
Groupware and Collaborative Interaction  
Collaborative Software Development

M2R Interaction - Université Paris-Sud - Année 2013-2014

Cédric Fleury (cedric.fleury@lri.fr)

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

• Several users work on a same project
– Remote or collocated users
– Each one works on its own computer

(asynchronous)
• Work on different tasks
• Work at different times

!
• Collaboration is hard to organize
– Versioning, synchronization between users
– Tasks distribution, social aspects

!2

Collaborative Software Development - M2R Interaction - Cédric Fleury

Outline

• Collaborative software development
!
– Version control
!

– Continuous integration
!

– Agile methods

!3 Collaborative Software Development - M2R Interaction - Cédric Fleury

Outline

• Collaborative software development
!
– Version control
!

– Continuous integration
!

– Agile methods

!4

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Problematic
– We want to avoid:

• Manually share the files (USB key, email, Dropbox)
• Delete or overwrite the files of other users
• Broke all the project by making a mistake
!

– We want to able to:
• Edit the project at the same time
• Keep an history of the modification
• Keep the older version of the files + hierarchy

!5 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Problematic
– We want to avoid this:

!6

[“Piled Higher and Deeper” by Jorge Cham: www.phdcomics.com]

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Version control software
– Save & restore different versions of the files
– Synchronize users’ versions
– Keep track of modifications and their authors
– Manage Branching and merging
!

• Not only for software development
– Report, images, data from experiments

!7 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• 2 kinds of architecture
– Centralized
• CVS, SVN, …

– Decentralized (peer-to-peer):
• GNU Arch, Mercurial, Bazaar, Git,…
!

– Decentralized can be used as a Hybrid
Architecture
• One peer can be a central server

!8

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Centralized

architecture

!9 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Decentralized

architecture

!10

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Hybrid

architecture

!11 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Vocabulary (SVN)
– Architecture

• Repository
• Working copy

– Actions
• Checkout
• Update
• Commit
• Revert
• Diff, log, status

!12

Centralized Architecture

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Drawbacks of the centralized architecture
– Just one access point to the data
– Just one communication point between users
– Just one historic of the files
– Versioning and sharing are the same operation

• Need to have a stable state before "committing"

!13 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Vocabulary (Git)
– Architecture

• Remote and local repository
• Working copy

– Actions
• Clone
• Pull, Push
• Commit
• Reset
• Diff, log, status

!14

Hybrid Architecture

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Good practices
– Work on the local copy
– Send the modification

• Check if the code compiles locally
• Check for updates from the other users

– Manage conflicts if there are some

• Check if the code compiles with the updates
• Commit the code on the shared version (server)

!15 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Users can modify the same file
– But at different part/section of the files
!

• If they modify the same part of a file
– A conflict appends

• Usually, it cannot be resolve automatically
• Users have to fix the conflit

– By telling to the system, which version is correct

– By merging the modifications of the users

!16

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Conflicts management

!17

C:\workspace\test>svn up
Conflict discovered in 'test.txt'.
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options: p
C test.txt
Updated to revision 3.
Summary of conflicts:
 Text conflicts: 1

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Conflicts management

!18

08/10/2010 11:44 AM 94 test.txt
08/10/2010 11:44 AM 26 test.txt.mine
08/10/2010 11:44 AM 27 test.txt.r2
08/10/2010 11:44 AM 31 test.txt.r3

<<<<<<< .mine
test User2 making conflict
=======
User1 am making a conflict test
>>>>>>> .r3

test.txt

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Tools for conflict management (TortoiseMerge)

!19 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
• Tools for conflict management (TortoiseMerge)

!20

Collaborative Software Development - M2R Interaction - Cédric Fleury

• Tools for conflict management (SmartGit)

Version control

!21 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Tools for conflict management (SmartGit)

!22

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Conflicts management
– To avoid conflict:
!
• Users are able to "lock" a file

– Only the user who locks the file can modify it

– If another user try to lock a file while it is locked
by another user, he receives an error message
!

• Users have to manually unlock the file when they
have finished to work on it.

!23 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Collaboration scenario : centralized (SVN)

!24

Collaborative Software Development - M2R Interaction - Cédric Fleury

• Collaboration scenario : decentralized (Git)

Version control

!25

Inter-personal communications

Collaborative Software Development - M2R Interaction - Cédric Fleury

• Collaboration scenario : decentralized (Git)
– Integrator mode

• A repository 
is in charge  
of the test

Version control

!26

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Collaboration scenario : decentralized (Git)
– Dictator mode

• Open-source  
projects

• "Lieutenants"  
make a first  
check before  
sending to  
the "dictator"

!27 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Collaboration scenario : decentralized (Git)
– Multi-location team

• Each team can work independently
• Regular integration of the work of each team  

can be done

!28

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Historic management
– Computation of the historic is linear

according to the « commit" order

!29 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

• Historic management
– SVN assigns a revision  

number to all the project
!

