
Social Media for Software Engineering

Andrew Begel, Robert DeLine, Thomas Zimmermann
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
{andrew.begel,rdeline,tzimmer}@microsoft.com

ABSTRACT
Social media has changed the way that people collaborate and share
information. In this paper, we highlight its impact for enabling
new ways for software teams to form and work together. Indi-
viduals will self-organize within and across organizational bound-
aries. Grassroots software development communities will emerge
centered around new technologies, common processes and attrac-
tive target markets. Companies consisting of lone individuals will
able to leverage social media to conceive of, design, develop, and
deploy successful and profitable product lines. A challenge for re-
searchers who are interested in studying, influencing, and support-
ing this shift in software teaming is to make sure that their research
methods protect the privacy and reputation of their stakeholders.

Categories and Subject Descriptors
K.4.3 [Organizational Impacts]: [Computer-supported collabora-
tive work]; H.5.3 [Group and Organization Interfaces]: [Organi-
zational design, Computer-supported cooperative work, Web-based
interaction]

General Terms
Human Factors, Economics, Management

Keywords
Privacy, Social Networking, Software Engineering, Web 2.0

1. INTRODUCTION
Over the past decade, researchers have given increased attention

to the social aspects of software engineering, both to test hypothe-
ses about software development (e.g. socio-technical congruence
[7]) and to create tools to improve practice (e.g. team awareness
tools [26]). We can find inspiration for further understanding in
organizational science, which has long studied the social aspects
of how teams work. Applying one model of teaming from Tuck-
man and Jensen [30] to the software lifecycle, we see that software
engineers first organize into teams (forming), come to consensus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

about their goals (storming), choose and implement their software
methodology and engineering processes (norming), collaborate and
coordinate with one another to create a new product (performing),
and finally reflect on their accomplishments and failures in order
to improve themselves in their next endeavor (adjourning). The
social processes around software development are thus highly de-
pendent on engineers’ abilities to find and connect with individuals
who share similar goals and complementary skills, to harmonize
each team member’s communication and teaming preferences, to
collaborate and coordinate during the entire software lifecycle, and
advocate for their product’s success in the marketplace.

Unfortunately, these aspects of teaming are difficult to enact suc-
cessfully and can lead to poor project outcomes. Software engi-
neers typically spend a large fraction of their work day communi-
cating with their coworkers in order to exchange tacit knowledge
and coordinate shared work [21, 25, 20]. While electronic media
such as email, instant messaging and audio conferencing are used
for these purposes, there is a strong bias for face-to-face commu-
nication within and between teams [2]. Yet, necessary communi-
cations do not occur often enough (or at all) [1], include too many
or too few stakeholders [8], and can all too easily misconvey the
intentions and priorities of the members of teams who do not share
a common identity or knowledge base [19]. Some of the factors
that cause these communication problems include distance [18, 22],
large team size [3], lack of awareness [16], poor knowledge flow
and communication breakdowns [9], and even architectural modu-
larity designed into the software [10].

As early as the 1960s, researchers felt that global networking
technologies (some of which became the Internet) had the poten-
tial to improve communication and coordination between cowork-
ers [12]. Various forms of media developed since then, such as
email, file sharing, instant messaging, the Web, search engines,
and audio and video conferencing have all helped communities
of coworkers to create and maintain relationships with their col-
leagues. Each generation of communication and collaboration tech-
nology is more lightweight, easy to use, and scalable than the last.
The current generation of technology, collectively known as social
media or Web 2.0, adds to the ubiquitous and searchable medium of
the Web by making it easy for users to share information with the
people in their social network. The utilization of social relation-
ships enhances both the production and consumption of informa-
tion. For content authors, social relationships make the audience
visible and personally familiar, providing a motivation for creat-
ing content and enabling the content to be tailored to the audience.
For information consumers, social relationships make the content
more relevant, rapidly available, and make all consumers of the
same content visible to one another so that communities may form
around them.

33



In this paper, we describe the potential for social media to both
improve communication and coordination in software development
teams and support the creation of new kinds of software develop-
ment communities. We begin with a short overview of how soft-
ware engineers use existing social media to improve their work
practice and relationships with customers. We then reference Tuck-
man and Jensen’s teaming model to describe some future scenarios
that the widespread use of social media would afford. Finally, be-
cause social media are inherently very personal, we describe some
challenges that software engineering researchers face when design-
ing social media tools for communities of developers, namely re-
specting individual reputations and privacy.

