UNIVERSITE

PARIS
SW

Collaborative Software Development

M2R Interaction - Université Paris-Sud - Année 2013-2014
Cédric Fleury (cedric.fleury®Lri.fr)

Outline

* Collaborative software development
— Version control
— Continuous integration

— Agile methods

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

* Problematic
— We want to avoid:
* Manually share the files
» Delete or overwrite the files of other users
» Broke all the project by making a mistake

— We want to able to:
» Edit the project at the same time
» Keep an history of the modification
» Keep the older version of the files + hierarchy

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

* Several users work on a same project
— Remote or collocated users

— Each one works on its own computer
(asynchronous)

» Work on different tasks
* Work at different times

* Collaboration is hard to organize
— Versioning, synchronization between users
— Tasks distribution, social aspects

Collaborative Software Development - M2R Interaction - Cédric Fleul

Outline

— Version control

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
* Problematic

— We want to avoid this:

A GTORY TOLD IN FLE NAVES: Jokd

O C:\useriyesaarchiista

Type: FhD Thesss Modfed: o many tres Copyriht: Xrge Cham woew phacomcs com

[“Piled Higher and Deeper” by Jorge Cham: www.phdcomics.com]

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

* Version control software
— Save & restore different versions of the files
— Synchronize users’ versions
— Keep track of modifications and their authors
— Manage Branching and merging

* Not only for software development
— Report, images, data from experiments

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

* Centralized @
architecture S e

modification history

Server
« >
¥
& \ &
Developer N\ Developer
Collaborative Software Development - M2R Interaction - Cédric Fleury 9

Version control

* Hybrid
architecture @

D('v(‘lop(' Dc eloper

Collaborative Software Development - M2R Interaction - Cédric Fle

Version control

* 2 kinds of architecture
— Centralized
« CVS, SVN, ...
— Decentralized (peer-to-peer):
* GNU Arch, Mercurial, Bazaar, Git,...

— Decentralized can be used as a Hybrid
Architecture

* One peer can be a central server

Collaborative Software Development - M2R Interaction - Cédric Fleury 8

Version control

» Decentralized

architecture @y
W v Deve\ouer

Developer

————

rsi
and directly exchange the modifications

Collaborative Software Development - M2R Interaction - Cédric Fleury 10

Version control

Centralized Architecture

» Vocabulary (SVN)
— Architecture

* Repository @\\ o

* Working copy - ‘Wmmm.m,m,
— Actions ©

» Checkout p .

+ Update &m &

+ Commit N o '

* Revert N ‘

« Diff, log, status

Collaborative Software Development - M2R Interaction - Cédric Fleury 12

Version control

» Drawbacks of the centralized architecture
— Just one access point to the data
— Just one communication point between users
— Just one historic of the files
— Versioning and sharing are the same operation
» Need to have a stable state before "committing”

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

* Good practices
— Work on the local copy
— Send the modification
» Check if the code compiles locally
» Check for updates from the other users
— Manage conflicts if there are some
» Check if the code compiles with the updates
* Commit the code on the shared version (server)

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control
* Conflicts management

C:\workspace\test>svn up

Conflict discovered in 'test.txt'.

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

c test.txt

Updated to revision 3.

Summary of conflicts:

Text conflicts: 1

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version control

* Vocabulary Hybrid Architecture
— Architecture

* Remote and local repository @

» Working copy

— Actions
+ Clone . @
* Pull, Push “ w
+ Commit @b &
* Reset

« Diff, log, status

Collaborative Software Development - M2R Interaction - Cédric Fleul 4

Version control

» Users can modify the same file
— But at different part/section of the files

* If they modify the same part of a file
— A conflict appends
+ Usually, it cannot be resolve automatically
+ Users have to fix the conflit
— By telling to the system, which version is correct
— By merging the modifications of the users

Collaborative Software Development - M2R Interaction - Cédric Fleury 16

Version control

* Conflicts management

08/10/2010 11:44 AM 94 test.txt
08/10/2010 11:44 AM 26 test.txt.mine
08/10/2010 11:44 AM 27 test.txt.r2
08/10/2010 11:44 AM 31 test.txt.r3
test.txt

