UNIVERSITE
S PARIS
SUD

Groupware and Collaborative Interaction
Collaborative Software Development

M2R Interaction / Université Paris-Sud / 2018 - 2019
Cédric Fleury (cedric.fleury®lri.fr)

Software development

Several users work on a same project
Remote or collocated users

Each one works on its own computer (asynchronous)
Work on different tasks

Work at different times

Collaboration is hard to organize
Versioning, synchronization between users

Tasks distribution, social aspects

M2 Interaction / Collaborative Software Development / Cédric Fleury 2

Outline

Collaborative software development
Version control
Continuous integration

Software development methods

Outline

Collaborative software development
Version control
Continuous integration

Software development methods

M2 Interaction / Collaborative Software Development / Cédric Fleury 4

Version control

Problematic

We want to avoid:
Manually share the files (USB key, email, Dropbox)
Delete or overwrite the files of other users

Broke all the project by making a mistake

We want to able to:
Edit the project at the same time
Keep an history of the modification

Keep the older version of the files + hierarchy

M2 Interaction / Collaborative Software Development / Cédric Fleury 5

Version control

Problematic

We want to avoid this:

A STORY TOLD IN FLE NAMES: =Jok3

9 C:\user\resaarch\data v
Filename Date Modfied Size ' Type

U data_2010.05,.28_test.dat 3:37 PM 5/28/2010 DAT file
U data_2010.05.28_re-test.dat 1L29PM 5 010 DAT file
U data_2010.05.28_rere-test.dat 543 PM 010 DAT file
3 data_2010.05.28_calibrate dat 7:17 PM 201C DAT file
U data_2010.05.28_huh?? dat 7:20PM 5/28/2010 DAT file

U data_2010.05.28_WTF.dat 9:58 PM 5/28/2010 DAT file
U dsta_2010.05.29_ssarrrgh.dat 12:37 AM DAT file
W Oata_2010.05.29_#$@*8Il.dat 2:90 AM 5/29/2 DAT file
& data_2010.05.29_crap dat 3:22AM 5 DAT file
U data_2010.05.29_notbad.dat A6 AM S DAT file
U data_2010.05.29_woohoo!! dat 147 AM $/29/2010 DAT file
U data_2010.05.29_USETHISONE dat 08 AM 5/2 DAT file
&) analysis_graphe s 7:13 AM 5/25/2010 ¥LS file
&) ThesisOutline doc 7:26 AM 5/29 DOC file
%) Notes_Meeting_with_ProfSmith. txt 11:38 AM 5/29/2010 1, TXT file
) JUNK 245 PM 5/29/2010 Folder

U data_2010.05.30_startingover.dat 8:37 AM 5/30/2010 DAT file

<
Type: PhD Thesis Modfied: 1950 many tmes Copyright: Jorge Cham www phdcomics com

[“Piled Higher and Deeper” by Jorge Cham: www.phdcomics.com]

M2 Interaction / Collaborative Software Development / Cédric Fleury 6

http://www.phdcomics.com

Version control

Version control software

Save & restore different versions of the files
Synchronize users’ versions

Keep track of modifications and their authors

Manage Branching and merging

Not only for software development

Report, images, data from experiments

Version control

2 kinds of architecture

Centralized
CVS, SVN, ...
Decentralized (peer-to-peer):
GNU Arch, Mercurial, Bazaar, Git,...

Decentralized can be used as a Hybrid Architecture

One peer can be a central server

M2 Interaction / Collaborative Software Development / Cédric Fleury 8

Version control

Centralized architecture

Store the
modification history

o »
/ \
'// \l\'*
///' \\
Developer Developer /

/

\ /

N

| -

Developers own
and modify the last
version of the files

M2 Interaction / Collaborative Software Development / Cédric Fleury 9

Decentralized architecture

Version control

&N T

/' Developer

Developers own all the versions of the files
and directly exchange the modifications

M2 Interaction / Collaborative Software Development / Cédric Fleury

10

Version control

Hybrid architecture

Developers own all the versions of the files
and exchange modifications via the server

M2 Interaction / Collaborative Software Development / Cédric Fleury 11

Version control

Vocabulary (SVN)

_ Centralized Architecture
Architecture

Repository

=
e ~
§ \1 modification history

Working copy
Actions

Checkout
Update

Commit &“ 5@3

Reve rt Developer Developer /

\ /

Diff, log, status el

——
Developers own
and modify the last
vorsion of the files

M2 Interaction / Collaborative Software Development / Cédric Fleury 12

Version control

Drawbacks of the centralized architecture
Just one access point to the data
Just one communication point between users
Just one historic of the files