– Git assigns a revision  
number peer file
!

– This difference has a strong impact on
collaboration
• Using branch for collaboration is easier with Git

!30

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version Control

• Branch management
!

!

!

!
!
– SVN make a copy of the all repository
– Git make a link to a particular state of the

files
!31 Collaborative Software Development - M2R Interaction - Cédric Fleury

Version Control

• Branch management
– Merging branch (very complex to achieve with SVN)

!32

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version Control

• Branch management
– Classical organisation

of a project into
branches
!

!33

http://nvie.com/posts/a-
successful-git-branching-model/

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version Control
• Branch management
– Each user can work on particular branches
– Branches can be synchronized between users

!34

Collaborative Software Development - M2R Interaction - Cédric Fleury

Outline

• Collaborative software development
!
– Version control
!

– Continuous integration
!

– Agile methods

!35 Collaborative Software Development - M2R Interaction - Cédric Fleury

Continuous integration

• Integration
– Merging the work of several developers

• Goals
– Test modifications form the beginning
– Detect integration problems at an early stage
– Avoid fastidious integration phases
– Always have the system running

• Tests, demos, discussion with the customers

!36

http://martinfowler.com/articles/continuousIntegration.html

Collaborative Software Development - M2R Interaction - Cédric Fleury

Continuous integration
• Principles

– Version control on a repository
– Automatic and fast build
– Auto-testing
– "Commit" every day
– Deployment on an  

integration computer  
after each "commit"

– Automatic deployment
– Executable always available
– Every body know the build state

!37 Collaborative Software Development - M2R Interaction - Cédric Fleury

Continuous Integration

• Feedbacks for collaboration
– Token on the desk of the person who builds
– Make a sound when a build is valid
– Web page of the integration server
– Bubble light
– Wallboard

!38

Collaborative Software Development - M2R Interaction - Cédric Fleury

Outline

• Collaborative software development
!
– Version control
!

– Continuous integration
!

– Agile methods

!39 Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

• Methods for software development
– No methods: "Code and fix"

• Efficient for small project
• Difficult to add new features or to find bugs
!

– Engineering / plan-driven methodologies
• Come from civil or mechanical engineering

– Drawing / construction plan / task distribution / construction
!

– Agile methodologies
• Adaptive rather than predictive
• People-oriented rather than process-oriented

!40

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

• Engineering methodologies
– Example: Waterfall

!41 Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development
• Engineering methodologies
– Separation of design and construction

• Design

– Unpredictable

– Require creative people

• Construction

– Predictable

– Require people with lower skill
!

– Example: civil engineering

• construction is bigger in cost and time than design

!42

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

• Design and Construction for software?

!43

[Jack Reeves, C++ Journal, 1992]
http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm

– UML = Design, coding = Construction?

– Source code = Design, compilation = Construction
• Construction is quick and cheap

• Source code requires creative and talented people

• Creative processes are unpredictable

• Are the engineering methodologies well adapted ?

Collaborative Software Development - M2R Interaction - Cédric Fleury

• Is software development predictable?

Software development

!44

– Yes in some cases…
• NASA programs

– Usually, requirements are unpredictable  
(especially for software involving interactions with users)
• Customers don’t precisely know what they want
• Hard to evaluate the cost of different options
• Hard to estimate which features are useful
!

 ⇒ Requirements should be flexible in these cases

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development
• Is software development predictable?

!45 Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods
• Deal with unpredictable requirements
– Iterative development

• Involve the customers at each iteration
• Improve the team organization (self-adaptive process)
!

– Effective team of developers (people first)
• Do not consider developers are replaceable parts

– Analysts, coders, testers, managers

• Developers are responsible professionals
– Make the technical decisions

– Evaluate the time required to perform the tasks

!46

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods

• Manifesto for Agile Software Development
!
– Individuals and interactions over processes and tools
!

– Working software over comprehensive documentation
!

– Customer collaboration over contract negotiation
!

– Responding to change over following plan

!47

http://agilemanifesto.org

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods

!48

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods
• Examples

– XP (Extreme Programming)
• Test driven development, pair programming

– Scrum
– Crystal

• Safety, efficiency, habitability (less discipline than XP)

– Open source process
• Distributed contributors, parallelized debugging

– Lean development (Lean @ Toyota)

• Just in time, Jidoka ("automation with a human touch")

– RUP (Rational Unified Process) ?
• Use case driven, iterative, architecture centric

!49 Collaborative Software Development - M2R Interaction - Cédric Fleury

Pair programming

• Two programmers
• One computer
• Roles
– One "drives": operating mouse and keyboard

• Code: syntax, semantics, algorithm !
– One "navigates": watchs, learns, asks, talks,

makes suggestions
• Higher level of abstraction

– Test, technical task, time since the last commit,

– Quality of the overall design
!50

Collaborative Software Development - M2R Interaction - Cédric Fleury

Pair programming
• Advantages
– Code quality

• Better designs
• Fewer bugs
!

