
MMM: A User Interface Architecture for

Shared Editors on a Single Screen

Eric A. Bier+ and Steve Freeman$

tXerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, bier.parc@Xerox.com

~Cambridge University, Cambridge, England CB3 9EU, freeman@ europarc.xerox.com

Abstract

There is a growing interest in software applications that allow

several users to simultaneously interact with computer appli-

cations either in the same room or at a distance. Much early

work focused on sharing exnting single-user applications

across a network. The Multi-Device Multi-User Multi-Editor

(MMM) project is developing a user interface and software

architecture to support a new generation of editors specifically

designed to be used by groups, including groups who share a

single screen. Each user has his or her own modes, style

settings, msertlon points, and feedback. Screen space is

conserved by reducing the size and number of on-screen tools.

The editors use per-user data structures to respond to multi-

user input.

KEYWORDS: conference-aware editors, single-screen col-

laboration, per-user customization, home areas

1 Introduction

We are interested in the software architecture and user

interface needed to build multi-user editors that are convenient

to use. While most previous multi-user editors assume that

each user has his or her own networked workstation, we

restrict ourselves to editors shared on a singie workstation

with multiple pointing devices. This restriction allows us to

set aside the problems of coordinating multiple workstations

and to focus on user interface and internal archmecture

problems. Also, our approach directly supports scenarios of

use such as:

(1) Users may wish to collaborate on the same workstation

screen. For example, two programmers working to-

gether at a workstation may both desire input devices.

(2) Several people can share a computer with a

blackboard-sized display by directly writing on the

display with a stylus or by controlhng it from hand-

held computers. In addition, people can share a hand-

held computer by passing it back and forth.

(3) Even when multlple workstations are available, con-

ference-aware editors like ours will enhance the ability

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwiee, or to republish, requires a fae

and/or specific permission.

o 1991 ACM 0-89791 -451 -1/91 /0010 /0079 . ..$l .50

of participants to contribute simultaneously.

(4) Future software applications may provide an

“assistant” -- a program that acts like another user with

which we collaborate on workstation tasks. A confer-

ence-aware architecture will make such assistants easy

to integrate.

(5) Our architecture supports a single user with pointing

devices in both hands. Two-handed interfaces have

been motivated by Buxton and Myers [Buxton86].

Because we expect that large-screen and portable computers

will use a stylus as their chief input device. we focus on user

interfaces that do not require a keyboard.

We have built a set of toy editors that support simultaneous

real-time collaboration. They allow fine-grained sharing,

often allowing simultaneous access to the same text string or

graphical object. A mouse can be registered with a user and

will work with that user’s defaults and preferences (such as

insertion points, modes, selection colors and mouse

parameters) until the device is registered with another user.

Registration is fast enough that users can pass devices back

and forth during a session. Users can alternately collaborate

tightly and work separately with little interference.

We address four user interface problems:

Registration. How can an input device be quickly
registered with a user?

Real Estate. How should the screen be managed so that

collaboration M practical in limited space?

Per-User Feedback. How can the system direct

feedback to the right user without disturbing others?

Interference. How can users engage in separate tasks

without interfering with each other?

We also address three software architecture problems:

Input Handling. How should input events from multiple

dewces and/or multlple users be queued and combmed to

allow fine-grained sharing?

Replication. Which data structures of a document editor
need to be replicated per user, to support per-user modes,

selections, and preferences’?

Screen Update. What screen update algorithms WIII

produce an image consistent with the editing activities of

all users?

November 11-13, 1991 UIST’91 79

Section 2 describes related work. Section 3 describes our user

interface and how it addresses our four user interface

problems. Section 4 describes our architecture and how it

addresses our three architectural problems. Section 5 presents

our early experiences and conclusions.

Our prototype editors run in a framework called the Multi-

Device Multi-User Multi-Editor (MMM), which is

implemented in the Cedar Mesa proqamming language and

runs in the Portable Cedar programming environment

[Swinehart86] on SUN Microsystems SPARCstations and

other computers. We have augmented our workstations with

one or two serial mice to control additional cursors.

