use join if we had an additional HIT D that re-
quired results from both HITs B and C:
fork(... b = ...)
fork(... c = ...)
join()
D = createHITAndWait(...b...c...) // HIT D

60

ONLINE WEB INTERFACE
Figure 3 shows the TurKit web-based user interface, an
online IDE for writing TurKit scripts, running them, and
automatically rerunning them. The interface also has facili-
ties for managing projects, editing files, viewing output,
and managing the execution trace.

The run controls allow the user to run the project, and start
and stop automatic rerunning of the script. This is neces-
sary in the crash-and-rerun programming model since the
script is likely to crash the first time it runs, after creating a
HIT and seeing that the results for the HIT are not ready
yet. Starting automatic rerunning of the script will periodi-
cally run the script, effectively polling Mechancial Turk
until the results are ready.

There are also controls for switching between sandbox and
normal mode on MTurk, as well as clearing the database.
Together, these tools allow users to debug their scripts be-
fore letting them run unattended. Sandbox mode does not
cost money, and is used for testing HITs. Users typically
run a script in sandbox mode and complete the HITs them-
selves in the MTurk sandbox.

After the script appears to be working in the sandbox, the
programmer may reset the database. Resetting the database
clears the execution trace, and also deletes any outstanding
HITs or webpages created by the script. The user may then
run the script in normal mode, and it will create HITs again
on the real MTurk without any memory of having done so
in the sandbox. Reseting the database is also useful after
correcting major errors in the script that invalidate the rec-
orded execution trace.

The execution trace panel shows a tree view representing
the recorded actions in previous runs of the script. Note that
calling fork creates a new branch in this tree. Some items
are links, allowing the user to see the results for certain
actions. In particular, createHIT has a link to the MTurk
webpage for the HIT, and the webpage.create function
has a link to the public webpage that was created.

New users can get started by cloning a project from the
panel in the lower-right. These projects demonstrate many
common programming idioms in TurKit. Users may modi-
fy their cloned version of these projects to suit their own
needs. There is also a link to the TurKit API for reference.

IMPLEMENTATION
TurKit is written in Java, using Rhino7 to interpret Java-
Script code, and E4X8 to handle XML results from MTurk.
State is persisted between runs of a TurKit script by seria-
lizing a designated global variable called db as JSON.

The crash-and-rerun module makes use of db to store re-
sults between runs of the script. The basic idea is to record
a trace of once calls in an array. As the script runs, we
maintain a pointer to the next location in this array. When
once is called, it checks the information stored at the next
location in the trace. If there is a return value there, it re-
turns this immediately. Otherwise, it calls the function
passed as a parameter to once. If the function succeeds,
then it writes information about this call into the trace. Af-

7 http://www.mozilla.org/rhino/
8 http://en.wikipedia.org/wiki/ECMAScript_for_XML

Figure 3: The TurKit web user interface, an online IDE for writing and running TurKit scripts.

61

ter the call to once completes, the pointer moves to the
next location in the trace.

Implementing fork requires managing a stack of instruc-
tion pointers. Fork also consumes an element in the array
of once calls, except instead of storing a return value there,
it stores another array of once calls.

The crash function is implemented by throwing a “crash”
exception. This exception is caught internally by the fork
function, so that it can pop the forked branch off the stack
of instruction pointers, and return. If crash is ever called,
even if it is caught by a fork, then TurKit will schedule a
rerun of the script after some time interval.

The web-based GUI runs on Google App Engine9 (GAE).
This choice was made because it is a free scalable server,
and because it provides an easy way for users to log in us-
ing their existing Google account.

The web-app is built on top of TurKit, with extra security
enhancements. In particular, Rhino generally allows Java-
Script code to access Java directly. In order to protect users
from damaging the server, or accessing each other’s data,
we only allow access to a secure set of Java classes.

USING TURKIT
The simplest way to use MTurk in TurKit is with the
prompt function. This function shows a string of text to a
turker, and returns their response:
print(mturk.prompt(“Where is UIST 2010?”))

