Groupware and Collaborative Interaction
Distributed Interactive Systems

Technical aspects

M2R Interaction - Université Paris-Sud - Année 2013-2014
Cédric Fleury (cedric.fleury@lri.fr)

Introduction
• Technical aspects of distributed interactive systems
 — Requirements redundant for all CSCW applications
 • Network architecture
 • Data distribution
 • Concurrency management
 • Etc.
• Collaborative virtual environment is a good example
 — Strong requirements
 • Users are interacting in real-time
 • Immersion requires fast multi-sensorial feedbacks
 — Lots of solutions have been proposed to overcome the technical issues

Collaborative Virtual Environments (CVE)
• Enable users to work or have fun together
• 2 kinds of collaboration in virtual environment (VE)
 — Co-located collaboration
 — Remote collaboration
• Aspects of collaboration
 — Awareness
 — Communications
 — Collaborative interaction

Collaborative Virtual Environments
• Users
 — Share the same virtual objects
 • 3D objects (with shape, texture, color, position, etc.)
 • 3D widgets (3D objects which can be used for interaction)
 • Annotations
 • Interaction tools (virtual ray of the others, etc.)
 — Need to interact together in real-time

Remote Collaboration

Collaboration requirements
• For efficient collaboration, users need to:
 — Have the same state of the virtual environment (virtual objects) at the same time
 ⇒ Consistency of the VE
 — Modify the virtual objects in real-time
 ⇒ Responsiveness of the system (interactivity)
Consistency

[Dolane et al., 2006]

- Distributed virtual environment
 = Distributed database of virtual objects with users modifying it in real-time
- Manage the consistency
 = Ensure that the database is the same for all users
- Inconsistencies due to:
 - Concurrent modifications
 - Delay to transmit modification on the network

Responsiveness

[Dolane et al., 2006]

- Responsiveness of the system
 = Time required to respond to users’ actions (latency during users’ interaction, jitter)
- Due to the time required to:
 - Process and send users’ actions
 - Transmit actions on the network (if mandatory)
 - Give a feedback to the users
- Between 40ms and 300ms, under 100ms is good

Distributed Virtual Environments

- Find a good trade-off between consistency and responsiveness (task, application, etc.)
- Technical requirements
 - Connect remote computers
 - Distribute data
 - Share information
 - Manage concurrent accesses to the data
- Each technical choice must consider consistency and responsiveness

Outline

- Network Architecture
- Data Distribution
- Communication Protocols
- Consistency Management Mechanisms
- Communication Reduction Mechanisms
- Software architecture

Network Architecture

- Transmission Methods
 - Unicast
Network Architecture

- Transmission Methods
 - Unicast
 - Broadcast

Network Architecture

- Transmission Methods
 - Unicast
 - Broadcast
 - Multicast

Network Architecture

- Peer-to-peer architecture
 [Reality Build for Two 90, MR Toolkit 93, SIMNET 93, NPSNET 94]
 - Fast communications between pairs of nodes
 - Closely coupled interactions between a few users
 - Difficulties to contact all nodes at the same time
 - Consistency and synchronization are hard to ensure
 - Many messages are transmitted over the network

Network Architecture

- Client/server architecture
 [Vistal95, RING 95, BrickNet 95, ShareX3D 08]
 - All communications pass through the server
 - Latency during interactions
 - All nodes can be contacted quickly
 - Consistency and synchronization are easy to ensure
 - A “bottleneck” can occur on the server

Network Architecture

- Hybrid architecture
 [SPLINE 97]
 - Servers connected with peer-to-peer connections
 - Avoids the “bottleneck” on a single server
 - Connects nodes with specific requirements
 - Increases system latency

Network Architecture

- Hybrid architecture
 - Temporary peer-to-peer connections [Anthes et al., 04]
 - Are established according to users’ locations in the VE
 - Increase CVE consistency between nearby users
Outline

- Network Architecture
- Data Distribution
- Communication Protocols
- Consistency Management Mechanisms
- Communication Reduction Mechanisms
- Software architecture

Data Distribution

- A virtual object
 - A set of parameters (data)
 - Identifier
 - Attributes (position, orientation, etc.)
 - User access rights
 - Geometry, and eventually textures
 - A behavior
 - Only reactive (responding to user actions)
 - Continuous (evolving in the time)

⇒ Which computers store its data?
⇒ Which computers execute its behavior?