2. CURRENT USE OF SOCIAL MEDIA
Considering that software engineers are creators and early adopters

of new communication technologies, it comes as no surprise that
they are already using modern social media tools to organize soft-
ware development-related work more efficiently. Here we provide
short descriptions of these media and their current use.

Blogs are an ongoing series of short articles from the same author
(or group of authors) on narrow topics, with feedback in the form
of reader comments. Microsoft and other software companies fre-
quently use blogs to share technical information and opinions with
their employees, and very profitably, with their customers, both in-
ternal and external. Blogs and other social media, in particular,
support scalable, two-way communication, enabling a company to
quickly react to customer feedback (positive or negative), and use
this feedback to help design more targeted software features and
marketing messages.

Microblogs like Twitter are “lightweight” blogs that enable users
to share extremely short (160 characters) messages with a set of
“followers” who have subscribed to receive them. Messages can
be read and written on many devices, even phones that only sup-
port SMS text messages, enabling anytime, anywhere access to
timely information blasts. Among engineers, messages are writ-
ten to publicize links to technical information, to announce spon-
taneous meetings, and to keep coworkers apprised of status and
progress on work-related tasks [29]. To keep this status information
confidential within corporations, new companies like Yammer [32]
are providing microblogging services for the enterprise.

Social networking sites such as Facebook and LinkedIn build a
searchable and browsable graph of social (including work-related)
relationships between people. Information about a person (e.g.
their status, photos, recommendations, questions, or expertise) can
be obtained from neighboring edges in the graph and made avail-
able to that person’s “friends.” In open source software develop-
ment, social networking sites are fairly common. Ohloh.Net [14]
and Github [15] are web portals that connect people through the
software projects they create and use. Our own project, Codebook,
is a platform inspired by social networking, and connects Microsoft
employees to one another not only through social connections, but
also through automatically discovered relationships between their
shared work artifacts (e.g. code, bugs, documentation, etc.) [1].

Community Q&A sites such as Yahoo! Answers or Answers.Com,
are places for asking and answering questions about any topic posed
by someone visiting the site. Often, they are used for seeking opin-
ions, such as products to buy (e.g. the best lawn mower) or worth-
while places to visit on vacation (e.g. what one should see when
touring Lisbon). Users can apply tags to questions and answers
to identify topic areas and apply badges to reward users who offer
good questions and useful answers. Searching by tags and filtering
by badges helps novices sift through search results to find the high-
est quality information. Stack Overflow [28], a popular Q&A site

for software engineers, focuses on technical questions about com-
puter programming. As of September 2010, the site has 750,000
answered questions, 155,000 unanswered questions, and employs
just under 30,000 technology-related tags, all applied to the ques-
tions and answers by site visitors.

3. THE POTENTIAL OF SOCIAL MEDIA
FOR SOFTWARE ENGINEERING

Open source and distributed software development communities
already take advantage of Internet-based communication and coor-
dination technologies to function effectively. As social media has
gained adoption, opportunities for creating software in new ways
have risen to enhance and augment the old.

3.1 Forming
Social networking sites often provide a complete environment to

enable “communities” of people to self-organize online, report their
current status, and stay aware of the status of the people in their
communities. While many social networking communities origi-
nated offline, as the services have grown, online-only communities
have formed, including grassroots political movements (e.g. the
Obama 2008 presidential campaign), celebrity, TV and brand fan
groups, computer science conference outreach groups, and more.

We see grassroots software development communities forming
around technologies (e.g. users of a language or library), processes
(e.g. Agile teams), markets (e.g. teams shipping products to de-
veloping countries), or user communities (e.g. teams designing for
end-user programmers) [4]. Company-internal social networking
web sites enable workers to find and communicate with colleagues
who have the expertise to handle a particular business situation, or
to find and recruit qualified workers to work on a team that will
create a new product (i.e. “skunkworks” projects) [11]. Even in
a “Company of One,” a lone software developer can conceive of
an idea for a new application and use social media to find, connect
with, and work with people (and the knowledge they have spread
and left behind on social media web sites) who have the talent and
skills necessary to help that developer build an application.