Prompt takes an optional argument specifying a number of
responses to be returned as an array, so we can ask 100
people for their favorite color like this:
mturk.prompt("What is your favorite color?", 100)

In addition to these high level functions, TurKit provides
wrappers around Amazon’s MTurk REST API. These
wrappers build on the crash-and-rerun library to make these
calls safe, e.g., the createHIT function calls once inter-
nally so that it only creates one HIT over all runs of a pro-
gram. These wrappers use the same naming conventions as
MTurk, and handle the job of converting XML responses
from Amazon into suitable JavaScript objects. TurKit also
provides a waitForHIT function which crashes unless the
results are ready. It is called wait because from the pro-
grammer’s perspective, it waits for the results to be ready
before returning.

Voting
The crash-and-rerun programming model allows us to en-
capsulate human computation algorithms into functions,
which can be used as building blocks for more sophisti-
cated algorithms.

One common building block is voting. We saw voting early
on in Figure 1, but did not explain how it worked. Consider
a simple voting function, where we want a best 3-out-of-5

9 http://code.google.com/appengine/

vote. This is possible using a single HIT with 5 assign-
ments (Amazon will ensure that each assignment is com-
pleted by a different turker). However, if we want to be
even more cost efficient, we could ask for just 3 votes, and
only ask for additional votes if the first 3 are not the same.
This implies a simple algorithm:
function vote(message, options) {
 // create comparison HIT
 var h = mturk.createHITAndWait({
 ...message...options...
 assignments : 3})

 // get enough votes
 while (...votes for best option < 3...) {
 mturk.extendHIT(...add assignment...)
 h = mturk.waitForHIT(h)
 }

 // cleanup and return
 mturk.deleteHIT(h)
 return ...best option...
}

TurKit’s version of this function takes an optional third
parameter to indicate the number of votes required for a
single option. One could also imagine extending this func-
tion to support different voting schemes.

Sorting
Another building block is sorting. A first attempt at sorting
is simple using the crash-and-rerun model. We just take
JavaScript’s sort function and pass in our own comparator.
Recall from Figure 1:
ideas.sort(function (a, b) {
 v = mturk.vote("Which is better?", [a, b])
 return v == a ? ‐1 : 1
})

One problem with this approach is that all of the compari-
sons are performed serially, and there is no good way to get
around this using JavaScript’s sort function because it
requires knowing the results of each comparison before
making additional comparisons. However, in TurKit we
can implement a parallel quicksort, as shown in Figure 4.
This implementation is fairly straightforward, and shows
where TurKit’s parallel programming model succeeds.
Limits of this approach are discussed more in the discus-
sion section.

Creating Interfaces for Turkers
The high level functions described so far use MTurk’s cus-
tom language for creating interfaces for turkers. However,
more complicated UIs involving JavaScript or CSS require
custom webpages, which MTurk will display to turkers in
an iframe.

TurKit provides methods for generating webpages and
hosting them on TurKit’s server. Users may create web-
pages from raw HTML, or use templates provided by Tur-
Kit to generate webpages with common features.

One basic template feature is to disable all form elements
when a HIT is being previewed. MTurk provides a preview
mode so that turkers can view HITs before deciding to

62

work on them, but turkers may accidently fill out the form
in preview mode if they are not prevented from doing so.

TurKit also provides a mechanism for blocking specific
turkers from doing specific HITs. This is useful when an
algorithm wants to prevent turkers who generated content
from voting on that content. This feature is implemented at
the webpage level (in JavaScript) as a temporary fix until
Amazon adds this functionality to their core API.

EXAMPLE APPLICATIONS
This section describes applications we have explored using
TurKit, as well as use cases outside our group.

Iterative Writing
TurKit has been used to run many experiments that involve
asking one turker to write a paragraph with some goal. The
process then shows the paragraph to another person, and
asks them to improve it. The process also has people vote
between iterations, so that we eliminate contributions that
don’t actually improve the paragraph. This process is run
for some number of iterations. Figure 5 shows template
code for a simple version of this algorithm. We have run
many scripts like this to describe images (see Figure 6).
These scripts are slightly more complicated because we
need to generate a UI displaying an image.

From our iterative paragraph writing experiments [15], we
have observed that most improvements involve making the
paragraph longer (note that we limit the size to 500 charac-
ters). Also, people tend to keep the style and formatting
introduced by earlier turkers in an iterative sequence.

