
Groupware and Collaborative Interaction  
Collaborative Software Development

M2R Interaction / Université Paris-Sud / 2018 - 2019

Cédric Fleury (cedric.fleury@lri.fr)

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Several users work on a same project

Remote or collocated users

Each one works on its own computer (asynchronous)

Work on different tasks

Work at different times

Collaboration is hard to organize

Versioning, synchronization between users

Tasks distribution, social aspects

2

M2 Interaction / Collaborative Software Development / Cédric Fleury

Outline

Collaborative software development

Version control

Continuous integration

Software development methods

3

M2 Interaction / Collaborative Software Development / Cédric Fleury

Outline

Collaborative software development

Version control

Continuous integration

Software development methods

4

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Problematic

We want to avoid:

Manually share the files (USB key, email, Dropbox)

Delete or overwrite the files of other users

Broke all the project by making a mistake

We want to able to:

Edit the project at the same time

Keep an history of the modification

Keep the older version of the files + hierarchy

5

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control
Problematic

We want to avoid this:

6

[“Piled Higher and Deeper” by Jorge Cham: www.phdcomics.com]

http://www.phdcomics.com

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Version control software

Save & restore different versions of the files

Synchronize users’ versions

Keep track of modifications and their authors

Manage Branching and merging

Not only for software development

Report, images, data from experiments

7

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

2 kinds of architecture

Centralized

CVS, SVN, …

Decentralized (peer-to-peer):

GNU Arch, Mercurial, Bazaar, Git,…

Decentralized can be used as a Hybrid Architecture

One peer can be a central server

8

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Centralized architecture

9

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Decentralized architecture

10

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Hybrid architecture

11

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Vocabulary (SVN)

Architecture

Repository

Working copy

Actions

Checkout

Update

Commit

Revert

Diff, log, status

12

Centralized Architecture

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Drawbacks of the centralized architecture

Just one access point to the data

Just one communication point between users

Just one historic of the files

Versioning and sharing are the same operation

Need to have a stable state before "committing"

13

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Vocabulary (Git)

Architecture

Remote and local repository

Working copy

Actions

Clone

Pull, Push

Commit

Reset

Diff, log, status

14

Hybrid Architecture

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Good practices

Work on the local copy

Send the modification

Check if the code compiles locally

Check for updates from the other users

Manage conflicts if there are some

Check if the code compiles with the updates

Commit the code on the shared version (server)

15

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Users can modify the same file

But at different part/section of the files

If they modify the same part of a file

A conflict appends

Usually, it cannot be resolve automatically

Users have to fix the conflit

By telling to the system, which version is correct

By merging the modifications of the users

16

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Conflicts management

17

C:\workspace\test>svn up
Conflict discovered in 'test.txt'.
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options: p
C test.txt
Updated to revision 3.
Summary of conflicts:
 Text conflicts: 1

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Conflicts management

18

08/10/2010 11:44 AM 94 test.txt
08/10/2010 11:44 AM 26 test.txt.mine
08/10/2010 11:44 AM 27 test.txt.r2
08/10/2010 11:44 AM 31 test.txt.r3

<<<<<<< .mine
test User2 making conflict
=======
User1 am making a conflict test
>>>>>>> .r3

test.txt

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Tools for conflict management (TortoiseMerge)

19

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Tools for conflict management (TortoiseMerge)

20

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Tools for conflict management (SmartGit)

21

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Tools for conflict management (SmartGit)

22

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Conflicts management

To avoid conflict:

Users are able to "lock" a file

Only the user who locks the file can modify it

If another user try to lock a file while it is locked by another user,
he receives an error message

Users have to manually unlock the file when they have
finished to work on it.

23

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Collaboration scenario : centralized (SVN)

24

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Collaboration scenario : decentralized (Git)

25

Inter-personal communications

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Collaboration scenario : decentralized (Git)

Integrator mode

A repository 
is in charge  
of the test

26

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Collaboration scenario : decentralized (Git)

Dictator mode

Open-source  
projects

"Lieutenants"  
make a first  
check before  
sending to  
the "dictator"

27

M2 Interaction / Collaborative Software Development / Cédric Fleury

Collaboration scenario : decentralized (Git)

Multi-location team

Each team can work independently

Regular integration of the work of each team  
can be done

Version control

28

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version control

Historic management

Computation of the historic is linear according to the
"commit" order

29

M2 Interaction / Collaborative Software Development / Cédric Fleury

Historic management

SVN assigns a revision  
number to all the project

Git assigns a revision  
number peer file

This difference has a strong impact on collaboration

Using branch for collaboration is easier with Git

Version control

30

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version Control

Branch management

SVN make a copy of the all repository

Git make a link to a particular state of the files

31

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version Control

Branch management

Merging branch (very complex to achieve with SVN)

