

Social Coding in GitHub: Transparency and Collaboration
in an Open Software Repository

Laura Dabbish, Colleen Stuart, Jason Tsay, Jim Herbsleb
School of Computer Science and Center for the Future of Work, Heinz College

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213

{dabbish, hcstuart, jtsay, jdh}@cs.cmu.edu

ABSTRACT
Social applications on the web let users track and follow the
activities of a large number of others regardless of location
or affiliation. There is a potential for this transparency to
radically improve collaboration and learning in complex
knowledge-based activities. Based on a series of in-depth
interviews with central and peripheral GitHub users, we
examined the value of transparency for large-scale
distributed collaborations and communities of practice. We
find that people make a surprisingly rich set of social
inferences from the networked activity information in
GitHub, such as inferring someone else’s technical goals
and vision when they edit code, or guessing which of
several similar projects has the best chance of thriving in
the long term. Users combine these inferences into effective
strategies for coordinating work, advancing technical skills
and managing their reputation.

Author Keywords
Transparency; awareness; coordination; collaboration; open
source software development; social computing.

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and organization interfaces.

General Terms
Human Factors; Design.

INTRODUCTION
The internet has become increasingly social in the last ten
to fifteen years, but the productivity implications of these
changes remain unclear. We can track a person’s moment-
by-moment status updates on Facebook, location on
Foursquare, and updates on Twitter, blogs, and wikis. These
applications all have a common set of important

functionality. Users can articulate an interest network of
people or things by defining a set of individuals or artifacts
(like blogs or RSS feeds) to pay attention to. In doing so,
users immediately subscribe to a stream of events and
actions other individuals take. Thus the social web provides
an unprecedented level of transparency in the form of
visibility of others’ actions on public or shared artifacts.
The question remains, however, what benefits this
transparency provides, particularly in the large scale (i.e.
across a community).

Previous work on awareness has explored the value of
activity information for small groups [7, 12]. This work has
found that notifying members of actions on shared artifacts
helps them maintain mental models of others activities [11]
and avoid potential coordination conflicts [20]. However,
activity awareness has largely been examined in the context
of well-defined small groups within organizations. Online,
individuals participate in large-scale, ill-defined
communities that often have hundreds if not thousands of
members. Transparency of others’ actions in this type of
setting may have very different benefits as a function of the
larger scale and the fact that interactions are no longer
embedded in an organizational context.

Visible cues of others’ behavior on a social website are
likely to support a variety of interpretations about their
motivations and the community more generally. People are
social creatures and make inferences about others from
what they observe (e.g., [27]). Surfacing information about
people’s actions on artifacts is no longer a technological
challenge. What is more interesting, and less understood, is
what people are able to infer from such a collection of
information, and how these inferences help them carry out
their collective work. In this research we were interested in
the collaborative utility of activity transparency in a large
community engaged in knowledge-based work. We address
the following two research questions to advance our
understanding of transparency in online social sites:

(1) What inferences do people make when transparency is
integrated into a web-based workspace?

(2) What is the value of transparency for collaboration in
knowledge-based work?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1277

In order to address these questions, we examined a
successful social site called GitHub (GitHub.com), a code-
hosting repository based on the Git version control system.
GitHub is an iconic example of a knowledge-based
workspace. This site integrates a number of social features
that make unique information about users and their
activities visible within and across open source software
projects. We interviewed light and heavy users of the site,
having them walk us through a typical session and
describing their activity within projects. We found that they
made a rich set of inferences from the visible information,
such as inferring someone’s technical goals based on
actions on code. Developers combined these inferences into
effective strategies for coordinating projects, advancing
their technical skills and managing their reputation. In the
next sections we consider related research, describe the
GitHub context and our study, present the results of our
interviews, and finally discuss implications of our findings.

THE VALUE OF AWARENESS
Previous work on collaboration and awareness suggests that
providing visibility of actions on shared artifacts supports
cooperative work in a variety of ways. More recent work
has shown the utility of social tools and systems for
relationship management in the workplace. However, these
literatures have not yet articulated the value of integrating
social networking functionality with activity awareness.