Blurry Text Recognition
As another example of an iterative task using a similar
structure, but achieving a different goal, consider the task
of doing hard OCR. This is similar to reCAPTCHA [3],
except it may work when the text is so unreadable that con-

text and seeing other people’s guesses may be necessary to
decipher the passage. Figure 7 shows an example transcrip-
tion of an artificially blurred passage.

We can see the guesses evolve over several iterations, and
the final result is almost perfect. We have had good success
getting turkers to translate difficult passages, though there
is room for improvement. For instance, if one turker early
in the process makes poor guesses, these guesses can lead
subsequent turkers astray.

quicksort(a) {
 if (a.length == 0) return
 var pivot = a.remove(once(function () {
 return Math.floor(a.length * Math.random())
 }))
 var left = [], right = []
 for (var i = 0; i < a.length; i++) {
 fork(function () {
 if (vote("Which is best?",
 [a[i], pivot]) == a[i]) {
 right.push(a[i])
 } else {
 left.push(a[i])
 }
 })
 }
 join()
 fork(function () { quicksort(left) })
 fork(function () { quicksort(right) })
 join()
 a.set(left.concat([pivot]).concat(right))
}

Figure 4: A parallel quicksort in TurKit using fork
and join.

// generate a description of X
// and iterate it N times
var text = ""
for (var i = 0; i < N; i++) {
 // generate new text
 var newText = mturk.prompt(
 "Please write/improve this paragraph
 describing " + X + ": " + text)

 // decide whether to keep it
 if (vote(“Which describes " + X + " better?",
 [text, newText]) == newText) {
 text = newText
 }
}

Figure 5: Template for a simple iterative text im-
provement algorithm.

Iteration 1: Lightening strike in a blue sky near a tree and a building.
Iteration 2: The image depicts a strike of fork lightening, striking a

blue sky over a silhoutted building and trees. (4/5 votes)
Iteration 3: The image depicts a strike of fork lightning, against a

blue sky with a few white clouds over a silhouetted building and
trees. (5/5 votes)

Iteration 4: The image depicts a strike of fork lightning, against a
blue sky- wonderful capture of the nature. (1/5 votes)

Iteration 5: This image shows a large white strike of lightning com-
ing down from a blue sky with the tops of the trees and rooftop
peaking from the bottom. (3/5 votes)

Iteration 6: This image shows a large white strike of lightning com-
ing down from a blue sky with the silhouettes of tops of the trees
and rooftop peeking from the bottom. The sky is a dark blue and
the lightening is a contrasting bright white. The lightening has
many arms of electricity coming off of it. (4/5 votes)

Figure 6: Iterative text improvement of an image.

63

Decision Theory Experimentation
TurKit has been used to coordinate a user study in a Mas-
ter’s thesis outside our lab by Manal Dia: “On Decision
Making in Tandem Networks” [8]. The thesis presents a
decision problem where each person in a sequence must
make a decision given information about the decision made
by the previous person in the sequence. Dia wanted to test
how well humans matched the theoretical optimal strategies
for this decision problem. Dia used TurKit to simulate the
problem using real humans on MTurk, and run 50 trials of
the problem for two conditions: with and without an option
of “I don’t know”. The first condition replicated the find-
ings of prior results that used classroom studies, and the
second condition found some interesting deviations in hu-
man behavior from the theoretical optimal strategy.

Dia found TurKit helpful for coordinating the iterative na-
ture of these experiments. However, she used an early ver-
sion of TurKit where the parallelization features were diffi-
cult to discover.

Psychophysics Experimentation
Phillip Isola, a PhD student in Brain and Cognitive Science,
is using TurKit to explore psychophysics. He is interested
in having turkers collaboratively sort, compare, and classify
various stimuli, in order to uncover salient dimensions in
those stimuli. For instance, if turkers naturally sort a set of
images from lightest to darkest, then we might guess that
brightness is a salient dimension for classifying images.
This work is related to the staircase-method in psychophys-
ics, where experimenters may iteratively adjust stimuli until
it is on the threshold of what a subject can perceive [6].

His current experiments involve using TurKit to run genetic
algorithms where humans perform both the mutation and

selection steps. For instance, he has evolved pleasant color
palettes by having some turkers change various colors in
randomly generated palettes, and other turkers select the
best from a small set of color palettes.