32

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version Control

Branch management

Classical organisation of
a project into branches

33

http://nvie.com/posts/a-
successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version Control

Branch management

Each user can work on particular branches

Branches can be synchronized between users

34

M2 Interaction / Collaborative Software Development / Cédric Fleury

Outline

Collaborative software development

Version control

Continuous integration

Software development methods

35

M2 Interaction / Collaborative Software Development / Cédric Fleury

Continuous integration

Integration

Merging the work of several developers

Goals

Test modifications form the beginning

Detect integration problems at an early stage

Avoid fastidious integration phases

Always have the system running

Tests, demos, discussion with the customers

36

http://martinfowler.com/articles/continuousIntegration.html

http://martinfowler.com/articles/continuousIntegration.html

M2 Interaction / Collaborative Software Development / Cédric Fleury

Principles

Version control on a repository

Automatic and fast build

Auto-testing

"Commit" every day

Deployment on an  
integration computer  
after each "commit"

Automatic deployment

Executable always available

Every body know the build state

Continuous integration

37

M2 Interaction / Collaborative Software Development / Cédric Fleury

Continuous Integration

Feedbacks for collaboration

Token on the desk of the person who builds

Make a sound when a build is valid

Web page of the integration server

Bubble light

Wallboard

38

M2 Interaction / Collaborative Software Development / Cédric Fleury

Outline

Collaborative software development

Version control

Continuous integration

Software development methods

39

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Methods for software development

No methods: "Code and fix"

Efficient for small project

Difficult to add new features or to find bugs

Engineering / plan-driven methodologies

Come from civil or mechanical engineering

Drawing / construction plan / task distribution / construction

Agile methodologies

Adaptive rather than predictive

People-oriented rather than process-oriented

40

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Engineering methodologies

Example: Waterfall

41

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Engineering methodologies

Separation of design and construction

Design

Unpredictable

Require creative people

Construction

Predictable

Require people with lower skill

Example: civil engineering

construction is bigger in cost and time than design

42

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Design and Construction for software?

43

[Jack Reeves, C++ Journal, 1992]
http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm

UML = Design, coding = Construction?

Source code = Design, compilation = Construction

Construction is quick and cheap

Source code requires creative and talented people

Creative processes are unpredictable

Are the engineering methodologies well adapted ?

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Is software development predictable?

44

Yes in some cases…
NASA programs

Usually, requirements are unpredictable  
(especially for software involving interactions with users)

Customers don’t precisely know what they want

Hard to evaluate the cost of different options

Hard to estimate which features are useful

 ⇒ Requirements should be flexible in these cases

Video

M2 Interaction / Collaborative Software Development / Cédric Fleury

Software development

Is software development predictable?

45

M2 Interaction / Collaborative Software Development / Cédric Fleury

Agile methods

Deal with unpredictable requirements

Iterative development

Involve the customers at each iteration

Improve the team organization (self-adaptive process)

Effective team of developers (people first)

Do not consider developers are replaceable parts

Analysts, coders, testers, managers

Developers are responsible professionals

Make the technical decisions

Evaluate the time required to perform the tasks

46

M2 Interaction / Collaborative Software Development / Cédric Fleury

Agile methods

Manifesto for Agile Software Development

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following plan

47

http://agilemanifesto.org

M2 Interaction / Collaborative Software Development / Cédric Fleury

Agile methods

48

M2 Interaction / Collaborative Software Development / Cédric Fleury

Agile methods
Examples

XP (Extreme Programming)

Test driven development, pair programming

Scrum

Crystal

Safety, efficiency, habitability (less discipline than XP)

Open source process

Distributed contributors, parallelized debugging

Lean development (Lean @ Toyota)

Just in time, Jidoka ("automation with a human touch")

RUP (Rational Unified Process)

Use case driven, iterative, architecture centric

49

M2 Interaction / Collaborative Software Development / Cédric Fleury

Pair programming

Two programmers

One computer

Roles

One "drives": operating mouse and keyboard

Code: syntax, semantics, algorithm

One "navigates": watchs, learns, asks, talks, makes
suggestions

Higher level of abstraction

Test, technical task, time since the last commit,

Quality of the overall design

50

M2 Interaction / Collaborative Software Development / Cédric Fleury

Pair programming
Advantages

Code quality

Better designs

Fewer bugs

Spreading Knowledge

Pairs have to switch off regularly

Technical and conceptual knowledge

Social aspects

No loneliness, conviviality, better motivation

51

M2 Interaction / Collaborative Software Development / Cédric Fleury

Pair programming

Productivity
(it depends on how you measure productivity : lines of code VS running and tested features)