2 Related Work

in recent years, many projects have built computer-based tools

for supporting real-time collaboration [Kraerner88J. These

tools include shared window systems, collaborative learning

environments, tools to support meetings, and shared editors.

Because MMM is intended to support a broad range of

collaborative work situations and because it includes both

shared editing and shared window system functionality, it

builds on all of these system classes. MMM also builds on

single-user tools such as window systems.

Commune allows users to simultaneously draw on the pages

of a shared electronic notebook with a stylus [Minneman91];

color is used to distinguish which cursor and which drawings

belong to each user.

Olson er. CI(recently surveyed some of the design issues for

group editors [Olson90a]. With respect to their taxonomy, our

work relates to previous work in these ways: We ignore the

problems of network delays, synchronization, turn taking, tel-

epointing, and private views, while we focus on the problems

of simultaneous use, identifying conference participants and

their editing locations, and reducing the need for locking. In

addition, we focus on supporting per-user tailoring, the shar-

ing of a single screen, and multi-level editing in a hierarchy of

editors.

3 MMM’s User Interface

MMM’s user interface consists of three visible components:

Home areas provide iconic representations of users. Editors

allow users to view and modify document media. Menus

provide buttons that users can press to invoke commands.

This section describes how we use these components to solve

our four user interface problems.

Shared window systems [Lantz86, Lauwers90, Crowley90,

Ensor88] allow users to share applications over a network.

Work on shared window systems has focused on sharing

unmodified single-user applications, maintaining a networked

conference, and floor control. Like shared window systems,

our system supports multiple shared applications; however we

focus on conference-aware applications.

MMM shares concerns with single-user window systems. As

in Trestle [Nelson9 1], MMM synchronizes several parallel

processes to consistently interpret input and update the screen;

however, MMM’s locking is coarser and simpler than

Trestle’s so it is easier to create correctly synchronized multi-

user applications. As in X Windows [Scheifler86], MMM’s

screen is made of a hierarchy of applications; however,

MMM’s applications need not be rectangular and can be

repositioned in parallel.

SharedARK supports collaborative physics learning, allowing

users to perform simulated physics experiments [Smith89].

Each participant controls a pointer, labeled with the

participant’s name, that is visible on all conference screens.

Button objects can be moved or pressed by any user.

Participants directly manipulate a simulated world. Like

SharedARK, MMM supports per-user pointers, shared

buttons, and direct manipulation.

The Colab project studied collaborative tools in the context of
single-room meetings [Bobrow90, Stefik87a, Stefik87b].

Participants, working at individual workstations, control a

large shared screen. The Colab work suggests that simultane-

ous access and user interface simplicity are important in

multi-user tools. From their work on the Cognoter idea

organizing tool, they felt that shared access makes

brainstorming more productive because users need not wait for

others to complete an entry before making their own

contribution. They also note that shared user interfaces need

to be simple, because there is little time for training in a group

setting.

Recent shared editors, such as Grove and ShrEdit, allow users

to simultaneously edit a text document [Ellis90, 01son90b].

m

H
Menu

Color Menu

Delete

New User

Print

Figure 1. A typical MMM screen

Figure 1 shows a typical MMM display with (clockwise from

upper left) a command menu, a rectangle editor (with nested

text editor), a text editor, a color menu, and a home area.

3.1 Home Areas

MMM displays a home area for each user participating in a
session. To join a session, a new user types his or her name

and clicks the New User button. MMM creates a home area

that displays the selected name,

To begin using MMM, a user chooses a mouse and clicks on

the name bar in a home area, as shown in figure 2. As a result,

MMM assigns that mouse to that user, and any actions

performed with this mouse will take his or her preferences into

account. The change of ownership causes the cursor color to

change to that of the home area, as shown in figure 2(b). A

user may have more than one home area. Extra home areas

allow users to switch back and forth between different sets of

preferences. Each home area is said to belong to a different

user insfance.

