
Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 1

Shared Editing

Michel Beaudouin-Lafon

Université Paris-Sud

Concept

Collaborative creation and editing of shared computer artifacts
 - Typically a shared document
 - All users have the illusion that they edit the same document

Notion of group awareness

 - Knowing what the others are doing
 -> different from, e.g., a multi-user database

Notion of collaborative task

 - Users work towards the same goal
 - Implicit of explicit coordination of their actions

Types of shared editors

Different document types: text, graphics, spreadsheet, etc.

Synchronous: Changes immediately visible to all
Asynchronous: Changes visible to others at a later time

Homogeneous: All users must use the same software
Heterogeneous: Users can use different software

Collaboration-aware: Include group awareness features
Collaboration-transparent: No group awareness features

The notion of congruence

View congruence
 Part of the document being viewed

Display space congruence

 Organization of the windows

Time of display congruence

 When changes are seen by other users

Subgroup congruence

 Users who see the changes

Stefik et al., 1987

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 2

WYSIWIS / WYSIAWIS

WYSIWIS
Strict view congruence

WYSIAWIS
Relaxed view congruence

Text, asynchronous (different time)
–  Quilt (Leland, Fish & Kraut, 1988)

–  Prep (Neuwirth et al., 1989)

Text, synchronous (real-time)

–  Grove (Ellis, Gibbs & Rein, 1989)

–  ShrEdit (McGuffin & Olson, 1992)

–  SASSE (Baecker et al., 1993)

Graphics, synchronous (real-time)

–  GroupDesign (Karsenty & Beaudouin-Lafon, 1992)

Sample shared editors (historical)

Real-time text editor: GROVE

Group Outline Viewing Editor

–  Concurrent editing at the character level

–  Private, Shared and Public views

–  Clouds to show the activity of other users

–  Aging text: blue at first, then progressively black

Ellis et al., 1989 Asynchronous text editor: Prep Neuwirth et al., 1992

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 3

Real-time text editor: Sasse

Group-awareness widgets
 - Scrollbars
 - Radar view

Baecker et al., 1993 Real-time graphics: GroupDesign Karsenty, 1992

GroupDesign

Group-awareness features:
–  Show participants as colors
–  Immediate feedback of commands for the local user
–  Echo of the command for the other users, until completed

Local site Remote sites

During resize
interaction

At the end
of resize
interaction

Karsenty, 1992

(icon)

(animation)

Modern systems

 SubethaEdit

Microsoft Office Google docs

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 4

Problems of modern systems

Homogeneous
 All users must use the same application

Mostly cloud-based

 Who owns your documents and where are they?
 What if you do not have network access?

Do not support different levels of coupling

 Strong coupling: pure WYSIWIS
 Loose coupling: WYSIAWIS
 Very loose coupling: asynchronous

Implementation of real-time groupware

Approaches

Collaboration-transparent system
–  Wrapping a single-user application
–  Screen and window sharing
–  Turn taking
–  Example: VNC

Collaboration-aware system
–  Designed from the start for collaborative work
–  Consistency of distributed copies
–  Robustness: a failure of a distant network or computer

should not affect the local user
–  Example: Google Docs

Some vocabulary

Participant: a user in a session
Session: one or more documents, edited by one or more users
Invitation: giving a user access to a session
Floor control: policy for managing input from multiple users
Turn-taking: Floor control where one user can edit at a time
Telepointer: visualization of one’s cursor on other users’ screens

Coupling: how local actions are tied to remote actions
Response time: time for an action to be executed locally
Notification time: time for an action to be executed remotely
Replication: transparently managing multiple copies of a document
Robustness: sensitivity to remote faults

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 5

Implementation

Some similarities with operating systems and databases:
–  Several users, geographical distribution, concurrent access,

replication, faults...
–  BUT groupware does not try to be transparent, i.e. hide users

Specific issues:

–  Group awareness
•  View congruence (WYSIWIS, WYSIAWIS)
•  Feedthrough (telling other users what I am doing)

–  Latecomers
•  Getting users that arrive during the session up to speed

Implementation

Three main types of software architecture:
–  Centralised: simple, but low response time, brittle
–  Replicated: good response/notification time, but complex
–  Hybrid: mostly replicated with some centralized functions

responses

feedback

commands

operations objects user

Development tools:
screen sharing, shared window systems, groupware toolkits

Managing conflicts

Problem: consistency of distributed data
 Each site generates events and sends them to other sites
 Each site must execute the events so that the result is
consistent across sites

Two classes of algorithms

–  pessimistic (locks)
–  optimistic (events + undo)

Optimistic algorithms:

–  operational transformation, e.g. dOpt (GROVE)
–  optimized undo/redo, e.g. ORESTE (GroupDesign)

Causality and logical clocks

Strong notion of causality
 If A happened before B, then A must be executed before B
 (because A may have influenced B)

Total ordering of events: Lamport’s logical clocks

 One logical clock per site (counter)
 Incremented for each local event, Sent with each event
 When an event arrives with a timestamp t
 if t > localclock then localclock <- t +1
 Timestamp defines a partial order of events
 Turned into a global order with an ordering of sites
 (t1, s1) < (t2, s2) iff t1 < t2 or (t1 = t2 & s1 < s2)