Collaboration and awareness
Collaborators who are physically collocated have some
level of awareness of each other’s activities because of
frequent opportunities for interaction [17, 24]. The
affordances of collocation, documented through careful
field study of software developers [14, 24] and other
knowledge-based workers include: overhearing, shared
visual space, and shared memory of discussion around
artifacts [11, 17, 24]. These affordances support awareness
of others’ work state and expertise, both useful for
coordinated action in collaborative projects [2, 12, 17].

Awareness systems attempt to provide distributed
collaborators with the same type of mutual knowledge [11].
These systems have taken various forms with a variety of
foci, including informal social awareness to support casual
interaction [11], structural awareness of group member
roles and status, and workspace awareness of actions on
shared artifacts [2, 12, 18]. The theory of social
translucence suggests these types of awareness systems are
useful because they can make socially significant
information visible, support awareness of collaborators’
behavior, and make the viewer accountable for that
information [8].

For the most part, however, collaborative awareness tools
have been designed for and evaluated within small groups.
It is unclear to what extent they scale across a wider range.
Previous work on awareness and software development has
indicated a tradeoff between specific awareness of a very

small set of developer actions, versus general awareness
across a project as a whole, noting the effort required to
proactively provide status information (e.g. [13]).

In addition, collaborative awareness systems have typically
utilized momentary notification of the most recent activity
as opposed to a history of actions on shared artifacts. Only a
handful of systems have attempted to provide visualizations
of activity over long periods of time (e.g. history flow
system which visualizes collaborator edits to Wikipedia
articles [26]). We do not yet understand how these types of
activity traces influence collaborative action, particularly in
online production settings like Wikipedia where hundreds
or thousands of collaborators can be involved on an article.

Social computing and software development
Social computing technologies such as micro-blogging,
activity feeds, and social annotations, facilitate lightweight
interactive information sharing within the web browser.
Social computing technologies shift the focus of interaction
to individual contributors and their activities with electronic
artifacts. Individuals articulate their interests, likes and
dislikes, as well as their social network [4]. When
combined with information visualization techniques, these
tools may help individuals make sense of activity and
contribution on a much wider scale.

Previous work on social media for work purposes has
shown that systems like Facebook and LinkedIn are useful
for maintaining weak tie relationships and bridging
organizational boundaries [6, 21]. And organization internal
social networking sites like Beehive in IBM support similar
types of boundary spanning activities in an organization [6].
At the same time, these systems have been integrated with
work artifacts in a limited way (e.g. bookmarks in [16]).

When social computing technologies are used in a software
development context, there is an opportunity to leverage
articulated social networks and observed code-related
activity simultaneously to support the type of awareness
previous only available to collocated teams (e.g. in systems
like [9, 18, 19]). Software engineering is only beginning to
make exploratory use of social computing technologies to
enhance collaboration. For example, tagging [22],
searchable graphs of heuristically linked artifacts [3], and
workspace awareness [9, 18, 19] have shown some promise
for supporting coordination in software development.
However, the utility of these technologies has been
examined in isolation from the rich ecology of open
software development [23]. We know relatively little about
how developers actually adopt and adapt these tools in the
process of their work, and when and how they improve
coordination and performance.

METHOD

Research Setting
In order to address our research questions, we examined
collaboration among users of a large, open source software
hosting service GitHub [10]. GitHub provides a set of

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1278

“social coding” tools built around the Git version control
system (http://git-scm.com/) and incorporates social
functionality that makes a developer’s identity and
activities visible to other users. The GitHub site is unique in
that it makes user identities, internal project artifacts and
actions on them publicly visible across a wide-community.

People
On the GitHub site, developers create profiles that can be
optionally populated with identifying information including
a gravatar (an image representing them throughout the site),
their name, email address, organization, location, and
webpage. A developer’s profile is visible to other users and
displays all the repositories that person is working on and a
list of their latest activities on the site (see Figure 1).