Versioning and sharing are the same operation

Need to have a stable state before "committing”

M2 Interaction / Collaborative Software Development / Cédric Fleury 13

Version control

Vocabulary (Git)

_ Hybrid Architecture
Architecture

Remote and local repository

Working copy \3/

Actions S
Clone
Pull, Push
Commit &b 65
Reset Developer Developer
Diff, log, status \\ //

—— = ——

Developers own all the versions of the files
and exchange modifications via the server

M2 Interaction / Collaborative Software Development / Cédric Fleury 14

Version control

Good practices
Work on the local copy

Send the modification

Check if the code compiles locally

Check for updates from the other users

Check if the code compiles with the updates

Commit the code on the shared version (server)

M2 Interaction / Collaborative Software Development / Cédric Fleury

15

Version control

Users can modify the same file

But at different part/section of the files

If they modify the same part of a file
A conflict appends

Usually, it cannot be resolve automatically

Users have to fix the conflit

M2 Interaction / Collaborative Software Development / Cédric Fleury

16

Conflicts management

Version control

C:\workspace\test>svn up

Conflict discovered in 'test.txt'.
Select: (p) postpone, (df) diff-full,
(mc) mine-conflict, (tc)
(s) show all options: p

C test.txt

Updated to revision 3.

Summary of conflicts:
Text conflicts: 1

theirs-conflict,

(e) edit, (r)

resolved,

M2 Interaction / Collaborative Software Development / Cédric Fleury

17

Version control

Conflicts management

08/10/2010 11:44 AM 94 test.txt
08/10/2010 11:44 AM 26 test.txt.mine
08/10/2010 11:44 AM 27 test.txt.r?
08/10/2010 11:44 AM 31 test.txt.r3
test.txt

<KLL' .mine
test UserZ2 making conflict

Userl am making a conflict test
>>>>>>> | r3

M2 Interaction / Collaborative Software Development / Cédric Fleury 18

¥ Syknapelist.cpp

TortoiseMerge

Version control

Tools for conflict management (TortoiseMerge)

Fle Edt Novgste Vew Heb

289 2844 4 == & A 2
SysImageList . cpp A SysImageList.cpp]“
56 58
57 SHGecFilelInto(56 SHGetFilelnto |
- 58 — + 57 _T(*plablah"),
59 FILE_ATTRIBUTE_DIRECTORY, 58 FILE_ATTRIBUTE_DIRECTORY,
60 (511, sizeof sr1, 59 {521, sizeof s11,
- 61 — “+ 60 SHGFI_SYSICONINDEX | SI!GII_‘UB!!’IL!ATTR!B
- 62
63 recturn srfi.ilcon! 61 recurn sf£i,ilcon;
64) 62)
65 63
“+ 64void CSysImageList::Test()
+ 65¢
+ 66 RunTests() !
+ 67)
+ 68
66 1nt CSysimagelisct:iGetDefaulctIconlIndex () consc 69 1nt CSysImagelisc:iGetDetaulcIconlndex() const
67 { 70 (
68 SHFILEINFO af1: 1 SHFILEINFO s2£1;
T Geal L St
70 ZeroMemory(€afi, sizeof sfi): 72 ZeroMemory(£arfi, sizeof arfi):
71 73
Tl eHeers b s e leios 74 SHGetFilelInfo(_T(“"), FILE_ATTRIBUTE_NORMAL,
73—y
74 FILE AT TeleUTh HORRAL .
Tl ATy eaenl Sy
B L A B e e ST
7 v s v
< > < >

FILE_ATTRIBUTE_DIRECTORY, .]
FILE ATTRIBUTE_DIRECTORY, J

For Helb, press F1. Scrol hortontaly with Cirl-Scrolwhmel

" “

" “

M2 Interaction / Collaborative Software Development / Cédric Fleury

19

Version control

Tools for conflict management (TortoiseMerge)

¥ Schiller's Glecke - TortolseMerpe
Flo Tdt Navigste View Heb

2dH &9 23843 & {[EN= R A2
Theirs - Schiller's Glocke a Mine - Schiller's Glocke A
3 3
=AR 4 Festgemauert in der Erden 4 Festgemauert in der Erden
$ Stehs die Torm, aws Lehm gebramnt. — Greht die Form, aus Leie gebianint.
% SSteht die Form, aus Lehn gedbrannt.
—— Hovie srue die cabe Geibei, 6 Heute mubd die Glocke wverden,
“+ 6 Heute wub die Glocke verden,
7 rrisch, Gesellen, seid zur Hand. T rrisch, Gesellen, seid zur Mand.
= B R LR L = R I R LR L LR 4
= B e N e = B e e
= wGll das Lok dein Neister loben, = Gl das ek el Nesszer lobesn,
= Doch dei Legen ol Von chen. = Dot det segen Ko o
L]]
9 9
10 10
11 v 11 v
< > < >

4 Festgemauert in der Erden

l

S Sceht die Yorm, aus Lehn gebranst.