80 UIST’91 Hilton Head, South Carolina

I m
l—
(a) (b)

Figure 2. Clicking on a home area to register a mouse

3.2 Our TWO Editors

To date, we have implemented two editors, for rectangles and

text, that are both functionally very simple, The recrangle

edi~or permits users to create solid-colored rectangles, select

and delete groups of them, and change their size, position and

color. The te.[t editor allows users to place a starting point for

a line of’ text, enter characters, choose a font and color, move a

line of text, select a sequence of characters, and delete or

change the color of selected characters.

3.3 Spatial Command Choice

Because we are interested in key beardless interfaces, all editor

commands, except text entry, are activated by a pointing de-

vice. For many MMM operations, command selection

involves pointing to different parts of graphical objects to

invoke different operations

Figure 3. Spatial command choice in the rectangle
editor. (a) Dragging a rectangle by its edge. (b) resizing
a rectangle by its corner. (The black arrows indicate
cursor motion; they do not appear on the screen.)

In particular, objects in the rectangle editor are surrounded by

a wide border, a frame. The user drags an edge of a frame to

move (figure 3(a)), and a corner to resize (figure 3(b)) the rec-

tangle. In each case, the part of the frame being dragged is

highlighted. Users create a new rectangle by clicking on the

editor background.

Spatial command choice has many advantages in a multi-user

context. It reduces the use of persistent modes. It is easy to

see; novices can learn from experienced users by watching

them, and collaborators can see what others are doing.

Finally, because the cursor need not travel to an off-screen

menu, the command motion is unlikely to be misinterpreted as

a conversational gesture (see the description of Sketchtool in

[Bobrow90]).

3.4 Per-User Commands, Modes, and Preferences

Several users can work simultaneously in an editor,

performing different operations and using different modes. In

the rectangle editor, for example, one user may drag one rec-

tangle while someone else resizes another. The editor keeps

track of both opemtions and updates the screen to show their

progress. Similarly, one user may choose blue as the current

color for that editor while another chooses red. The editor

stores both users’ modes and creates a rectangle of a color

appropriate to the creating user.

3.5 Fine-Grained Editor Sharing

Figure 4. Two users stretching a rectangle at the same
time.

Users can work simultaneously on the same object; one user

can add characters to a text string while another changes the

color of existing characters. Very fine-grained sharing is also

possible; one user can stretch a rectangle by one corner while

another stretches its opposite corner, as shown in figure 4, or

one user can type a string of characters while another

repositions it.

Fine-grained sharing may not often be necessary, but it allows

a user to make an edit with confidence that other users will not

be locked out, reducing interference among users,

3.6 Editors as Window- Systems

MMM has no conventional window manager. Instead, the

desktop is an instance of our rectangle editor. The rectangle

editor allows other editors to be nested inside of it. Each

editor presents a finite window onto an “infinite” plane that

contains the objects and child editors that that editor manages,

which may overlap. The shape and position of this window is

managed by the editor’s parent. Editors may be partly or

entirely hidden. Figure 5 shows several rectmgle editors and

a text editor. Note that the text editor C is partly hidden by

sibling editor B (and by a rectangle), and that rectangle editor

D is p&ly outside the porthole o~its parent editor B. -

1,

IIA c I
El II

1’ I

Figure 5. The visible parts of four editors. A, B, and D
are rectangle editors. C is a text editor. B’s highlighted
border indicates that a user has selected it.

Because the window system is an editor, users do not need to

November 11-13, 1991 UIST’91 81

learn both window manager and editor operations, unlike

systems where selection @an editor is different from selection

withi71 an editor. Users can also place shared widgets in the

document in which they are working; widgets need not remain

at the top level.

3.7 Per-User Feedback

In single-user environments, graphical feedback is used to

display aspects of system state, such as the current application,

mode, color, or insertion point. In our single-screen multi-

user system, graphical feedback must show all of this

information and indicate to which user the feedback applies.