Code Artifacts
GitHub currently hosts over one million code repositories,
and has 340,000 registered contributors [10]. While a
majority of the projects on GitHub are single-developer
code dumps, many are active multi-developer projects of
significant scale that have been running for some time.
Each repository on GitHub has a dedicated project page that
hosts the source code files, commit history, open issues, and
other data associated with the project. Developers can
create permanent URLs to link to specific lines within a
code file. This functionality allows information about
artifacts within the site to flow outside of the GitHub
community to the web at large.

Actions
Actions in GitHub occur when a person changes an artifact
or interacts with another person through the site. These
actions can be code-related, communication, or
subscription. Actions on code or associated with code
include committing, forking and submitting a pull request.
Project owners can make commits, i.e. changes to the code,
by directly modifying the contents of code files. Developers
without commit-rights to a project must fork a project,
creating a personal copy of the code that they can change
freely. They can then submit some or all of the changes to
the original project by issuing a pull request. The project
owner or another member with commit rights can then
merge in their changes. Developers can also communicate
around code-related actions by submitting a comment on a
commit, an issue, or a pull request.

The record of all action information combined with user
subscription allows activity updates to flow across the site.
Subscription actions include following and watching.
Developers can ‘follow’ other developers and ‘watch’ other
repositories, subscribing them to a feed of actions and
communications from those developers or projects (Figure
2) with frequent updates for active projects.

Actions on artifacts also become artifacts themselves, as the
history of user actions on code artifacts is recorded over
time. The feed presents a recent history of following,
watching, commit, issues, pull requests, and comment

actions. Visualizations on the site, such as the network
view, provide access to the history of commits over time
across all forks of a particular project (see Figure 3).

Figure 1. GitHub user profile with projects and public activity

 Figure 2. Feed of actions on code artifacts

Figure 3. Network view: sequence of actions on code artifacts

To get a sense of how visible information on GitHub
influenced the nature of collaboration and interaction, we
interviewed a set of developers who use GitHub. We first
examined the types of inferences they made based on the
visible information in the site, and next examined what
types of higher-level activities these inferences supported.

Data Collection
We conducted a series of semi-structured interviews with
24 GitHub users. Our goal in these interviews was to
document and understand in more detail the different ways
GitHub functionality was used by our participants. We
solicited participants via email and conducted our
interviews in person or via phone. Participants were chosen
for equal representation across peripheral and heavy users
(with greater than 80 watchers on at least one of their OSS
projects). This was done because we thought that serious
and hobby users might have different purposes and
strategies, and very different information loads. Table 1
summarizes the 24 participants in our sample.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1279

 Hobbyist Work use:
non-SW org

Work use:
SW org

Peripheral
users

P2, P7, P10,
P18, P23

P6, P12,
P16, P24

P5, P17

Heavy
users

P11, P15,
P21, P22

P3, P4, P9,
P14, P19

P1, P8, P13,
P20

Table 1. Summary of interview participants.

Participants were asked to walk us through their last session
on GitHub, describing how they interpreted information
displayed on the site as they managed their projects, and
interacted with other users’ projects. Remote participants
shared their screen during the interview using Adobe
Connect so we could ask specific questions about data on
the site and users could demonstrate their activities on the
site. Interviews lasted approximately 45 minutes to one
hour. These interviews were then transcribed verbatim to
support further analysis. The interviews, videos and field
notes supported our analysis process.

Data analysis
We applied a grounded approach to analyze the
transparency related inferences in our interview responses
[5]. We first identified instances of these types of inferences
in five interview transcripts. For each example analyzed, we
identified what information was made visible by the GitHub
system, what inferences the participant was making based
on that information, and the associated higher-level goal.
We then conducted open coding on these responses,
comparing each instance with previously examined
examples and grouping examples that were conceptually
similar. This process revealed categories of transparency
related inferences and higher level behaviors these
inferences supported. We used this first set of categories to
code the remaining interviews, revealing additional
categories and refining our original coding scheme to
represent the dataset as a whole. We repeatedly discussed
the codes and transcripts in a highly collaborative and
iterative process. We continued this process until the
interviews no longer revealed new behaviors not captured
in our existing set of categories (theoretical saturation).