Data Distribution

- Centralized [Vistel 95]
 - Data is stored on the server
 - Behaviors are executed on the server

Data Distribution

- Replicated [SIMNET 93, MR Toolkit 93]
 - Data is replicated on each node
 - Synchronization between nodes can be achieved
 - Behaviors are executed on each node
Data Distribution

• Replicated [SIMNET 93, MR Toolkit 93]
 – Data is replicated on each node
 – Synchronization between nodes can be achieved
 – Behaviors are executed on each node
 – Modification requests are processed locally

• Advantages
 • Low-latency interactions
 • Few messages transmitted

• Drawbacks
 • Data replication
 • Behaviors processed on each node
 • Inconsistencies due to transmission delay of update messages
 • Additional mechanisms for managing concurrent accesses

Technical aspects of distributed interactive systems - M2R Interaction - Cédric Fleury 11

Data Distribution

• Hybrid [DIVE 98] [BrickNet 98]
 – Only the necessary objects are replicated
 – A server saves the whole VE state
 – Advantages
 • Reduction of data replication
 • Less processing on each node
 – Drawbacks
 • Difficulties to ensure consistency and manage concurrency
 • Many messages transmitted over the network
 • Dynamic downloads of additional objects

Technical aspects of distributed interactive systems - M2R Interaction - Cédric Fleury 12

Data Distribution

• Hybrid: Referent/proxy paradigm
 [OpenMASK 02][Schmalzl et al 03][Fleury et al 10]
 – On a node each virtual object is represented by
 • A referent
 – Stores data
 – Defines behavior
 – Processes modification requests
 or
 • A proxy
 – Receives updates from referents
 – Updates object representation in the CVE
 – Can store copy of the data for easy migration

Technical aspects of distributed interactive systems - M2R Interaction - Cédric Fleury 12

Data Distribution

• Hybrid: Referent/proxy paradigm
 [OpenMASK 02][Schmalzl et al 03][Fleury et al 10]
 – Behaviors are executed only on one node
 – Referent modification
 • Modification requests are processed locally
Data Distribution

- Hybrid: Referent/proxy paradigm
 - Behaviors are executed only on one node
 - Referent modification
 - Modification requests are processed locally
 - Proxy modification
 - Modification requests are transmitted to the referent
 - The referent processes the requests

Advantages
- Ensures global consistency
- Implicitly manages the concurrent access
- Combines the processing power of nodes
- Reduces latency when users interact with the referent

Drawbacks
- Transmits many messages over the network
- Increases latency when users interact with a proxy (but migration mechanisms can be used)

Synthesis
- Existing data distribution solutions [Fleury et al. 2010]
 - Make a trade-off between consistency and responsiveness
 - Meet particular requirements
- Combine the advantages of each solution
 - Dynamically adapt data distribution of each object
 - Application requirements, network capabilities
 - Tasks performed by users
 - Functions that objects fulfill in the VE

An adaptive data distribution [Fleury et al., 2010]
- Based on a referent/proxy paradigm
 - Three modes of data distribution
 - Centralized
 - Replicated
 - Hybrid
 - Chosen independently for each object
 - Changed dynamically during a working session

3 Modes of Distribution
- Replicated Mode
 - Referents on all nodes
 - Interaction latency (IL)
 - Gap in consistency (GC)
 - Advantage: good responsiveness

- Centralized Mode
 - 1 referent on the server
 - Proxies on other nodes
 - Interaction latency (IL)
 - Gap in consistency (GC)
 - Advantage: strong consistency
3 Modes of Distribution

- **Hybrid Mode**
 - 1 referent on a node
 - Proxies on the other nodes
 - Interaction latency (IL)
 - Gap in consistency

⇒ Advantage: good tradeoff between responsiveness and consistency

<table>
<thead>
<tr>
<th>Node 1</th>
<th>Node 2</th>
<th>Node 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Referent</td>
<td>Proxy</td>
</tr>
<tr>
<td>User</td>
<td>Referent</td>
<td>Proxy</td>
</tr>
</tbody>
</table>

Choice at object level

- **Motivations:**
 - Different consistency/responsiveness requirements for each virtual object
 - Function fulfilled by objects
 - Precision requires to manipulate objects

- **Solution:**
 - Choose the distribution mode at the object level
 - Each node can independently have
 - Referents for some objects
 - Proxies for some others
 - Each object can have a particular data distribution

Dynamical Modification

- **Motivations:**
 - Adapt data distribution during a working session
 - Tasks that users perform in the VE
 - Network troubles