We use color and spatial placement to indicate this

correspondence,

n

Cooperate

(a) (b)

Figure 6. Selection feedback for two users. (a) A
doubly-selected rectangle. (b) Doubly-selected text
characters.

Each user has a color to identify his or her cursors, insertion

points, and selections. In figure 6(a) twousers have selecteda

rectangle; each user’s selection is shown by highlighting a

corner of the rectangle frame in that user’s color. Similarly,

figure 6(b) shows two selections in a text string, each marked

by an underline in one user’s color; the overlapping part of the

selection is underlined twice. Because color feedback is less

informative on black-and-white displays or with color-blind

users, we plan to augment this feedback in the future.

Likewise, a narrow band in the frame around a user’s current

editor is set to that user’s color. Where several people are

using the same editor, a band is colored for each user. If too

many users have selected an object (rectangle, text or editor)

to identify them all in the frame, then only the most recent se-

lections are shown

m
I I

(a) (b)

Figure 7. Mode feedback in the home area. (a) Rectan-
gle creation color feedback. (b) Current font feedback.

A user’s mode within his or her current editor is displayed in

the lower half of that user’s home area. When a user works in

a rectangle editor, his or her home area displays that user’s

default color in that editor (figure 7(a)). Similarly, for a text

editor, the current font and colors are shown (figure 7(b)).

3.8 Shared Menus

In many desktop environments, menus are displayed once for

each application window or at a unique location on the screen

(e.g., the Apple Macintosh pull-down menus are at the top of

the screen). For a shared application on a single screen,

however, menus displayed once per window take up much

space and menus displayed at a fixed location only allow a

single application to be used at once.

Instead, our menus can be shared among users and editors, and

positioned anywhere on the screen, even in documents. For

example, the menus in figure 1 can be placed in a rectangle

editor regardless of its nesting level, and then applied to

objects in any user’s selected editor, regardless of that editor’s

nesting level.

Allowing people and editors to share menus reduces the screen

real estate needed for control. Also, menus can be created or

positioned where a user is working, avoiding user interference.

Finally, users can group menus into a document to use as a

customized control panel. Some of the advantages of such

active documents are described elsewhere in these proceedings

and in a previous paper [Bier90].

3.9 Home Area Menus

Shared menus work well for commands, like changing color or

deleting, that apply to several editors. Some functions,

however, are specific to a particular editor: change of font, for

instance, only makes sense in text editors. Menus of these

functions need only be displayed when such an editor is in use.

We display the menus for a user’s selected editor in that user’s

home area. These menus can be combined with feedback that

shows current modes in the selected editor. For example,

figure 7(b) displays a menu of possible font choices with the

user’s currently selected font highlighted.

3.10 Editing at Different Levels

Users can edit simultaneously at different levels in the editor

hierarchy. This capability reduces interference between users:

one user can reposition or resize a document while another

edits its contents. While some multi-level edits may disturb

the user editing at a lower level, others work well. For

example, a user may resize a rectangle editor to uncover an

object beneath it without disturbing another user who is

editing child rectangles that are far from the border being

moved.

4 MMM’s Architecture

Our user interface requires a software architecture that is

unusual in several ways, It must support a hierarchy of

concurrently active editors. It must handle multiple devices

and users, and make links between them. Each input event

must be directed to the correct editor, even though other input

events may be modifying the editor tree. Each editor must

store state for all of the users who have referenced it. Finally,

the editors must coordinate their screen updates to produce a

consistent image. In this section, we discuss the editor

hierarchy, the preparation of new input events, the routing of

events to editors, how editors update documents in response to

events, and the algorithms for updating the screen.

4.1 The Hierarchy of Editors

Our editors are arranged in a tree. The editor at the root can

have any number of child editors, each of which can have any

number of children and so on (recall figure 5), Each editor has

82 UIST’91 Hilton Head, South Carolina

an application qaeue of input events and its own lightweight

application process (a thread) to dequeue and execute events.