Isola found TurKit to be the right tool for these tasks, since
he needed to embed calls to MTurk in a larger algorithm.
However, he also used an early version of TurKit where the
parallelization features were difficult to discover. This issue
is discussed more in the Discussion section below.

PERFORMANCE EVALUATION
This paper claims that the programming model is good for
prototyping algorithmic tasks on MTurk, and that it sacri-
fices efficiency for programming usability. One question to
ask is whether the overhead is really as inconsequential as
we claim, and where it breaks down.

We consider a corpus of 20 TurKit experiments run over
the past year, including: iterative writing, blurry text recog-
nition, website clustering, brainstorming, and photo sorting.
These experiments paid turkers a total of $364.85 for
29,731 assignments across 3,829 HITs.

Figure 8 shows the round-trip time-to-completion for 1-
cent tasks posted on MTurk, which tend to be faster than
our higher paying tasks. The average is 4 minutes, where
82% take between 30 seconds and 5 minutes. About 0.1%
complete within 10 seconds. The fastest is 7 seconds.

Figure 9 gives a sense for how long TurKit scripts take to
rerun given a fully recorded execution trace, in addition to
how much memory they consume. Both of these charts are
in terms of the number of HITs created by a script. Note
that for every HIT created, there is an average of 6 calls to
once, and 7.8 assignments created. The largest script in our
corpus creates 956 HITs. It takes 10.6 seconds to rerun a

Figure 8: Time until the first assignment is com-
pleted for 2648 HITs with 1 cent reward. Five com-
pleted within 10 seconds.

Figure 9: Time and space requirements for 20 Tur-
Kit scripts, given the number of HITs created by
each script.

Iteration 4: TV is* *festival ____ was *two *me ____ , *but ____
*is ____ ____ TV ____ . I *two ____ tv ____ ____ ____
festival , ____ I ____ ____ is ____ it ____ *festival .

Iteration 6: TV is supposed to be bad for you , but I ____ watching
some TV *shows . I think some TV shows are *really
*advertising , and I ____ ____ is good for the ____

Iteration 12: TV is supposed to be bad for you , but I am watching
some TV shows . I think some TV shows are really entertaining ,
and I think it is good to be entertained .

Figure 7: Blurry text recognition. Errors are shown
in red. The error in iteration 12 should be “like”.

64

full trace, and the database file is 7.1MBs. It takes Rhino
0.91 seconds to parse and load the database into memory,
where the database expands to 25.8MBs.

This means that waiting for a single human takes an order
of magnitude longer than running most of our scripts,
which suggests that crash-and-rerun programming is suita-
ble for many applications. The slowest script is faster than
99% of our hit-completion times. Note that making the
script 10x slower would only be faster than 70% of hit-
completion times. For such a slow script, it may be worth
investigating options beyond the crash-and-rerun model.

DISCUSSION
We have iterated on TurKit for over a year, and received
feedback from a number of users, including four in our
group, and two outside our group, noted above. This sec-
tion discusses what we’ve learned, including some limita-
tions of TurKit, and areas for future work.

Crash-and-Rerun Benefits
In our use of crash-and-rerun programming, we have no-
ticed a few side benefits. First is incremental programming.
When a crash-and-rerun program crashes, it is unloaded
from the runtime system. This provides a convenient op-
portunity to modify the program before it is executed again,
as long as the modifications do not change the order of im-
portant operations that have already executed. TurKit pro-
grammers can take advantage of this fact to write the first
part of an algorithm, run it, view the results, and then de-
cide what the rest of the program should do with the results.

The second benefit is that crash-and-rerun programming is
easy-to-implement. It does not require any special runtime
system, language support, threads or synchronization. All
that is required is a database to store a sequence of results
from calls to once.

The final benefit is retroactive print-line-debugging. In
addition to adding code to the end of a program, it is also
possible to add code to parts of a program which have al-
ready executed. This is true because only expensive or non-
deterministic operations are recorded. Innocuous opera-
tions, like printing debugging information, are not record-
ed, since it is easy enough to simply re-perform these oper-
ations on subsequent runs of the program. This provides a
cheap and convenient means of debugging in which the
programmer adds print-line statements to a program which
has already executed, in order to understand where it went
wrong. This technique can also be used to retroactively
extract data from an experiment, and print it to a file for
analysis in an external program, like Excel.