3.2 Storming
As new communities of software engineers organize into teams,

they must communicate their aspirations and goals and come to
consensus about their shared purpose. Online forums enable cowork-
ers to discuss application ideas, future trends, potential markets,
and their own personal requirements for working in a team. Some
engineers use blogs like position papers; they stand on their elec-
tronic soapboxes and call for particular technological or user prob-
lems to be solved. Corporations like Microsoft have also used
blogs, microblogs, and social networking personas as a form of
marketing (e.g. to announce products) to their customers. The two-
way communication channel that these social media support offer
the added benefit to receive customer feedback (positive and neg-
ative) in a scalable manner that was infeasible using older media
forms. This feedback can be used to quickly identify and respond
to the changing user needs of the target customer group.

Any size company, even one with a single developer, can lever-
age pre-existing low-cost, low-overhead marketplaces (e.g. the Ap-
ple iPhone, Android, or Microsoft App Stores) to make their soft-
ware available and visible to millions of potential customers. They
can then employ social networking sites to virally market the soft-
ware, first to friends and work colleagues of the company founders
and employees, and from there to millions of potential customers
who hear about the product from friends of friends of friends. So-
cial tagging built into the App Stores enable customers to rate and

34



provide feedback on application design and performance, which
helps the company realign and focus on winning more business.

3.3 Norming
Teams using social media must learn to communicate and co-

ordinate effectively in order to successfully build a product. This
requires processes and tools to support knowledge management,
knowledge transfer, team awareness, and mutual cooperation.

Microblogs are currently being used by engineers to spread knowl-
edge, ideas, and suggestions to others in their work communities.
As the communities grow more connected through their persistent
use of social media, the distribution of knowledge within the com-
munity can become more complete more quickly, minimizing mis-
understandings between colleagues who do not meet face-to-face
very often, or at all.

Grassroots organizational processes have been used by open source
software development (FLOSS) for decades, but by co-opting FLOSS’
successful methods for supporting distributed team collaboration
and software development, small teams of industrial software de-
velopers can now coordinate to create products with more agility
and responsiveness to customer needs. At the same time, these
teams can microblog their accomplishments and attract the atten-
tion of corporate leadership, even if the traditional organizational
hierarchy puts up barriers to disseminating those innovations across,
and especially, up, the hierarchy.

3.4 Performing
Once a team gets down to the business of creating software, so-

cial media tools can be leveraged in all the ways mentioned in
Section 2 to help the individuals and subteams find relevant ex-
pertise, coordinate work and schedules, find and spread informa-
tion about their code, bugs, documentation, shared resources, and
monitor their progress towards success using the electronic trail left
behind as they use the tools.

Social bookmarking sites such as Delicious [31] or CiteULike [23]
support two synergistic goals. For an individual software engineer,
they offer a highly available, web-based storage site for links and
documents. In making these links visible either to the public, or
anyone in the engineer’s social network, they accomplish a second,
altruistic goal of knowledge sharing without extra effort. Similarly,
programming tools in the cloud could inspect the work of partici-
pating teams to infer best practices (e.g. API usage rules, user inter-
face designs, or licensing schemes), which could then be promoted
back to the contributing software engineers as recommendations.

Crowd sourcing tools such as Amazon’s Mechanical Turk (MTurk)
can enable smaller teams to avoid the challenges of engineering
complex software. Employing “artificial” artificial intelligence, en-
gineers divide up their desired computation into many small tasks
that humans are good at solving (e.g. CAPTCHAs), and that com-
puters are not. Then, MTurk’s social work distribution system
attracts site visitors (Turkers) to compute each task for a micro-
payment of one to ten cents. Callison-Burch evaluated MTurk as
a platform for performing speech recognition [5], and found that
the quality of the resulting transcriptions exceeded online machine
translation systems. In fact, two very small companies, Casting-
Words [6] and SpeakerText [27] now exploit MTurk’s crowd sourc-
ing capabilities to sell speech transcription services at rates much
lower than average.

3.5 Adjourning
Once a product has shipped and the team is ready to disband,

each team carries out a post-mortem of the product plan, design, de-
velopment and marketing process, with the desire to improve their

processes and tools for their next project, done together or with
new collaborators. The complete record of the team’s interactions
using social media presents an attractive artifact to preserve insti-
tutional memory not just inside the head of a team “historian” [21],
but accessible by all team members.