When an editor receives an input event, it may act on the event

immediately, place it on its queue for sequenced execution, or

pass it to a child editor.

Root Editor

Device
System Appllcabon $::~:::ion

Queue Notify
Process

Queue

I 1 I
“o

Child Editor # 1 Child Editor # 2

0“” L “’”1 a

Figure 8. Input handling processes and queues.

At any moment, up to three editors are Important to each user.

A user’s selected ediror will receive his or her keyboard events

and commands generated by chcking on a menu. If a user

performs an interactive operation (dragging a rectangle. for

example), the editor in which that operation began is the

mouse focus editor. The mouse focus editor receives mouse

motion and mouse button events until the interactive operation

completes, so it is possible to drag objects out of view. The

most deeply nested visible editor that contains a user’s cursor

is his or her containing editor. If no interactive opemtion is in

progress, the containing editor receives all mouse motion and

mouse button events.

4.2 Preparing Input Events

Figure 8 summarizes the processes and queues used in input

handling. When the user manipulates an input device,

MMM’s de~’ice process builds an event record (see figure 9)

to represent this event and fills in the time when the event

occurred, the device, and the event type (mouse movement or

key press, for example). The record is then placed on the

sy~teitl queae. The ~evice process runs at a high

that the time-stamps will be close to real-time.

(❑
TimeStamp

set by the
device process Dewce

DevlceEvent

f

UserInstance
set by the
nobfy process AHDevlceStates

priority so

\l Modif,edEvent I

Figure 9. The event record data structure.

The noti~ process removes the record from the system queue

and fills m the identity of the user (or user instmce if a user

has several home areas) who generated the event by looking

up the association in the device o}t’nership table and fills in the
current state of all devices owned by that user (e.g., whether

any mouse buttons are being held down). Only the notify

process is allowed to modify the device ownership table, so

the table lookup produces a consistent value. Storage is also

allocated to hold local information as the event is passed

between editors; for instance. x-y coordinates will be modified

to reflect the local coordinate system of each editor.

4.3 Delivering Events to Editors

The notify process walks the tree of editors, beginning at the

root, asking each editor either to accept the event or to pass the

event to a child. When an editor accepts the event, the notify

process performs any actions that must be done immediately

(before the next event can be handled) and then dequeues the

next event from the system queue and repeats this procedure.

Each editor in the tree is represented by an e~iifor record. part

of which is editor-specific and accessible only to that editor’s

application process and the rest of which is accessible to the

notify process. All editor records include a list of user -.sn{fe

records, one for each user wbo has referenced the editor

during the current session. Each user-state record describes

the child editor that is on the path m the user’s selected editor

and the child editor that IS on the path to the user’s mouse

focus editor. MMM can find a user’s selected editor, for

example, by chaining down the former path from the root

editor.

If a user has a mouse focus editor, events are passed to the

child editor that lies on the path to that editor: on the way, the

event’s position information must be translated into that

child’s coordinate system. If the application process of the

parent editor IS busy, the child may be moving, so the notify

process waits for this application process to finish Its current

event before translating the coordinates. Then, if the child

editor is the mouse focus editor, this child editor accepts the

event. Otherwise the notify process continues down the path

of editors.

The notify process must not wait too long; if it becomes stuck,

all editors stop responding to users. We have added timeouts

to avoid this problem. If the notify process needs to wait for

more than a few seconds for an application process, it gives

up, throws the event away, and marks that process as “sick.”

Subsequent events that must pass through a s]ck editor are

discarded until its application process is]dle, whereupon it is

once again marked as “healthy. ” While events are sometimes

lost by this scheme, we believe this is an acceptable price to

pay for guaranteed responsiveness; ideally, synchronous

collaborations should proceed at a conversational pace.

If there is no mouse focus editor, the notify process passes

mouse events to the containing editor. As the event is passed

down the tree, the notify process waits for each editor’s appli-

cation process to be idle before translating event coordinates

and passing the event to a child editor. Because keyboard

events do not contain coordinates, they are passed down the

tree to the selected editor without any waiting.