Usability
The TurKit crash-and-rerun programming model makes it
easy to write simple scripts, but users have uncovered a
number of usability issues. First, even when users know
that a script will be rerun many times, it is not obvious that
it needs to be deterministic. In particular, it is not clear that
Math.random must be wrapped in once. This led us to
override Math.random with a wrapper that uses a random

seed the first time the script executes, and uses the same
seed on subsequent runs (until the database is reset).

Users were also often unclear about which aspects of a
TurKit script were stored in the execution trace, and which
parts could be modified or re-ordered. This was due primar-
ily to the fact that many functions in TurKit call once in-
ternally (such as createHIT and waitForHIT). We miti-
gated this problem by adding a view of the execution trace
to the GUI, making clear which aspects of the script were
recorded.

Finally, many early TurKit users did not know about the
parallel features of TurKit. Multiple users asked to be able
to create multiple HITs in a single run, and were surprised
to learn that they already could. The relevant function used
to be called attempt, a poor naming choice based on im-
plementation details, rather than the user’s mental model.
We renamed this function to fork. We also added join,
since most uses of the original attempt function would
employ code to check that all of the attempts had been suc-
cessful before moving on.

Scalability
The crash-and-rerun model favors usability over efficiency,
but does so at an inherent cost in scalability. Whereas a
conventional program could create HITs and wait for them
in an infinite loop, a crash-and-rerun program cannot. The
crash-and-rerun program will need to rerun all previous
iterations of the loop every time it re-executes, and even-
tually the space required to store this list of actions in the
database will be too large. Alternatively, the time it takes to
replay all of these actions will grow longer than the time it
takes to wait for a HIT to complete, in which case it may be
better to poll inside the script, rather than rerun it.

One way to overcome this barrier is to use continuations
and coroutines. Rhino supports first-class continuations,
which provide the ability to save and serialize the state of a
running script, even along multiple paths of execution.
Continuations could be saved after all important calls (like
createHIT), and a try-catch block around the entire script
would catch any exceptions and store all the continuations
in a database. The main drawback of this approach is that a
serialized continuation includes the code of the script, so it
cannot be reused if the script changes. This means that us-
ers could not incrementally modify their code between runs
of a program, or use retroactive print-line debugging.

Parallel Programming Model
Parallel programming in the crash-and-rerun model is not
completely general. For instance, we proposed a parallel
version of quicksort that performs the partition in parallel,
and then sorts each sublist in parallel. However, it joins
between partitioning the elements, and sorting the sublists.
In theory, this is not necessary. Once we have a few ele-
ments for a given sublist, we should be able to start sorting
it right away (provided that we chose a pivot from among
the elements that we have so far). Doing so is possible in

65

TurKit by storing extra state information in the database,
but seems infeasible using once, fork and join alone.

Experimental Replication
The crash-and-rerun programming model offers a couple of
interesting benefits for experimental replication using
MTurk. First, it is possible to give someone the source code
for a completed experiment, along with the database file.
This allows them to rerun the experiment without actually
making calls to MTurk. In this way, people can investigate
the methodology of an experiment in great detail, and even
introduce print-line statements retroactively to reveal more
information.

Second, users can use the source code alone to rerun the
experiment. This provides an exciting potential for experi-
mental replication where human subjects are involved,
since the experimental design is encoded as a program. We
post most of our experiments on the Deneme10 blog, along
with the TurKit code and database needed to rerun them.

Exploring New Algorithms
We have demonstrated basic ways in which TurKit can
aide in exploring human computation algorithms. This is a
vast space, with many possibilities. One could imagine a
multi-phased algorithm for writing an article that included
an outline, writing and proofreading phase. It may also be
interesting to explore possible interplays between human
computation and machine learning. Another avenue to ex-
plore is tasks where turkers themselves decide how to break
down a problem, which could result in highly autonomous
processes. We believe that there is great merit in experi-
menting with different human computation structures and
that TurKit can be a fundamental aide in that research.

CONCLUSION
TurKit is a toolkit for exploring human computation algo-
rithms on MTurk. We introduce the crash-and-rerun pro-
gramming model for writing fault-tolerant scripts, which
can be re-executed without repeating costly operations.
Using this model, TurKit Script allows users to write algo-
rithms in a straight-forward imperative programming style,
abstracting MTurk as a function call. We present a variety
of applications for TurKit, including real-world use cases
from outside our lab. We also provide a performance eval-
uation of TurKit, showing that TurKit is fast enough for
many prototyping applications, but may not scale to many
production applications.