4. CHALLENGES
An intrinsic attribute of social media requires revealing data about

individuals who employ the services. As engineers say, this is both
a feature and a bug. Researchers interested in studying how so-
cial media is used by software engineers and how this use may
evolve to support new kinds of teaming structures must conduct
their work with care. First, social media have a strong influence
over the reputations of the participants, which in turn has career
consequences within an organization or community. Researchers,
even when trying out prototypes, have a responsibility to ensure
that the reputations that the tools help people to form are consis-
tent with the values of the individuals and organizations in which
they are involved. Second, social media publish new information
and make existing information about individuals available in new
ways. While all researchers want to protect the privacy of their tool
users, in the light of current European privacy laws, this goal is also
a legal requirement.

4.1 Protecting Reputations
A social medium that reveals a user’s knowledge, expertise, ac-

tivities, or availability has a different “feel" when consumed by the
user’s peers than it does when consumed by his manager. The for-
mer could seem like a useful tool for finding and connecting with
a knowledgeable and helpful colleague, while the latter could feel
like corporate spyware. A poor design for a social media tool for
software engineers has the potential to create individual reputations
that are inaccurate or inconsistent with the team’s goals and values.
More subtly, such a tool can also create an incentive for users to
change their actions in order to improve how they are reflected in
the tool, that is, to “game” the system.

Traditional approaches to protecting individuals, such as anonymity
and aggregation, are possible in realm of social media, but can
come at the cost of usability. For example, a recommendation
system whose purpose is to suggest experts in a particular topic
area can preserve the experts’ anonymity by using software as a
go-between, but at the cost of eliminating highly desirable face-to-
face conversations. Similarly, to ensure individual privacy to non-
teammates, a team awareness tool could show only an aggregate
of all team members’ activity, but prevents coworkers within the
team from using the system to coordinate their shared work with
one another.

An alternate approach is to use research methods like participa-
tory design [13] or action research [17], in which the researchers
and user community form a long-term partnership, to ensure the
authenticity, utility, relevance, and ethics of user needs and tools
created to support these needs. Indeed, the informal motto of these
methods is “nothing about us without us.” The benefit of these
methods is that the values of the individuals and enterprises be-
ing studied are considered at every stage. The downside is that the
research may lack generality and may need to be replicated in dif-
ferent settings.

4.2 Protecting Privacy
The point of social media tools is to reveal information about

individuals, at least to those who are socially connected to them.
However, these tools raise privacy concerns, even if they merely re-
combine information already considered “public.” For researchers

35



working with European professionals, protecting privacy is a legal
requirement, based on European Union Directive 95/46/EC [24].
At a high level, this Data Protection Directive allows tools to pro-
cess data that identifies individuals only with the explicit consent of
those individuals, and only to the extent necessary to meet a legiti-
mate business purpose. Many large software companies are multi-
national, and include at least some European employees. These
companies often choose to apply the European standard to both
European and non-European employees to avoid creating different
classes of employees.

While supporting communication and collaboration may be a le-
gitimate purpose for software companies (the authors know of no
court cases that have tested this issue), obtaining explicit consent
from all users of a social media tool is not straightforward. First,
many useful tools are based on data mining, for example, extract-
ing information from code revision histories or bug databases. The
utility of these tools is that they provide an instant “critical mass”
of data. If a tool is only allowed to mine data from those users who
have given explicit consent, then the team as a whole may never see
the value of the tool because too few users have joined. Second, re-
quiring consent again creates two classes of employees: those who
have given consent and those who have not. The latter class will be
invisible in the tool, which may adversely affect their reputations.
For example, a team awareness tool that displays the activities of all
team members except one (who withheld consent) will likely place
that hidden member at a disadvantage with respect to coordination,
communication, and reputation.

5. CONCLUSION
Software development is inherently a social activity involving in-

terconnected communities of engineers and users. In this paper, we
propose how social media and Web 2.0 technologies can improve
software engineering practices, and, in particular, how they can en-
hance the ways that people come together to form teams, agree on
their goals and practices, communicate and collaborate with one
another to build applications, and reflect on their successes and
failures in their work. Researchers interested in pursuing studies
of these new teaming practices and helping to support them with
new tool designs must take care to respect the reputation and pri-
vacy of each stakeholder, in order to ensure regular collaboration
and cooperation with research goals.

6. REFERENCES
[1] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook:

Discovering and exploiting relationships in software
repositories. In Proceedings of ICSE, 2010.

[2] A. Begel, N. Nagappan, C. Poile, and L. Layman.
Coordination in large-scale software teams. In Proceedings
of CHASE, pages 1–7, 2009.