4.4 Editor Input Handling

When an editor receives a user event, it looks in the editor-

specific fields of its user-state record for that user to discover

his or her current modes and preferences. Our rectangle

editor, for example, stores the user’s default color for creating

rectangles, tbe user’s interactive command (dragging versus

resizing a rectangle’) and the last coordinates of the user”s

cursor that were processed during dragging In addition, each
rectangle records a list of all user> who have selected it.

Editors respond to events in two phases. First, the editor may

request that it become the mouse focus or selected editor for

the user who originated the event. This is done by the notify

process to ensure that the chains of pointers in the editor

hierarchy that represent the path to the mouse focus and

selected editors are updated atomtctdly. The editor may then

November 11-13, 1991 UIST’91 83

place the event cm its application queue.

In the second phase, if any, the application process chooses an

action from its queue and executes it. To choose an action, it

inspects all the queued actions. It performs the oldest

mandatory action, or if there are no mandatory actions, it

executes the most recent optional actions (e.g., motions during

rubber-banding are optional), skipping older ones. This helps

the editor handle large volumes of input.

Editors place incoming events from all users on the same

queue, so it is necessary to decide which user’s event to

respond to first. Mandatory actions are handled in the order in

which they are received, regardless of user.. For optional

actions, the editor selects the user who has been least recently

served, so the editor feels equally responsive to all users.

4.5 Screen Update

Any application process can make changes that require the

screen to be refreshed. Objects and editors can overlap so

refreshing the screen for one editor may require the

cooperation of both parent and sibling editors. We could

allow each application process to walk the entire editor tree as

needed to update the screen after a change, but this might

allow one process to read editor data while another is

modifying it.

Instead, when an editor, E, wishes to paint, it creates a painf

reqliest record which includes (in the coordinates of E) a rec-

tangle that bounds the region to be repainted. The editor

notifies MMM that it would like to paint and then turns off its

application process and waits. The system asks all application

processes to pause and waits until they all have stopped, then

the sysrem paint process walks the tree of editors to determine

a rectangle or recmngles bounding all the regions that have

changed. It then walks the tree again asking each editor in

turn to repaint itself within these rectangles. The resulting

paint actions are double-buffered so that they appear to the

user all at once, enhancing the perception of simultaneous

motion. Once all editors have finished painting, their applica-

tion processes are reactivated.

To test screen update, we built an application, called a

windmill, that constantly sends paint requests to draw a

rotating animation. Figure 10 shows two windmills. When

both windmills are painting at once, MMM will update the

screen all at once, using the rectangle that bounds both of

these rectangles (shown ii thick black~

k
Figure 10. Two rotating windmills and the rectangle that
bounds their refresh region.

5 Early Experiences and Conclusions

While still in its early stages, MMM has already proved

valuable for testing ideas about the architecture and user

interi%ce of multi–user editors and for demonstrating that fine-

grained editing with per–user customization can be achieved

with reasonable performance and only a modest increase in

data structure complexity.

Because it is a toy system, MMM does not have a large

community of users. However, we believe that many of the

ideas embodied in MMM will be of value in other projects.

From our experiences, we draw these conclusions about the

user interfhce of shared editors:

(1)

(~)

(3)

(4)

(5)

The home area is effective as a quick way to register a

pointing device with a user and as a place in which to

display per-user feedback.

Selecting operations by pointing at specific object

positions works well because it is easy to learn and

hard to misinterpret as a gesture.

When editors are used as window systems, users can

work at different document levels at once and can copy

control objects, such as menus, into editors for

convenient access.

Using color to associate feedback with particular users

allows the use of traditional shapes and sizes of

feedback, such as underlines in the text editor and con-

trol point highlighting in the rectangle editor.

However, this technique is less effective on black and

white displays or with color-blind users.

Allowing menus to be shared among users and among

editors ~mplifies the interface and- conserves scree~

space.