The online version of TurKit is available now, as well as
the source code: turkit-online.appspot.com. In addition to
enhancing the TurKit UI and API, we are actively using
TurKit to continue exploring the field of human computa-
tion algorithms as future work.

ACKNOWLEDGMENTS
We would like to thank everyone who contributed to this
work, including Mark Ackerman, Michael Bernstein, Jeff-
rey Bigham, Thomas W. Malone, Robert Laubacher, Manal

10 http://groups.csail.mit.edu/uid/deneme/

Dia, Phillip Isola, all the TurKit users, and members of the
UID group. This work was supported in part by Xerox, by
the National Science Foundation under award number IIS-
0447800, by Quanta Computer as part of the TParty
project, and by the MIT Center for Collective Intelligence.
Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the authors and do
not necessarily reflect the views of the sponsors.

REFERENCES
1. von Ahn, L. Games With A Purpose. IEEE Computer Mag-

azine, June 2006. Pages 96-98.
2. von Ahn, L. and Dabbish, L. Labeling Images with a Comput-

er Game. ACM Conference on Human Factors in Computing
Systems, CHI 2004.

3. von Ahn, L., Maurer, B., McMillen, C., Abraham, D. and
Blum, M. reCAPTCHA: Human-Based Character Recognition
via Web Security Measures. Science, September 12, 2008. pp
1465-1468.

4. Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ack-
erman, M.S., Karger, D.R., Crowell, D., Panovich, K. “Soy-
lent: A Word Processor with a Crowd Inside”. UIST 2010.

5. Bryant, S.L., et al. Becoming Wikipedian: transformation of
participation in a collaborative online encyclopedia. GROUP
2005.

6. Cornsweet, T.N. The Staircase-Method in Psychophysics. The
American Journal of Psychology, Vol. 75, No. 3 (Sep., 1962),
pp. 485-491

7. Dai, P., Mausam, Weld, D.S. Decision-Theoretic Control of
Crowd-Sourced Workflows. AAAI 2010.

8. Dia, M.A. “On Decision Making in Tandem Networks”.
M.Eng. Thesis. Massachusetts Institute of Technology. 2009.

9. Feldman, S. I. and Brown, C. B. IGOR: a system for program
debugging via reversible execution. Proc. ACM SIGPLAN
Workshop on Parallel and Distributed Debugging. 1988.

10. Heer, J., Bostock, M. Crowdsourcing Graphical Perception:
Using MTurk to Assess Visualization Design. CHI 2010.

11. Kittur, A., Chi, E. H., and Suh, B. Crowdsourcing user studies
with MTurk. CHI 2008.

12. Kittur, A. and Kraut, R. E. Harnessing the wisdom of crowds
in wikipedia: quality through coordination. CSCW 2008.

13. Ko, A. J. and Myers, B. A. Finding causes of program output
with the Java Whyline. CHI 2009.

14. Kosorukoff A. Human based genetic algorithm. IlliGAL re-
port no. 2001004. UIUC, 2001.

15. Little, G., Chilton, L.B., Goldman, M. and Miller, R.C. Ex-
ploring Iterative and Parallel Human Computation Processes.
KDD-HCOMP 2010.

16. Mason, W. and Watts, D. J. Financial incentives and the “per-
formance of crowds”. KDD-HCOMP 2009.

17. Quinn, A. J., Bederson, B. B. A Taxonomy of Distributed
Human Computation. Technical Report HCIL-2009-23. Uni-
versity of Maryland. 2009.

18. Russell, B., Torralba, A., Murphy, K., Freeman, W. LabelMe:
a database and web-based tool for image annotation. Interna-
tional Journal of Computer Vision, Vol. 77, No. 1 (1 May
2008), pp. 157-173.

19. Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Y. Cheap
and fast---but is it good?: evaluating non-expert annotations
for natural language tasks. EMNLP 2008.

20. Sorokin, A. and D. Forsyth, “Utility data annotation with
Amazon MTurk”. CVPR 2008.

66