RESULTS
Our analysis revealed that individuals made a rich set of
inferences based on information on GitHub. These
inferences were a function of four sets of visible cues
(summarized in Table 2).

Recency, volume, and location of actions signaling
commitment and interests
As with other low-cost hosting sites, GitHub has a mix of
projects that are little more than code dumps and serious
projects that continue to receive attention and effort. There
is also a mix of hobbyists who make occasional
contributions and move on, and dedicated developers who
provide project stewardship over the longer term. Our
interviewees often used the recency and volume of activity

as a signal of commitment or investment at the individual
and project level.

Visible information about other developers’ actions
influenced perceptions of their commitment and general
interests. Recent activity gave a sense of the level of
investment in a project. The feed of developer actions
across projects helped other developers infer their current
interests. One respondent described following a friend to
stay up to date on what he was up to through his commits
(P16). The amount of commits to a single project signaled
commitment or investment to that project, while the type of
commits signaled interest in different aspects of the project.

Visible
Cues

Social
Inferences

Representative Quote

Recency and
volume of
activity

Interest and
level of
commitment

 “this guy on Mongoid is just --
a machine, he just keeps
cranking out code.” (P23)

Sequence of
actions over
time

Intention
behind action

 “Commits tell a story. Convey
direction you are trying to go
with the code … revealing
what you want to do.” (P13)

Attention to
artifacts and
people

Importance to
community

“The number of people
watching a project or people
interested in the project,
obviously it's a better project
than versus something that
has no one else interested in
it.” (P17)

Detailed
information
about an
action

Personal
relevance
and impact

“If there was something [in the
feed] that would preclude a
feature that I would want it
would give me a chance to add
input to it.” (P4)

Table 2. Visible cues and the social inferences they generated.

Recent activity signaling project liveness and maintenance
As with many open source hosting sites, dead and
abandoned projects greatly outnumber live ones that people
continue to contribute and pay attention to. It can be tedious
to figure out which are which, yet it is important to do so,
since one does not want to adopt or contribute to a dead or
dying project. In GitHub, developers described getting a
sense of how ‘live’ or active a project was by the amount of
commit events showing up in their feed.

“Commit activity in the feeds shows that the project is alive,
that people are still adding code.” (P16)

Users also relied on historical activity to make inferences
about how well the project was managed and maintained.
Lots of open pull requests indicated that an owner was not
particularly conscientious in dealing with people external to
the project, since each open pull request indicates an offer
of code that is being ignored rather than accepted, rejected
or commented upon (P11).

Sequence of actions conveying meaning
Visible actions on artifacts carried meaning, often as a
function of their sequence, or ordering with respect to other

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1280

actions. When considering the actions of an individual
developer, they signaled intentions, competence and
experience. In the project context, actions on code and who
carried them out allowed others to make inferences about
the structure of the project and collaborator roles.

Commits conveying developer intention
At the lowest level, commit information connected with
other commits, comments, or issues conveyed meaning or
intention behind actions. Several respondents were able to
look at a sequence of commits and infer what the developer
was trying to accomplish with their changes (e.g. P1, P13,
P9, P21, P11). Linking commits and issues similarly
communicated the reasoning behind a change to the code.

History of activity signaling competence
At the developer level, information about past commits,
number of projects created (versus forked), and activity in
those projects all fed into perceptions of developer skill.
Several respondents noted that GitHub profiles now act as a
portfolio of work and factor into the hiring process at many
companies (P3, P9, P13, P8, P17), in part because they
provide a sense of a developer’s work style and pace.