In order to support this user interface, we provide these four

elements of system architecture:

(1) When an input event arrives, we identify which user it

comes from using a table of user-device associations.

(2) Events with coordinates, when destined for a nested

editor, wait until that editor has a well-defined position

relative to its parent before they are delivered to the

nested editor.

(3) Many editor data structures, including those

representing the current modes, operations, insertion

point, and selected objects, are replicated once for each

active user.

(4) All editors stop manipulating their document data

structures during screen refresh to produce a consistent
view of the screen and a smooth view of simultaneous
motions.

While we built MMM in the Cedar programming language,

using lightweight processes that run in a single virtual address

space, a modified version of the architecture could be

implemented on other platforms. If multiple address spaces

were used, application data would be manipulated solely by an

application process; the notify process and system paint

process would negotiate with the application processes to

process input events and screen refresh requests.

MMM could also be extended to support use from multiple

workstations, using a centralized server architecture. A single

instance of the MMM system could collect input from multi-

ple workstations and distribute screen update actions to these

84 UIST’91 Hilton Head, South Carolina

workstatitms using protocols like those used in the X Window

System.

In the future, we plan to extend the MMM user interface and

architecture. We will experiment with forms of user feedback

that function well on black-and-white displays, Using the

MMM framework, we plan to build a set of practical applica-

tions that support cooperative work, giving us a chance to see

how well these Ideas perform when editor complexity

increases and actual user demands are placed on the system.

Finally, we plan to use the MMM architecture to experiment

with user interfaces that allow a single user to edit by pointing

with both hands at once, using either touch-sensitive displays,

electronic pens, or a combination.

Acknowledgments

We thank Randy Pausch for helping us map out some of the

hard problems of input handling in multi-user systems in the

early stages of the project. We thank Ken Pier for writing the

software that enabled multiple mice and multiple cursors in

our programming environment. We thank Poile Zellweger

and Wendy Mackay for suggesting changes to the text and

figures that resulted in a more readable paper. We thank Dan

Swinehart for comments that will motivate further research in
this area. Finally, we thank Xerox and Rank Xerox for sup-

porting the MMM proJect and providing the computers.

software and networks that made it easy to co-author this

paper across the Atlantic,

References

[Bier90] Eric A, Bier and Aaron Goodisman. Documents as

user interfaces. In R. Furuta, editor. EP90, Proceedings

oftlw Internatio}lul Conference m E[ectmnie

Publishing, Docunwnr A4anipularion arid Tvpo,qraphy,

Cambridge University Press, 1990, pages 249-262,

[Bobrow90] Dame] G. Bobrow, Mark Stefik, Gregg Foster,

Frank Halasz, Stanley Lanning, and Deborah Tatar. T/ze

Colab Project Final Report, Xerox PARC Technical

Report SSL-90-45,

[Buxton86] William Buxton and Brad A Myers. A study in

two-handed input. In Proceedings of CHI ’86 Hwmul
Factors in Computing System (Boston, April), ACM.

1986, pages 321-326,

[Crowley90] Terrtmce Crowley, Paul Milazzo, Ellie Baker,

Harry Forsdick, and Raymond Tornlinson. MMConf

An infrastructure for building shared multimedia

applications. In Proceedings oj the Conference cm

Conlpater-Supported Cooperutwe Work (Los Angeles,

October), ACM, 1990, pages 329-342.

[Ellis90] Clarence A. Ellis, Simon J. Gibbs. and Gail L. Rein

Design and use of a group editor. In G. Cockton, editor,

En,qineerin<q for HLli?la/z-Cot?zl?llrer Interaction, North-

Holland, Amsterdam, 1990, pages 13-25,

[Ensor88] J. Robert Ensor, S. R. Ahuja, David N. Horn, and

S. E. Lucco. The Rapport multimedia conferencing

system—a software overview. In Proceedings qj’tbe

?nd IEEE Coy2rence m Computer Worksratiom. IEEE,

March 1988, pages 52-58.