’;’“

€ Heute »ub die Glocke verden,
T Frisch, Gesellen, seid zur Mand.

I_

|

For Melp, press P11, Sorol horgontally with Chil-Sarolwhesd

M2 Interaction / Collaborative Software Development / Cédric Fleury 20

Version control

Tools for conflict management (SmartGit)

Kavin
7z

- - Il fait beau
Jo suis beau | Kevin |

Tout va bien N7
/~ amobt.)

\ o / Il fait beau
Je suis inteligent
Je suis beau
 wme.) Tout va pour le mieux!
o] | ntait beau R 4
Je suis intelligent
Tout va bien
e
4>
Richard

M2 Interaction / Collaborative Software Development / Cédric Fleury 21

Version control

Tools for conflict management

Kevin ("ours”)

Il fait beou
Je suis beau
Tout va bien

I1 fait beau
Je suis beau
Tout va bien

Working Tree

Il foit beou

X Je suis intelligent
Je suis beau x
Tout va pour le mieux!

I1 fait beau

Je suis intelligent
Je suis beau

Tout va pour le mieux!

M2 Interaction / Collaborative Software Development / Cédric Fleury

Richard ("theirs®)

I1 fait beau
Je suis intelligent
«Tout va bien

22

Version control

Conflicts management

To avoid conflict:

Users are able to "lock” a file

Users have to manually unlock the file when they have
finished to work on it.

M2 Interaction / Collaborative Software Development / Cédric Fleury 23

Version control

Collaboration scenario : centralized

@

W
@

\Q/

@

e

M2 Interaction / Collaborative Software Development / Cédric Fleury 24

Version control

Collaboration scenario : decentralized

v
Q)
VL/ \V.
O O

Inter-personal communications

M2 Interaction / Collaborative Software Development / Cédric Fleury

25

Collaboration scenario

Integrator mode

A repository
is in charge
of the test

Version control

: decentralized (Git)

M2 Interaction / Collaborative Software Development / Cédric Fleury 26

Version control

Collaboration scenario : decentralized (Git)

Dictator mode

Open-source
projects

"Lieutenants”
make a first

check before
sending to

the "dictator”

R
@,

A7
OO OO

M2 Interaction / Collaborative Software Development / Cédric Fleury

—>| prod.

27

Version control

Collaboration scenario : decentralized (Git)

Multi-location team
Each team can work independently

Regular integration of the work of each team
can be done
S /Q

M2 Interaction / Collaborative Software Development / Cédric Fleury 28

Version control

Historic management

Computation of the historic is linear according to the
“commit” order

revision n°6

T OPOPOPO>0>0

revision n°1

M2 Interaction / Collaborative Software Development / Cédric Fleury 29

Version control

Historic management f ' 2 u
SVN assigns a revision = *T{J LT{]:] LT];:]
number to all the project) L) M0

1) ~L) i

U] :D

Git assigns a revision 1 1)
: =) L)

number peer file L
i

This difference has a strong impact on collaboration

Using branch for collaboration is easier with Git

M2 Interaction / Collaborative Software Development / Cédric Fleury 30

Version Control

Branch management

“Trunk” ()ﬁ){ }f)(}———-—-—-—-—-—-—i)()

branch

SVN make a copy of the all repository

Git make a link to a particular state of the files

M2 Interaction / Collaborative Software Development / Cédric Fleury 31

Branch management

Merging branch

client 1

branch

client 2

M2 Interaction / Collaborative Software Development / Cédric Fleury

Version Control

merge

32

Version Control

Branch management

Classical organisation of
a project into branches

http://nvie.com/posts/a-
successful-git-branching-model/

M2 Interaction / Collaborative Software Development / Cédric Fleury 33

http://nvie.com/posts/a-successful-git-branching-model/

Version Control

Branch management
Each user can work on particular branches

Branches can be synchronized between users

(dawd)