<<<<<<< .mine
test User2 making conflict

Userl am making a conflict test
>>>>>>> .r3

Collaborative Software Development - M2R Interaction - Cédric Fleury 18

Version control

* Tools for conflict management (TortoiseMerge)

¥ Sysimagel ist.cpp - Tortoise Mergr TEX

© o
) @
& &
4 64 void CopatmmgetistsTest()
F 6t
66 muntescsqs
5 o)
T i+ 68
66 30 CayaInageliac. Getbetauit Icontodex) const €9 1c CaysInageLiat iGetbetaulcIconTadex(] const
o0 0
@ swrieneo sri: 7 swnemro sess
- &
70 cerobemryléats, svseot ss) 7 zecomemcy(cars, siseot seils
7 n
[T 72 —sucesssiasntas 74 SHGetFileIno(T(*"), FILE_ATTRIBUTE NOREAL,
e p—>y

L v| v

» FILEATTRIBUTE pIRECTORY,
- FILE ATTRIBUTE DIRECTORY,

Collaborative Software Development - M2R Interaction - Cédric Fleury 19

Version control
* Tools for conflict management (TortoiseMerge)

 Schiler's Glscka - Torloleterps.

Collaborative Software Development - M2R Interaction - Cédric Fleury 20

Version control

* Tools for conflict management (SmartGit)

=

i fait beau
Jo suis boau
Tout va bien

4TOD1...

1l fait beau
Je suis|
Je suis beau

Tout va pouriemistx!

moi.txt

Collaborative Software Development - M2R Interaction - Cédric Fleury 21

Version control

* Conflicts management
— To avoid conflict:

* Users are able to "lock” a file
— Only the user who locks the file can modify it

— If another user try to lock a file while it is locked
by another user, he receives an error message

» Users have to manually unlock the file when they
have finished to work on it.

Collaborative Software Development - M2R Interaction - Cédric Fleury 23

Version control

* Tools for conflict management (SmartGit)

Kevin Cours") Working Tree Richard (theirs?)

1L fait beau I foit beau I fait beau

Je suis beau XJe suis intelligent Je suis intelligent
Tout va bien » Je suis beau x «Tout va bien

Tout va pour le mieux!

I1 fait beau I1 fait beau
Je suis beau Je suis intelligent
Tout va bien Je suis beau

Tout va pour le mieux!

Collaborative Software Development - M2R Interaction - Cédric Fleury 22

Version control

* Collaboration scenario : centralized (SVN)
™y
(=)
N
@ @

Collaborative Software Development - M2R Interaction - Cédric Fleury 24

Version control

* Collaboration scenario : decentralized (Git)

@

VL/' \‘v
O O

Inter-personal communications

Collaborative Software Development - M2R Interaction - Cédric Fleury 25

Version control

 Collaboration scenario : decentralized (Git)
— Dictator mode

» Open-source :
projects —>| prod.
» "Lieutenants”
make a first f \

check before Q Q

sending to
the "dictator”

- MM
o0 00

Collaborative Software Development - M2R Interaction - Cédric Fleury 27

Version control

* Historic management

— Computation of the historic is linear
according to the « commit” order

‘ revision n°6 I

“Trunk” OO/)—)O—)O—}O

l revision n°1 l

Collaborative Software Development - M2R Interaction - Cédric Fleury 29

Version control

* Collaboration scenario : decentralized (Git)
— Integrator mode

* Arepository .
is in charge S
of the test g

GG OO

Collaborative Software Development - M2R Interaction - Cédric Fleury 26

Version control
* Collaboration scenario : decentralized (Git)
— Multi-location team

» Each team can work independently

* Regular integration of the work of each team
can be done

Collaborative Software Development - M2R Interaction - Cédric Fleury 28

Version control

* Historic management

— SVN assigns a revision O @ @ o
number to all the project 'FJ ™ 'FJ
33 (B
— Git assigns a revision ™ Fg
number peer file 3