- **Solution:**
 - Dynamically change the distribution mode
 - Dynamically migrate the referent
 - Put the referent on the server (centralized mode)
 - Duplicate the referent on all nodes (replicated mode)

Outline

- Network Architecture
- Data Distribution
- Communication Protocols
- Consistency Management Mechanisms
- Communication Reduction Mechanisms
- Software architecture

Communication Protocols

- Classical protocols (TCP, UDP)
- Multicast oriented protocols
 - Difficult to achieve over large network
 - Use additional network layers
 - "MBone" [DIVE 94, NPSNET 98]
- Virtual Reality dedicated protocols
 - [RTP] 99]: adapt RTP for interaction
 - [VRTP 97]: support VRML (virtual reality modeling language)
 - Some others [av/P 98, DIS 93, HLA 97, IESP 97]

Communication Protocols

- Specific protocols in industrial environment
 - Deal with:
 - Standard Internet access
 - Firewalls that support only HTTP and HTTPS protocols
 - Use "long polling" technique [ShareX3D 08]
- More generic standards start to be used
 - OCS (Open Sound Control)
 - Html5 (WebGL based on OpenGL ES 2.0)
Outline

• Network Architecture
• Data Distribution
• Communication Protocols
• Consistency Management Mechanisms
• Communication Reduction Mechanisms
• Software architecture

Consistency Management Mechanisms

• Inconsistencies due to
 — Network delay
 — Concurrent modifications

• 2 kind of techniques
 — Synchronization
 — Concurrency control

Synchronization

• Ensure that each user have the same state of the virtual environment at the same time
 — Absolute time: synchronized clock (UTC)
 — Logical or virtual time: logical clock
 • Ordered sequence of events
 • Use timestamp

Synchronization

• Lockstep synchronization [Ring 95, OpenMASK 02]
 — Waits all nodes before computes the next simulation step
 • Each node send acknowledgements to the system
 • Then, the system allows nodes to process the next step
 — Advantages
 • Perfect synchronization
 • Events are processed in the correct order
 — Drawbacks
 • Real-time is not guaranteed
 • One node can slow down all the others

Synchronization

• Imposed global consistency [Delaney et al 06]
 — Delays the processing of local and remote events
 • Use a pre-defined value (max. of the network latency)
 • Use an absolute cock
 — Advantage
 • Strong synchronization
 — Drawback
 • Introduce latency during interactions
Synchronization

- **Delayed global consistency** [Delaney et al. 06]
 - Mark events with a timestamp using a logical clock
 - Execute events following the correct timestamp order
 - Advantage
 - Causality is ensured
 - Drawback
 - No time synchronization

- **Server synchronization** [ShareX3D 08]
 - Server manages a “state number” for each object
 - Increments the “state number” for each modification
 - Server sends the last received update to nodes if they are not up-to-date
 - Advantages
 - Ensures that nodes are up-to-date
 - Reduce the number of sent messages
 - Drawback
 - No causality and no time synchronization

- **Time warp synchronization** [Jefferson 85]
 - Events are marked with a timestamp
 - Events are processed as soon as they arrive
 - “Rollbacks” are used to solve causality errors
 - Incoming event older than the event already processed
 - Advantage
 - No Latency during interactions
 - Drawback
 - “Rollbacks” are very annoying for the users (feedbacks)
 - “Rollback propagation”

- **Predictive Time Management** [PARADE 97]
 - Events are predicted before they occur and sent on the network
 - Events are sent just in time to avoid bad prediction by estimating the latency (RTT)
 - Advantage
 - Good synchronization
 - Drawback
 - Only for predictable objects (object behaviors, collision detection, etc.)

Concurrent Control

- **Centralized mode or hybrid mode** (with 1 referent)
 - Server/referent can handle concurrent modification requests

- **Replicated mode or hybrid mode** (with several referents)
 - Virtual objects can be modified locally on several nodes at the same time
 - Concurrency control is required

- **3 main modes of concurrency control**
 - Pessimistic mode [BrockNet 98]
 - Only one user can modify an object at the same time
 - Optimistic mode [Delaney et al. 06]
 - No concurrency control during interactions
 - A correction is necessary when conflicts occur
 - Prediction based mode [PARADE 97, ATLAS 07]
 - Predict which users will probably modify an object
 - Give priority to the users according to the prediction
Users’ Access Rights

- Give different access rights to users
 - Protect virtual objects (confidential data, no modifiable objects, etc.)
 - Assign some role to users
- 3 criteria
 - Right to see an object
 - Right to modify its parameters
 - Right to create/delete objects
- Use a scale of access level from 0 to N
 (0 is the most restrictive)