N) \1:
l A{ j/ |
|(§ | ' N

M2 Interaction / Collaborative Software Development / Cédric Fleury

! allce

34

Outline

Collaborative software development
Version control
Continuous integration

Software development methods

M2 Interaction / Collaborative Software Development / Cédric Fleury 35

Continuous integration

Integration
Merging the work of several developers
Goals
Test modifications form the beginning
Detect integration problems at an early stage
Avoid fastidious integration phases

Always have the system running

Tests, demos, discussion with the customers

http://martinfowler.com/articles/continuousintegration.html

M2 Interaction / Collaborative Software Development / Cédric Fleury 36

http://martinfowler.com/articles/continuousIntegration.html

Continuous integration

Principles
Version control on a repository

AUtOmatiC and faSt bUild , Continuous Integration System

Source :
Auto-testing °:;/ o \Lw
"Commit" every day P B =

Il ——
‘.q Code > e
\ - Build N

Deployment on an FA o i Sobe NS §
integration computer , y | Ry |
after each "commit” et |18 W= Dedicated |
Development | - i | Automated vl

System = . : Tosts Machine

Automatic deployment

Build & Test Results

Executable always available

Every body know the build state

M2 Interaction / Collaborative Software Development / Cédric Fleury 37

Continuous Integration

Feedbacks for collaboration
Token on the desk of the person who builds
Make a sound when a build is valid
Web page of the integration server
Bubble light
Wallboard

M2 Interaction / Collaborative Software Development / Cédric Fleury 38

Software development methods

M2 Interaction / Collaborative Software Development / Cédric Fleury

Outline

39

Software development

Methods for software development

No methods: "Code and fix"
Efficient for small project

Difficult to add new features or to find bugs

Engineering / plan-driven methodologies

Come from civil or mechanical engineering

Agile methodologies
Adaptive rather than predictive

People-oriented rather than process-oriented

M2 Interaction / Collaborative Software Development / Cédric Fleury 40

Software development

Engineering methodologies
Example: Waterfall

Requirements
Analysis

Design
Integration

Deploy

M2 Interaction / Collaborative Software Development / Cédric Fleury 41

Software development

Engineering methodologies

Separation of design and construction

Design

Construction

Example: civil engineering

construction is bigger in cost and time than design

M2 Interaction / Collaborative Software Development / Cédric Fleury 42

Software development

Design and Construction for software?

UML = Design, coding = Construction?

Source code = Design, compilation = Construction
Construction is quick and cheap
Source code requires creative and talented people
Creative processes are unpredictable

Are the engineering methodologies well adapted ?

[Jack Reeves, C++ Journal, 1992]

http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm

M2 Interaction / Collaborative Software Development / Cédric Fleury 43

Software development

Is software development predictable?

Yes in some cases...
NASA programs

Usually, requirements are unpredictable
(especially for software involving interactions with users)

Customers don’t precisely know what they want
Hard to evaluate the cost of different options

Hard to estimate which features are useful

= Requirements should be flexible in these cases

M2 Interaction / Collaborative Software Development / Cédric Fleury 44

Software development

Is software development predictable?

It is typical to adopt the defined (theoretical)
B modeling approach when the underlying
mechanisms by which a process operates are

reasonably well understood.

When the process
is too complicated
for the defined
approach, the
empirical
approach is the
appropriate
choice.

Technology

M2 Interaction / Collaborative Software Development / Cédric Fleury

45

Agile methods

Deal with unpredictable requirements

lterative development
Involve the customers at each iteration

Improve the team organization (self-adaptive process)

Effective team of developers (people first)

Do not consider developers are replaceable parts

Developers are responsible professionals

M2 Interaction / Collaborative Software Development / Cédric Fleury 46

Agile methods

Manifesto for Agile Software Development
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following plan

http://agilemanifesto.org

Agile methods

| Vision \) \) \) \) Continue

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Implementation & Developer Testing

Design & .