Short-term productivity might decrease slightly (about 15%)

Long-term productivity goes up

Because the code is better

Even better if you consider staff turnover

Truck number in XP

Close as possible to the team size

52

M2 Interaction / Collaborative Software Development / Cédric Fleury

Pair programming
Pairing strategies

In XP, all production code is written by pairs

In non-XP agile teams, usually pairing is not used at all

A trade-off can be found

For some particular tasks

Mentoring new hires

Extremely high-risk tasks

Start of a new project when the design is new

When adopting a new technology

On a rotating monthly or weekly basis

Developers who prefers to pair

53

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Iterations called Sprint (about 1 month)

54

M2 Interaction / Collaborative Software Development / Cédric Fleury

Roles

Product Owner

Single person

Responsible for products vision

Constantly re-prioritizes the Product Backlog

Accepts or rejects product increment

Development team

Self-organized

Negotiate commitments with the Product Owner

Has autonomy regarding how to reach commitments

Intensely collaborative

Master

Facilitates the Scrum process

Helps resolve issues

Shields the team from external inferences and distractions

Has no management authority

Scrum

55

M2 Interaction / Collaborative Software Development / Cédric Fleury

Product Backlog

Scrum

56

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint

Planning Meeting

Negotiate which Product Backlog
items will be processed

Break items into a list of sprint
tasks

57

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

58

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint

Planning Meeting

Daily Meeting

Same time and place

15 minutes, standing up

Summarize work of previous day,
work of today, issues

Maintain tasks list (not started,
in progress, done), issues list and
burn-down chart.

Product Owner may attend

59

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint Backlog

60

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint

Planning Meeting

Daily Meeting

Review Meeting

Demonstrate the working product
increment to the Product Owner

Product Owner declares which
items are done

Unfinished items return to the
Product Backlog

Master proposes new items for
the Product Backlog

61

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint

Planning Meeting

Daily Meeting

Review Meeting

Retrospective Meeting

Team reviews its own process

Team takes to adapt it for futur
Sprints

Master have to manage the
psychological safety of the
meetings

62

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint

Planning Meeting

Daily Meeting

Review Meeting

Retrospective Meeting

Backlog Refinement Meeting

Items are usually too large or
poorly understood

Refine these items into
smaller one

Master can help

63

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum
Feedbacks to the team: wallboard

64

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum
Feedbacks to the team: wallboard

65

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum
Feedbacks to the team: wallboard

66

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum
Feedbacks to the team: wallboard

67

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum
Software to manage Scrum projects

68

http://youtu.be/KdyV9okLRlc

http://youtu.be/KdyV9okLRlc

M2 Interaction / Collaborative Software Development / Cédric Fleury

Conclusion

Collaboration in software development

Is necessary for big projects

Is not obvious

Technical, organizational and social aspects

Version control

Synchronization, versioning

Branching: split work between users

69

M2 Interaction / Collaborative Software Development / Cédric Fleury

Conclusion

Continuous integration

Improve safety and efficiency

Agile method

Organize the team

Propose an adaptative process to unpredictable
requirements

70

M2 Interaction / Collaborative Software Development / Cédric Fleury

References
Version control

http://nvie.com/posts/a-successful-git-branching-model/

http://www-igm.univ-mlv.fr/~dr/XPOSE2010/gestiondeversiondecentralisee/
dvcs-svn.html

http://www.infres.enst.fr/~bellot/java/poly/git.pdf

http://fr.openclassrooms.com/informatique/cours/gerez-vos-codes-source-
avec-git/qu-est-ce-qu-un-logiciel-de-gestion-de-versions

Continuous Integration
http://martinfowler.com/articles/continuousIntegration.html

Agile Models
http://agilemanifesto.org

http://martinfowler.com/articles/newMethodology.html

Pair Programming
http://www.versionone.com/Agile101/Pair_Programming.asp

Scrum
http://scrumreferencecard.com

71

http://nvie.com/posts/a-successful-git-branching-model/
http://www-igm.univ-mlv.fr/~dr/XPOSE2010/gestiondeversiondecentralisee/dvcs-svn.html
http://www.infres.enst.fr/~bellot/java/poly/git.pdf
http://fr.openclassrooms.com/informatique/cours/gerez-vos-codes-source-avec-git/qu-est-ce-qu-un-logiciel-de-gestion-de-versions

