Computer-Supported Cooperative Work

Michel Beaudouin-Lafon Université Paris-Sud

Thanks to Nicolas Roussel, INRIA

Humans are social beings ...

Groups structure human activity

Professional life: teams, management chain,

Private life: family, friends, sport teams, choir, etc.

Groups are more than the sum of their parts Division of labor

Take advantage of different expertise

Transfer of skills: learning

... but computers are (mostly) personal

Time-sharing systems create the illusion that each user has access to all the resources and do not support awareness of what other users are doing.

Example: file system

IBM SSEC, 1948

Don Norman

"Most work done on any complex entity is done by more than one person"

"Social impact of technology is hard to predict"

Augmenting the human intellect

1968: Engelbart and his colleagues NLS/Augment, a system that supported file sharing, personal annotations, electronic messaging, videoconferencing, screen sharing, telepointers, etc.

Emergence of a field

Software that supports group work

- Groupware (Johnson-Lenz, 1982)
- Computer Supported Cooperative Work (Greif & Cashman, 1984)

In French:

- Collecticiel
- Travail Coopératif Assisté par Ordinateur (TCAO)

Conferences: CSCW (ACM) and ECSCW since 1986 Journal of CSCW

Social definition

CSCW should be conceived as an endeavor to understand the nature and characteristics of cooperative work with the objective of designing adequate computer-based technologies. [...]

The focus is to *understand*, so as to *better support*, cooperative work.

Bannon et Schmidt, 1989

Engineering definition

Computer-based systems
that support
groups of people
engaged in
a common task (or goal)
and that provide
an interface to a shared environment

Ellis, Gibbs & Rein, 1991

Software definition

Groupware is distinguished from normal software by the basic assumption it makes: groupware makes the user aware that he is part of a group, while most other software seeks to hide and protect users from each other.

Lynch, Snyder & Vogel, 1990

Challenges

What should groupware systems do? How to design them? How do they affect use?

A multidisciplinary endeavor: sociology, ethnography, anthropology, design, computer science, etc.

Problems are both technical and human Solutions are both technical and human

A sample of groupware systems

Some groupware systems

- · e-mail, distribution lists
- discussion groups (EMISARI, 1976)
- · chat, talk, IRC
- · workflow systems
- · group calendars
- shared editors
- · audio-video communication systems
- argumentation tools
- · roomware, collaborative buildings
- · etc.

Workflow systems Managing a document across an organization Example: a document includes metadata describing its path through an organization - must be written by Anne by April 15 - must be proofread by Bob bt April 22 - must be approved by Charlie by April 29 - must be sent to Charlie by May 4 The document "knows its way" and can send reminders to the various people involved

Combine human intelligence with machine computation	
	notein rolding
Time and a section	
Time-space matrix	Johansen, 1988

Taxonomies

Several ways to classify systems:

- Time, space and size of the group
- Sharing (e.g., editors) vs. exchanging (e.g., email)
- Structured (e.g., workflow systems), vs. open (e.g., whiteboards)
- Strong vs. weak computer support

iiiie-spa	ne-space matrix Johanse		
	Same place	Different place	
Same time	face-to-face conversation	telephone call	
Different time	Post-it note	letter	

Challenges for groupware developers

- Who does the work vs. who gets the benefit
- · Critical mass and Prisoner's dilemma problems
- · Disruption of social processes
- Exception handling
- · Unobtrusive accessibility
- · Difficulty of evaluation
- · Failure of intuition
- · Careful adoption process

Some references

- C.A. Ellis, S.J. Gibbs, and G. Rein. "Groupware, some issues and experiences". *Communications of the ACM*, 34(1):39-58, January 1991.
- J. Grudin. "Groupware and social dynamics: Eight challenges for developers". Communications of the ACM, 37(1):92-105, January 1994.
- R. Baecker, editor. Readings in Groupware and Computer-Supported Cooperative Work: Assisting Human-Human Collaboration. Morgan-Kaufmann, December 1992. 882 pages.
- M. Beaudouin-Lafon, editor. Computer Supported Co-operative Work. John Wiley & Sons Ltd, 1999. 258 pages. http://www.lri.fr/~mbi/Trends-CSCW/