QA / Acceptance

Analysis Testing
Iteration Detail ‘
Detailed
Requirements ’ (Deployment)
Evaluation /
Prioritization

M2 Interaction / Collaborative Software Development / Cédric Fleury 48

Agile methods

Examples

XP (Extreme Programming)

Test driven development, pair programming
Scrum
Crystal

Safety, efficiency, habitability (less discipline than XP)
Open source process

Distributed contributors, parallelized debugging
Lean development (Lean @ Toyota)

Just in time, Jidoka ("automation with a human touch”)
RUP (Rational Unified Process)

Use case driven, iterative, architecture centric

M2 Interaction / Collaborative Software Development / Cédric Fleury 49

Pair programming

Two programmers

One computer

Roles
One "drives”: operating mouse and keyboard
Code: syntax, semantics, algorithm

One "navigates”: watchs, learns, asks, talks, makes
suggestions

Higher level of abstraction

M2 Interaction / Collaborative Software Development / Cédric Fleury 50

Pair programming
Advantages
Code quality

Better designs

Fewer bugs

Spreading Knowledge
Pairs have to switch off regularly

Technical and conceptual knowledge

Social aspects

No loneliness, conviviality, better motivation

M2 Interaction / Collaborative Software Development / Cédric Fleury 51

Pair programming

Productivity

Short-term productivity might decrease slightly (about 15%)

Long-term productivity goes up
Because the code is better

Even better if you consider staff turnover

M2 Interaction / Collaborative Software Development / Cédric Fleury 52

Pair programming

Pairing strategies
In XP, all production code is written by pairs
In non-XP agile teams, usually pairing is not used at all

A trade-off can be found

For some particular tasks

On a rotating monthly or weekly basis

Developers who prefers to pair

M2 Interaction / Collaborative Software Development / Cédric Fleury 53

Scrum

Iterations called Sprint (about 1 month)

~ Vision \) \) \) \) Continue

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Implementation & Developer Testing

Design & .

/ Acce|
Analysis A plance

Testing

Iteration Detail ‘
Detailed
Requirements ’ {Deployment)
Evaluation /
Prioritization

M2 Interaction / Collaborative Software Development / Cédric Fleury 54

Scrum

Roles

Product Owner
Single person
Responsible for products vision
Constantly re-prioritizes the Product Backlog
Accepts or rejects product increment
Development team

Self-organized

Negotiate commitments with the Product Owner
Has autonomy regarding how to reach commitments
Intensely collaborative

Master
Facilitates the Scrum process
Helps resolve issues
Shields the team from external inferences and distractions

Has no management authority

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Product Backlog

<«—— only one item

at a time
top items —» 1S top priority
are more
granular

M2 Interaction / Collaborative Software Development / Cédric Fleury 56

Scrum

Sprint

Planning Meeting

Sprint Planning
Meeting

Negotiate which Product Backlog
items will be processed

Break items into a list of sprint Daily Scrum
tasks

Sprint Review
Meeting

Sprint
Retrospective
Meeti

M2 Interaction / Collaborative Software Development / Cédric Fleury 57

Product Backlog Sprint Backlog

Selected

Product
Increment

!
i
f
\ '

M2 Interaction / Collaborative Software Development / Cédric Fleury

ERRLRED

1
l

T

Scrum

58

Sprint
Planning Meeting
Daily Meeting
Same time and place

15 minutes, standing up

Summarize work of previous day,
work of today, issues

Maintain tasks list (not started,
in progress, done), issues list and
burn-down chart.

Product Owner may attend

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

Sprint Planning
Meeting

Daily Scrum 5 Refinement i

: Meetim :

Sprint Review
Meeting

Sprint
Retrospective
Meeti

59

Sprint Backlog

Committed

Task Tasks Tasks
Backlod | Not Started | InProgress | Completed
=SEEENE B
;Th EEDE | D
= EERE
— BEEE
[B

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

60

Sprint
Planning Meeting
Daily Meeting
Review Meeting

Demonstrate the working product
increment to the Product Owner

Product Owner declares which
items are done

Unfinished items return to the
Product Backlog

Master proposes new items for
the Product Backlog

M2 Interaction / Collaborative Software Development / Cédric Fleury

Sprint Planning
Meeting

Daily Scrum

Sprint Review
Meeting

Sprint
Retrospective
Meeti

Scrum

Refinement

: Meetiag 5

61

Scrum

Sprint
Planning Meeting
Sprint Planning
Daily Meeting e
Review Meeting || Ny
R . . Daily Scrum : RZ?::‘n?gm :
etrospective Meeting | Meeting |
Team reviews its own process
Team takes to adapt it for futur e
Sprints
Master have to manage the L
psychological safety of the Relrospective

meetings e

M2 Interaction / Collaborative Software Development / Cédric Fleury 62

Scrum

Sprint
Planning Meeting
Sprint Planning
Daily Meeting i
Review Meeting [Ny
| | Badidog "}
Retrospective Meeting ST | Meeing