— This difference has a strong impact on
collaboration

+ Using branch for collaboration is easier with Git

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version Control

« Branch management

0>0->@ >

“Trunk”

branch

— SVN make a copy of the all repository

— Git make a link to a particular state of the

files

Collaborative Software Development - M2R Interaction - Cédric Fleury

e Version Control
* Branch management
— Classical organisation
of a project into
branches

http://nvie.com/posts/a-
successful-git-branching-model/

Collaborative Software Development - M2R Interaction - Cédric Fleury

Outline

* Collaborative software development

— Version control

— Continuous integration

— Agile methods

Collaborative Software Development - M2R Interaction - Cédric Fleury

Version Control

« Branch management

— Merging branch (very complex to achieve with SVN)

client 1 \
branch O
client 2
‘ merge I
Collaborative Software Development - M2R Interaction - Cédric Fleury 32

Version Control

* Branch management
— Each user can work on particular branches
— Branches can be synchronized between users

(alice [david
| | — ————
¢
i

ﬁ[
"

|

Collaborative Software Development - M2R Interaction - Cédric Fleury

Continuous integration

* Integration
— Merging the work of several developers

+ Goals

— Test modifications form the beginning
— Detect integration problems at an early stage
— Avoid fastidious integration phases

— Always have the system running
» Tests, demos, discussion with the customers

http://martinfowler.com/articles/continuousintegration.html

Collaborative Software Development - M2R Interaction - Cédric Fleury

Continuous integration

* Principles
— Version control on a repository
— Automatic and fast build —
— Auto-testing
— "Commit" every day

— Deployment on an
integration computer
after each "commit”

— Automatic deployment
— Executable always available
— Every body know the build state

Build & Test Results

Collaborative Software Development - M2R Interaction - Cédric Fleury

Outline
* Collaborative software development

— Version control
— Continuous integration

— Agile methods

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

* Engineering methodologies
— Example: Waterfall

Requirements
alysis
Design
Integration
Deploy
Collaborative Software Development - M2R Interaction - Cédric Fleury

4

Continuous Integration

» Feedbacks for collaboration
— Token on the desk of the person who builds
— Make a sound when a build is valid
— Web page of the integration server
— Bubble light
— Wallboard

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

* Methods for software development
— No methods: "Code and fix"
« Efficient for small project
« Difficult to add new features or to find bugs

— Engineering / plan-driven methodologies
« Come from civil or mechanical engineering
— Drawing / construction plan / task distribution / construction

— Agile methodologies
« Adaptive rather than predictive
« People-oriented rather than process-oriented

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

* Engineering methodologies
— Separation of design and construction

* Design
— Unpredictable
— Require creative people

» Construction
— Predictable
— Require people with lower skill

— Example: civil engineering
+ construction is bigger in cost and time than design

Collaborative Software Development - M2R Interaction - Cédric Fleury 2

Collaborative Softwat

Software development

* Design and Construction for software?
— UML = Design, coding = Construction?

— Source code = Design, compilation = Construction

» Construction is quick and cheap

» Source code requires creative and talented people
» Creative processes are unpredictable

* Are the engineering methodologies well adapted ?

[Jack Reeves, C++ Journal, 1992]

http:/ /www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm

e Development - M2R Interaction - Cédric Fleury

Software development

* |s software development predictable?

1t is typical to adopt the defined (theoretical)
modeling approach when the underlying
mechanisms by which a process operates are
reasonably well understood.

-,
Oolb
%,

When the process
is too complicated
for the defined
approach, the
empirical
approach is the
appropriate
choice.

Technology

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods

* Manifesto for Agile Software Development
— Individuals and interactions over processes and tools
- Working software over comprehensive documentation
— Customer collaboration over contract negotiation

— Responding to change over following plan

http://agilemanifesto.org

Collaborative Software Development - M2R Interaction - Cédric Fleury

Software development

* |Is software development predictable?