[Kraemer88] K.L, Kraemer, J. King. Computer-based

systems for cooperative work and group decision

making. In ACM Comparing Sun’eys, Vol. 20, No,

ACM 1988, pages 115-146.

[Lantz86] K.A. Lantz. An experiment in integrated

multimedia conferencirtg. In Proccedi/~8s of[be

Co@rencc on Cc)r?2]]z{tel-Sltppc)rtcJd CooperWi\’e Work,

ACM 1986, page> 267-275. Reprinted in I. Greif,

editor, Co])l/>z{tc>r-SL{/~[]oi-ted Cooperati)’e Work: A Book

of Readings, Morgan Kaufmann Publishers, 1988, pages

533-552.

[Lauwers90] J. Chris Lauwers, Thomm A. Joseph, Keith A.

Lantz and Allyn L Romanow. Replicated architectures

for shared window systems: a critique. In ProceeJin<qs

ofthe Conj?reiwe on Ofjice [izjormatim SyLstems

(Cambridge, Massachusetts. April), ACM 1990, pages

?49-260

[Minneman91] Scott L. Minneman and Sara A. Bly

Managing ii trois: a study of a multi-user drawing tool

in distributed des{gn work. In Proceedi/l<q.v of CHI ’91

Human Facror.s i}l Compuri/]g Sysrems, ACM, 1991,

pages 217-? 24.

[Nelson91] Greg Nelson, editor. System,, Pro~ramnzi/zg)tith

A40dulc1-3, chapter 7. Prentice Hall. 1991.

[Olson90a] Judith S. Olson, Gary M. Olson. Lisbetb A. Mack,

and Pierre Wellner. Concurrent edltmg: the group’s

Interface. in Proceedings of [nteract ‘9 f.-Tbe IFIP TC

13 Third ll?rcrmrnm~a[Co@rc/!ce m Humam

Computer Inreracrio)j (Cambridge, UK, August), 1990,

pages 835-840.

[Olson90b] Gary M. Olson. TechioloRy Supportjor

Collaborat{re Work,groups. Annual progress report for

1989-90 to the National Science Foundation, Grant

#IRI-8902930, University of Michigan, June 1990,

[Schelfler86j Robert W Scbelfler and Jim Gettys. The X

window system. ACM Tramactions m Graphics, Vol.

5, No. 2, April 1986, pages 79-109.

[Smlth89] Randall B. Smith. Tim O’Shea. Clame O’Malley,

Eileen Scanlon. and Josle Taylor. Prehminary

experiments with a distributed, multi-media, problem

solving envmonment, In Proceedin<qs Oj’k> Firsr

European Coiferetlce m Computer Slipporred

Cooperati~e Work (Gatwick, UK) 1989, pages 19-34.

[Stefik87a] Mark Stefik, Gregg Foster, Dame] G Bobmw,

Kenneth Kahn, Stan Lanning. and Lucy Suchman,

Beyond the chalkboard: computer support for

collaboration and problem solving in meetings.

Cor~z/Tztt/7icc~ri[>/z.sofrhe ACM, Vol. 30, No. 1, January

1987, pages 32-47.

[Steflk87b] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning,

and D. TaVdr. W}’SIWIS Revised: Early experiences

with rnultl-user Interfaces ACM Transacr/on.s o)i Ojfice

lnfbrmafioll Sysfem, Vol. 5, No. 2, April 1987, ptiges

I-$7-167.

November 11-13, 1991 UIST’91 85

[Swinehart86] Damel C. Swmehart, Polle T Zellweger,

Richard J. Beach, and Robert B Hagmann. A structural

view of the Cedar programming environment, ACM

Transacmorls 0)1 F’rogromming hnguages and Sysrems,

Vol. 8, No 4, 1986, pages 419-490. Also available as

Xerox PARC Techmcal Report CSL-86-1.

86 UIST’91 Hilton Head, South Carolina