– Spreading Knowledge
• Pairs have to switch off regularly
• Technical and conceptual knowledge
!

– Social aspects
• No loneliness, conviviality, better motivation

!51 Collaborative Software Development - M2R Interaction - Cédric Fleury

Pair programming

• Productivity
 (it depends on how you measure productivity : lines of code VS running and tested features)

– Short-term productivity might decrease
slightly (about 15%)

– Long-term productivity goes up
• Because the code is better
• Even better if you consider staff turnover

– Truck number in XP
» Close as possible to the team size

!52

Collaborative Software Development - M2R Interaction - Cédric Fleury

Pair programming

• Pairing strategies
– In XP, all production code is written by pairs
– In non-XP agile teams, usually pairing is not used at all
– A trade-off can be found

• For some particular tasks
– Mentoring new hires

– Extremely high-risk tasks

– Start of a new project when the design is new

– When adopting a new technology

• On a rotating monthly or weekly basis
• Developers who prefers to pair

!53 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum

• Iterations called Sprint (about 1 month)

!54

Collaborative Software Development - M2R Interaction - Cédric Fleury

• Roles
– Product Owner

• Single person
• Responsible for products vision
• Constantly re-prioritizes the Product Backlog
• Accepts or rejects product increment

– Development team
• Self-organized
• Negotiate commitments with the Product Owner
• Has autonomy regarding how to reach commitments
• Intensely collaborative

– Master
• Facilitates the Scrum process
• Helps resolve issues
• Shields the team from external inferences and distractions
• Has no management authority

Scrum

!55 Collaborative Software Development - M2R Interaction - Cédric Fleury

• Product Backlog

Scrum

!56

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Sprint
– Planning Meeting

• Negotiate which Product
Backlog items will be processed

• Break items into a list of sprint
tasks

!57 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum

!58

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Sprint
– Planning Meeting
– Daily Meeting

• Same time and place
• 15 minutes, standing up
• Summarize work of previous

day, work of today, issues
• Maintain tasks list (not started,

in progress, done), issues list
and burn-down chart.

• Product Owner may attend

!59 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Sprint Backlog

!60

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Sprint
– Planning Meeting
– Daily Meeting
– Review Meeting

• Demonstrate the working
product increment to the
Product Owner

• Product Owner declares
which items are done

• Unfinished items return to
the Product Backlog

• Master proposes new items
for the Product Backlog

!61 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Sprint
– Planning Meeting
– Daily Meeting
– Review Meeting
– Retrospective Meeting

• Team reviews its own process
• Team takes to adapt it for

futur Sprints
• Master have to manage the

psychological safety of the
meetings

!62

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Sprint
– Planning Meeting
– Daily Meeting
– Review Meeting
– Retrospective Meeting
– Backlog Refinement Meeting

• Items are usually too large or
poorly understood

• Refine these items into
smaller one

• Master can help

!63 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Feedbacks to the team: wallboard

!64

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Feedbacks to the team: wallboard

!65 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Feedbacks to the team: wallboard

!66

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Feedbacks to the team: wallboard

!67 Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum
• Software to manage Scrum projects

!68

http://youtu.be/KdyV9okLRlc

Collaborative Software Development - M2R Interaction - Cédric Fleury

Conclusion
• Collaboration in software development

– Is necessary for big projects
– Is not obvious

• Technical, organizational and social aspects !
• Version control

– Synchronization, versioning
– Branching: split work between users !

• Continuous integration
– Improve safety and efficiency !

• Agile method
– Organize the team
– Propose an adaptative process to unpredictable requirements

!69 Collaborative Software Development - M2R Interaction - Cédric Fleury

References
• Version control

– http://nvie.com/posts/a-successful-git-branching-model/
– http://www-igm.univ-mlv.fr/~dr/XPOSE2010/

gestiondeversiondecentralisee/dvcs-svn.html
– http://www.infres.enst.fr/~bellot/java/poly/git.pdf
– http://fr.openclassrooms.com/informatique/cours/gerez-vos-codes-

source-avec-git/qu-est-ce-qu-un-logiciel-de-gestion-de-versions

• Continuous Integration
– http://martinfowler.com/articles/continuousIntegration.html

• Agile Models
– http://agilemanifesto.org
– http://martinfowler.com/articles/newMethodology.html

• Pair Programming
– http://www.versionone.com/Agile101/Pair_Programming.asp

• Scrum
– http://scrumreferencecard.com

!70