— Yes in some cases...
» NASA programs

— Usually, requirements are unpredictable

» Customers don’t precisely know what they want
+ Hard to evaluate the cost of different options
» Hard to estimate which features are useful

= Requirements should be flexible in these cases

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods

* Deal with unpredictable requirements

— Iterative development
* Involve the customers at each iteration

» Improve the team organization

— Effective team of developers
» Do not consider developers are replaceable parts
— Analysts, coders, testers, managers
» Developers are responsible professionals
— Make the technical decisions
— Evaluate the time required to perform the tasks

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods

< ‘ ‘:‘1“ ;:J‘ ﬁ" Continue

Vision
Iteration 1 Iteration 2 Iteration 3 Iteration 4
Implementation & Developer Testing
Bl |
Design & = QA/ Acceptance
Analysis ‘g
Iteration Detail
Detailed

Roquirements (Deployment)

Evaluation /
Prioritization

Collaborative Software Development - M2R Interaction - Cédric Fleury

Agile methods

* Examples
— XP (Extreme Programming)
+ Test driven development, pair programming
— Scrum
— Crystal
« Safety, efficiency, habitability (less discipline than XP)
— Open source process
« Distributed contributors, parallelized debugging
— Lean development
« Just in time, Jidoka
— RUP (Rational Unified Process) ?
« Use case driven, iterative, architecture centric

Collaborative Software Development - M2R Interaction - Cédric Fleury 49

Pair programming

» Advantages
— Code quality
» Better designs
» Fewer bugs

— Spreading Knowledge
» Pairs have to switch off regularly
» Technical and conceptual knowledge

— Social aspects
» No loneliness, conviviality, better motivation

Collaborative Software Development - M2R Interaction - Cédric Fleury

Pair programming

+ Pairing strategies
— In XP, all production code is written by pairs
— In non-XP agile teams, usually pairing is not used at all
— A trade-off can be found
» For some particular tasks
— Mentoring new hires
— Extremely high-risk tasks
— Start of a new project when the design is new
— When adopting a new technology
* On a rotating monthly or weekly basis
 Developers who prefers to pair

Collaborative Software Development - M2R Interaction - Cédric Fleury

Pair programming

* Two programmers
* One computer
* Roles

— One "drives": operating mouse and keyboard
» Code: syntax, semantics, algorithm

— One "navigates": watchs, learns, asks, talks,
makes suggestions
» Higher level of abstraction
— Test, technical task, time since the last commit,
— Quality of the overall design

Collaborative Software Development - M2R Interaction - Cédric Fleul 50

Pair programming

* Productivity

— Short-term productivity might decrease
slightly (about 15%)

— Long-term productivity goes up
+ Because the code is better
» Even better if you consider staff turnover

— Truck number in XP
» Close as possible to the team size

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum

* Iterations called Sprint

) y Y D)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Oosign & “ QA / Acceptance
Analysis o
Iteration Detail

(Deployment)

Vision Continue

Collaborative Software Development - M2R Interaction - Cédric Fleury 54

* Roles @
— Product Owner
« Single person
« Responsible for products vision
« Constantly re-prioritizes the Product Backlog
 Accepts or rejects product increment -
— Development team
« Self-organized
» Negotiate commitments with the Product Owner
+ Has autonomy regarding how to reach commitments
« Intensely collaborative
— Master
« Facilitates the Scrum process
* Helps resolve issues
+ Shields the team from external inferences and distractions
« Has no management authority

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum

* Sprint
— Planning Meeting

» Negotiate which Product
Backlog items will be processed

» Break items into a list of sprint

Sprint Planning
Meeting

Batiiag)
tasks | nonenens]
Meeting
Collaborative Software Development - M2R Interaction - Cédric Fleury 57
* Sprint
— Planning Meeting
Iy e
— Daily Meeting Mecting