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 6

Undo-redo algorithm

Principles
 Every operation op must have an inverse op-1

 Each site maintains a history of events
 (op1, t1, s1) … (opn, tn, sn)

 When an event arrives out of sync
 (opi, ti, si) with (ti, si) < (tn, sn)
 Undo the operations between i and n
 Execute opi

 Redo operations between i and n

ORESTE

Principle
–  Consistent state when the system is quiescent

(all sent messages have been received and processed)
–  Uses Lamport timestamps for total ordering
–  Undo/redo when a message arrives out of order

Optimizing undo/redo

–  Concept of compatible order
–  Take advantage of commutativity and masking

between operations
–  Use total order in case of a conflict

Karesenty & Beaudouin-Lafon, 1993

ORESTE : commutativity

A changes the shape to an ellipse
B changes the color to orange
Total order is A then B

B A

A B

A and B commute

ORESTE : masking

A changes color to blue
B changes color to orange
Total order is A then B

A B

B A

A can be ignored because it is masked by B

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 7

Operational transform: problem

Concurrent editing of text
Each user represented by the offset of his/her cursor
Basic operations:

 Move cursor forward, backward
 Insert character
 Delete character

Problem:
 Site A Site B
 Hello |w|orld Hello |w|orld
 Hello m||world (A inserts m) Hello ||orld (B deletes character)

 Hello |w|orld (A receives delete) Hello |m|orld (B receives insert m)

Operational transform: problem

When A inserts m, B’s cursor should move to the right
When B deletes w, A’s cursor should move to the left

 Site A Site B
 Hello |w|orld Hello |w|orld
 Hello m|w|orld (A inserts m) Hello ||orld (B deletes character)

 Hello m||orld (A receives delete) Hello m||orld (B receives insert m)

Is this sufficient?

 Not quite
 If cursors at same position, it may not work
 If operations are delayed longer, it may not work

Operational transform: solution

Total ordering of operations (Lamport timestamps)
When an operation arrives out of order, it is transformed:

 It is modified to take into account the effects of the
operations that have occurred since it was issued

For each pair of operations op1, op2,

where op2 arrived after op1 but occurred before it,
we need a transformation T(op1, op2) = op’2 so that
 op’2(op1(text)) = op1(op2(text))

When an operation arrives, it is transformed by those that

have occurred since then
Note: this requires a potentially unbounded history buffer

Operational transform: example

Forward transformation: include impact of op2 into op1
T(insert(p1, c1, s1), insert(p2, c2, s2))

 if (p1 < p2) or (p1 = p2 and s1 < s2)
 then return ins (p1, c1, s1)
 else return ins (p1+1, c1, s1)

Backward transformation: exclude impact of op2 from op1
T-1(insert(p1, c1, s1), insert(p2, c2, s2))

 if (p1 < p2) or (p1 = p2 and s1 < s2)
 then return ins (p1, c1, s1)
 else return ins (p1-1, c1, s1)

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 8

Operational transform

Writing the transformations is hard
Proving that they work is even harder (in fact, most don’t!)

Properties:

Causality preservation: operations that depend on each
other are executed in the same order at each site
 Convergence: same state at each site when all messages
have been processed
 Intention preservation: matching what the user meant

A free Javascript library: www.sharejs.org
Other libraries exist for other languages

Groupware toolkits

Groupware toolkits

Embed concurrency algorithms into a library

Provide groupware widgets to support group awareness

Examples:

 DistEdit (Prakash, 1990)

 Suite (Dewan, 1990)

 Rendez Vous (Patterson et al., 1990)

 GroupKit (Roseman & Greenberg, 1992)
 MEAD (Bentley et al., 1994)

 Prospero (Dourish, 1996)

 DAC (Tronche, 1998)

GroupKit

Developed at the University of Calgary GroupLab

Toolkit developed in Tcl/Tk

–  Prototyping and development of shared real-time applications
–  Research and teaching about CSCW

Features

–  Session management (participants joining and leaving)
–  Supports data distribution (1:1, 1:n)
–  Specific widgets for collaborative interaction

Available: www.groupkit.org

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 9

GroupKit : architecture

Registrar : centralized
process accessible
by all computers

Session manager :

processus managing
conferences and access
control for one participant

Conference : replicated

process managing a
single conference

GroupKit : awareness widgets

Who is participating?
Where are they?
What can they see?

What is their activity level?
What do they do?
What do they need?

What are they going to do?
What can they do?

Telepointers
Multi-scrollbars
Radar views
Fish-eye views

Telepointers Multi-scrollbars

Master Recherche - Université Paris-Sud

M. Beaudouin-Lafon - Groupware 10

Radar view Fish-eye view

GroupKit : applications

Brainstorming
Text chat

Drawing (bitmaps or vectors)
Graph editing

File browsers
Text editors

Games (tic-tac-toe, cards, tetrominos)

Shouldn’t shared editing be part of every software application?

Is the move towards cloud-based applications a good thing?

Conclusion