Communication Reduction Mechanisms

- Avoid to overload the network
 - Big number of users
 - Low bandwidth network
- Reduce the number of messages transmitted on the network without:
 - Reducing the consistency
 - Increasing the latency during interactions

Dead-Reckoning

- Based on a prediction method
 - Prediction formula
 - Error threshold
 - Convergence formula
- The node in charge of the object compute
 - The object behavior
 - The prediction formula
- This node does not send any update message

Message filtering

- Send only the updates to the concerned users
 - Avoid overloading the network
 - Reduce the processing time of the messages
- Reduce the nb of shared objects between users
- Filter according the area of interest of users
 - Objects close to a user [Waters et al., 1997]
 - Objects in the field of view of a user [Funkhouser, 1995]
- Technical aspects: server and multicast
Migration

- Referent/proxy paradigm
 - Move the referent to a node to another
- Goals:
 - Balance the processing load
 - Move the referent on the node of the user who interacts
- Technical aspects:
 - Upload object data on the new referent node
 - Delete object data on the old referent node

Compression & Aggregation

- Compression
 - Not relevant for position/orientation [Joslin et al., 2004]
 - But data start to be complicated
- Migration
 - Load new virtual objects (level of details)
- Aggregation
 - Send all the object updates in one message
 - Can introduce delay in message transmission

Outline

- Network Architecture
- Data Distribution
- Communication Protocols
- Consistency Management Mechanisms
- Communication Reduction Mechanisms
- Software architecture

Models for Interactive System

- Application can be decomposed in 3 parts
 - Core component
 - Store data
 - Execute behavior
 - Process users’ modification requests
 - Interface component
 - Make the link with the users
 - Display the object
 - Register the action of the users
 - A link between the Two components
- Existing models
 - Functional decomposition
 - Arch [UMS 92]
 - Multi-agents
 - MVC [Reenshaug 79][Eckstein 07]
 - PAC [Coutaz 87][Duval et Tarby 06]
 - Hybrid [Nigay et Coutaz 91]
Models for Collaborative System

- Distributed data on remote computer
- Manage communications
- Existing models
 - Abstraction layers [Dewan 99]
 - Multi-agents
 - ALV [Hill 92]: shared abstraction
 - CoPAC [Salber 95]: Additional communication component
 - Functional description of collaboration [Calvary et al. 97]; [Laurillau et Nigay 02]

Synthesis

- Multi-agents models are well adapted for VE
 - A virtual object = an agent
 - Particular data distribution for each virtual object
- However existing models for collaborative system do not fit these requirements
 - ALV proposes only a centralized data distribution
 - CoPAC does not specify the data distribution

⇒ Extend PAC model for the CVE

PAC-C3D Model

- Extend the PAC model to the CVE
 - Each virtual object is modeled by a PAC agent on each node
 - The Control manages the network distribution
 - Maintains the consistency between all the nodes
 - Several distribution policy (one for each data distribution mode)
 - Provides generalized interface to access to the object
 - Multiple Presentations of a same virtual object

Data Distribution

- Easy implementation of referent/proxy paradigm
- Interoperability between all the virtual objects (even if they don’t use the same data distribution mode)
 - All accesses to objects are managed by the Control
- Dynamic migration of the referent

Example for the hybrid mode

- All modification requests are sent to the Control
- The Control:
 - Chooses where the requests should be processed
 - Manages updates of the remote versions of the objects

Advantages for data distribution

- « Interoperability » between objects using different data distribution modes on the network
 - All the accesses go through the Control
- Easy migration of the referent
 - Change the distribution policy of the Controls
 - Create an updated Abstraction for the new referent
 - Delete the Abstraction of the old referent
- Developer do not have to deal data distribution
 - They just have to heritage from basically components
Multiple representations

- Several Presentations of an object on the same node
 - Multi-sensorial representation of the object
 - Add of some “active” Presentations
 - Ex: physical instance of the object in a physical engine

- Several Presentations of an object on different nodes
 - No duplication of data and behavior processing in each software libraries
 - Interoperability between several software libraries

Conclusion

- Common issues of CSCW applications
 - Trade-off between consistency and responsiveness
 - Network architecture and data distribution
 - Consistency management mechanisms
 - No solution which fits all application requirements, so an adaptive solution might be a good solution
 - Software architecture has to deal with
 - Data distribution over the network
 - Various software libraries and material devices
 - Make a clear separation between core application part, data distribution part, interface with the users