« Same time and place

. . H Backl
+ 15 minutes, standing up oaysoum | | oo |
. . : Meetir i
* Summarize work of previous ——
day, work of today, issues
* Maintain tasks list (not started,
in progress, done), issues list
and burn-down chart.
* Product Owner may attend e
Meeting
Collaborative Software Development - M2R Interaction - Cédric Fleury 59

Scrum
* Product Backlog

<«—— only one item
ata time
top items 3 is top priority
are more
granular
Collaborative Software Development - M2R Interaction - Cédric Fleury 56
Product Backlog Sprint Backlog
User login i by
roaver |$ ——
Increment
SSL enable [
s Py —
Reset lost password f—
Account lockout
after three — -
S s
Collaborative Software Development - M2R Interaction - Cédric Fleury 58
* Sprint Backlog
Committed
Tasks Tasks Tasks
B;::‘I:g Not Started In Progress Completed
. RRE |2 EG
BEEE B
— BEEE
- BEEE
B2

1}

Collaborative Software Development - M2R Interaction - Cédric Fleury 60

Scrum
* Sprint
— Planning Meeting :
— Daily Meeting

— Review Meeting

» Demonstrate the working
product increment to the
Product Owner

* Product Owner declares
which items are done

« Unfinished items return to
the Product Backlog

* Master proposes new items
for the Product Backlog

T Badiog
Refinement i
Mool
Sprint Review
Meeting

Collaborative Software Development - M2R Interaction - Cédric Fleury 61

Scrum

* Sprint
— Planning Meeting
— Daily Meeting

— Review Meeting
— Retrospective Meeting
« Team reviews its own process

« Team takes to adapt it for
futur Sprints

* Master have to manage the
psychological safety of the
meetings

Collaborative Software Development - M2R Interaction - Cédric Fleury 62

Scrum

* Sprint
— Planning Meeting .
— Daily Meeting

— Review Meeting
— Retrospective Meeting
— Backlog Refinement Meeting

* Items are usually too large or
poorly understood

* Refine these items into
smaller one

* Master can help

i Backiog Y
Refinement
Meeli
Sprint Review
Meeting

Collaborative Software Development - M2R Interaction - Cédric Fleury 63

Scrum
* Feedbacks to the team: wallboard

Collaborative Software Development - M2R Interaction - Cédric Fleury 65

Scrum
» Feedbacks to the team: wallboard

Collaborative Software Development - M2R Interaction - Cédric Fleury 64

Scrum

» Feedbacks to the team: wallboard

Collaborative Software Development - M2R Interaction - Cédric Fleury 66

Scrum
» Feedbacks to the team: wallboard

Collaborative Software Development - M2R Interaction - Cédric Fleury

Scrum

» Software to manage Scrum projects

SRA

http://youtu.be/KdyV9okLRIc

Collaborative Software Development - M2R Interaction - Cédric Fleut

Conclusion

« Collaboration in software development
— Is necessary for big projects
— Is not obvious
« Technical, organizational and social aspects

« Version control
— Synchronization, versioning
— Branching: split work between users

« Continuous integration
— Improve safety and efficiency

« Agile method
— Organize the team
— Propose an adaptative process to unpredictable requirements

Collaborative Software Development - M2R Interaction - Cédric Fleury

References

+ Version control
— http://nvie.com/posts/a-successful-git-branching-model/

— http://www-igm.univ-mlv.fr/~dr/XPOSE2010/
gestiondeversiondecentralisee/dvcs-svn.html

— http://www.infres.enst.fr/-bellot/java/poly/git.pdf
— http://fr.openclassrooms.com/informatique/cours/gerez-vos-codes-
source-avec-git/qu-est-ce-qu-un-logiciel-de-gestion-de-versions
« Continuous Integration
— http://martinfowler.com/articles/continuousintegration.html
* Agile Models
— http://agilemanifesto.org
— http://martinfowler.com/articles/newMethodology.html
* Pair Programming
— http://www.versionone.com/Agile101/Pair_Programming.asp
* Scrum
— http://scrumreferencecard.com

Collaborative Software Development - M2R Interaction - Cédric Fleury