Backlog Refinement Meeting

Sprint Review

ltems are usually too large or Meeting
poorly understood

Refine these items into

Sprint

smaller one Retrospective
Meeti

Master can help

M2 Interaction / Collaborative Software Development / Cédric Fleury 63

Feedbacks to the team: wallboard

Scrum

M2 Interaction / Collaborative Software Development / Cédric Fleury

64

Feedbacks to the team: wallboard

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

65

Feedbacks to the team: wallboard

M2 Interaction / Collaborative Software Development / Cédric Fleury

Scrum

{€)2009 VisuallManagement Blog

———

66

0 s

Feedbacks to the team: wallboard

DAYS

:"“& ‘-',’.\' ‘\ | w‘\ :.;

ANE Protan ani Dwevs
T e
Pl Parer

e
0000 b now Wing > 5

|

o Owiaimais A Te
Moy Ofice

"nras

Ure wp pared of ormer
Trvsiory 0 St b
Pl (ot

" rew

Rt)
Al "0 000 me et
P Saetigacel 2 vt
Te

orsw

Bl JUON Cwtin (g
teck o hote AR

Y

8Tsn
Cromon ddw Cagronms
15 Ol MM Ve
L)

b
¥
i%

orsr
200 Urx when
B and Ll

ore»
e Teama i Sgece
walale Nt & 100 B Pe
e

8 rer:
At ek, enoter
dey

Scrum

Software to manage Scrum projects

Angry Nerds - B s et e
v Angy Sem s I— Angry Nowh
B . As 08 Outsonsieves | aani 10 gl 300 B wivhry)
O W et A Pt Bt | e e % M09 bgeting BA 40 | Can wyoy ey e N Ty fyaman
LR L 1 e
g% Ad e Ouw Maraper | skl s ' 00k Suty 48 1 Can aed Sy 00
@ MDA A Outetuscens | st W ool el N wirling 0 Sy ypaas > o e Bharted

Ab o Agheta | ward Wy IS word S 4 b S

3 B Al T Founder | it W Nt T el by 00 | a0 got ey

& Cwmate Somram

‘
'L B A8 Bug | et % % 0 D e of pragress

EX B8 Ao Bag | wart % mahe e Nl N T Argy Nt

Upcoming Speint 1

FA R As 0By ! st e B e The Baalies oo | o b Tl

LR At o Tt B it | wendd Ba o g sguationg B T we | car wrpey wy e
LJ Ad o Ma b | wadd e vurn pose el

LR Ad oMb |l B b e D marbane el et Pe W
L} L A o Dun Mg | ward mibe sverprs by b oo | o mdbe s hate

Ugcoming Speint 2

LR L At Outsinscmmn | mt e ik e S o ot e e
LR Ad e Aghata | mad W de e b0 make B e b
W00 T A e At | st e Bete 0 e et 0 | G e B At

http://youtu.be/KdyV9okLRlIc

M2 Interaction / Collaborative Software Development / Cédric Fleury 68

http://youtu.be/KdyV9okLRlc

Conclusion

Collaboration in software development
Is necessary for big projects

Is not obvious

Technical, organizational and social aspects

Version control
Synchronization, versioning

Branching: split work between users

M2 Interaction / Collaborative Software Development / Cédric Fleury

69

Conclusion

Continuous integration

Improve safety and efficiency

Agile method
Organize the team

Propose an adaptative process to unpredictable
requirements

References

Version control
http://nvie.com/posts/a-successful-git-branching-model/

http://www-igm.univ-mlv.fr/~dr/XPOSE2010/gestiondeversiondecentralisee/
dvcs-svn.html

http://www.infres.enst.fr/~bellot/java/poly/git.pdf
http://fr.openclassrooms.com/informatique/cours/gerez-vos-codes-source-
avec-git/qu-est-ce-qu-un-logiciel-de-gestion-de-versions

Continuous Integration
http://martinfowler.com/articles/continuousintegration.html

Agile Models
http://agilemanifesto.org
http://martinfowler.com/articles/newMethodology.html

Pair Programming
http://www.versionone.com/Agile101/Pair_Programming.asp

Scrum
http://scrumreferencecard.com

M2 Interaction / Collaborative Software Development / Cédric Fleury 71

http://nvie.com/posts/a-successful-git-branching-model/
http://www-igm.univ-mlv.fr/~dr/XPOSE2010/gestiondeversiondecentralisee/dvcs-svn.html
http://www.infres.enst.fr/~bellot/java/poly/git.pdf
http://fr.openclassrooms.com/informatique/cours/gerez-vos-codes-source-avec-git/qu-est-ce-qu-un-logiciel-de-gestion-de-versions