[3] F. P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley
Professional, 2nd edition, 1995.

[4] J. S. Brown and P. Duguid. Organizational learning and
communities-of-practice: Toward a unified view of working,
learning, and innovation. Organizational Science, 2(1), 1991.

[5] C. Callison-Burch. Fast, cheap, and creative: Evaluating
translation quality using amazon’s mechanical turk. In
Proceedings of EMNLP, pages 286–295, 2009.

[6] CastingWords, LLC. Castingwords transcription services.
http://www.castingwords.com.

[7] M. Cataldo, D. Damian, P. Devanbu, S. Easterbrook,
J. Herbsleb, and A. Mockus. 2nd international workshop on
socio-technical congruence, May 2009.

[8] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley. Identification of coordination requirements:
implications for the design of collaboration and awareness
tools. In Proceedings of CSCW, pages 353–362, 2006.

[9] B. Curtis, H. Krasner, and N. Iscoe. A field study of the
software design process for large systems. Communications
of the ACM, 31(11):1268–1287, 1988.

[10] C. R. B. de Souza, D. Redmiles, and P. Dourish. “Breaking
the code”, Moving between private and public work in
collaborative software development. In Proceedings of
GROUP, pages 105–114, 2003.

[11] K. Ehrlich, C.-Y. Lin, and V. Griffiths-Fisher. Searching for
experts in the enterprise: combining text and social network
analysis. In Proceedings of GROUP, pages 117–126, 2007.

[12] D. Engelbart. A conceptual framework for the augmentation
of man’s intellect. In P. Howerton and D. Weeks, editors,
Vistas in Information Handling, volume 1, pages 1–29.
Spartan Books, Washington, D.C., 1963.

[13] C. Floyd, W.-M. Mehl, F.-M. Resin, G. Schmidt, and
G. Wolf. Out of scandinavia: Alternative approaches to
software design and system development. Human-Computer
Interaction, 4(4):253–350, December 1989.

[14] Geeknet, Inc. Ohloh, the open source network.
http://www.ohloh.net.

[15] GitHub, Inc. Github social coding. http://github.com.
[16] C. Gutwin, R. Penner, and K. Schneider. Group awareness in

distributed software development. In Proceedings of CSCW,
pages 72–81, 2004.

[17] G. Hearn and M. Foth. Topical Issues in Communications
and Media Research, chapter Action Research in the Design
of New Media and ICT Systems, pages 79–94. Nova
Science, New York, NY, 2005.

[18] J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In
Proceedings of ICSE, pages 85–95, 1999.

[19] P. Hinds and C. McGrath. Structures that work: social
structure, work structure and coordination ease in
geographically distributed teams. In Proceedings of CSCW,
pages 343–352, 2006.

[20] R. E. Kraut and L. A. Streeter. Coordination in software
development. Communications of the ACM, 38(3):69–81,
1995.

[21] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
Proceedings of ICSE, pages 492–501, 2006.

[22] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM TOSEM, 11(3):309–346, 2002.

[23] Oversity, Ltd. Citeulike. http://www.citeulike.org.
[24] E. Parliament and C. of the European Union. EU Directive

95/46/EC of the European Parliament and of the Council of
24 October 1995 on the Protection of Individuals with
Regard to the Processing of Personal Data and on the Free
Movement of such Data. Official Journal of the European
Communities, L(281), November 1995.

[25] D. E. Perry, N. Staudenmayer, and L. G. Votta. People,
organizations, and process improvement. IEEE Software,
11(4):36–45, 1994.

[26] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantír: raising
awareness among configuration management workspaces. In
Proceedings of ICSE, pages 444–454, 2003.

36



[27] SpeakerText. Speakertext: Read my clips.
http://www.speakertext.com.

[28] Stack Overflow Internet Services, Inc. Stack overflow.
http://stackoverflow.com.

[29] C. Treude and M.-A. Storey. Awareness 2.0: Staying aware
of projects, developers and tasks using dashboards and feeds.
In Proceedings of ICSE, Cape Town, South Africa, May
2010.

[30] B. W. Tuckman and M. A. C. Jenson. Stages of small group
development revisited. Group and Organizational Studies,
2(4):419–427, 1977.

[31] Yahoo! Delicious. http://delicious.com.
[32] Yammer. Yammer: Enterprise microblogging.

http://www.yammer.com.

37