History of activity signaling project structure and roles
Developers also seemed able to use the history of actions on
code to make sense of a project’s evolution over time or
history. The active public record of who contributed what
aspects of the code when, meant developers were able to
describe how a project got into its current state, who
originally founded the project, what happened across
different releases, and who was responsible for what areas
of the code. Developers described using this commit history
information to infer other’s expertise with parts of a project.
Respondent P1 indicated that he would look at who made
changes to which file to find who had expertise on a piece
of the system (essentially inferring who knows what from
the record of activities on the project).

Attention signaling community support
Visible cues about who was attending to something served
as an important signal of community support (or lack
thereof). Developers interpreted activity traces of attention
(following, watching, and comment activity) as an indicator
that the community cared about that person, project, or
action. Signals of attention also seemed to lead to developer
attention to that person, artifact or event.

Attention signaling action or artifact importance
Respondents used signals of other users’ attention to a feed
item as indicators that an artifact or action was important.
In particular, comments on a commit suggested the commit
was interesting, controversial, or worth looking at (P17).
Actions signaling attention to a project or person (watching
or following) similarly signaled it or they were interesting
in some way and prompted developers to look more closely.

Inferences about who would see a particular action also
influenced perceived value of engaging in that action.
Inference of the size of a potential audience was cited as a
motivation to contribute. Respondents indicated the number
of forks or watchers of a project signaled that ‘lots of other
people will benefit from this change’ (P13) or that
‘someone would find this useful’ (P16). The size of the
potential audience was also frequently cited as a reason for
using GitHub in the first place, based on general
community interest in other forums such as mailing lists.

Attention signaling developer status
The number of followers a developer had was interpreted as
a signal of status in the community. Developers with lots of
followers were treated as local celebrities (e.g. dhh). Their
activities were retold almost as local parable; our
interviewees knew a great deal about them and paid
attention to their actions (P20).

Attention signaling project quality
Visible information about community interest in the form of
watcher and fork counts for a project seemed to be an
important indicator that a project was high quality and
worthwhile. Several respondents indicated using the
number of watchers of a project or forks of a project as a
signal that a project had community interest, and so was
likely to be good or of interest. As one developer put it:

“The way you know how useful something is, is how much
community there is behind it.” (P23).

These signals of attention, at the same time, put pressure on
developers since their visible actions affected attributions
about project quality. Several respondents indicated an
awareness of being watched, noting that updates about their
changes would ‘flow to everyone watching’ (P13) and that
‘everyone can see what you’re doing’ (P1). In some cases
they inferred the identity of this audience (e.g. users of their
project) based on who they knew was watching or had
forked the project noting for example “people are watching
because they depend on it.” (P4).

Action details signaling personal relevance
Certain properties of actions in the feed signaled potential
personal impact. These inferences were highly dependent
on the developer’s own work and interests, rather than the
community at large.

Actions signaling contribution opportunities
Several respondents inferred contribution opportunities
from action information they would see in the feed. For
example, one respondent described continually watching
the feed for issue submissions or comments on commits
(P9), both representing a chance for him to add something
to the code or to the ongoing discussion.

Actions signaling potential problems
Respondents also inferred potential problems from commit
events they would view in the feed or in the recent commit

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1281

list. These inferences were based on cues that a commit was
connected with specific files on a project, or had comments
suggesting the change would affect their own projects (P16,
P19). Comments on a commit also signaled a potentially
contentious or problematic change (P1).

SOCIAL INFERENCES INFORMING JOINT ACTION
The social inferences that individual developers made based
on visible cues of others’ behavior fed into three types of
higher-level collaborative activities: project-management,
learning through observing, and reputation management.

Project management
All of the developers we interviewed had GitHub projects
they were primarily responsible for, either because they
were owners of the project or centrally involved in
development. Certain types of social inferences described
above supported project management activities.

Recruiting developers
Several of the developers we talked with actively recruited
others (or were recruited by others) to contribute to a
project more heavily. This recruitment was fueled by
visible information about the other developers’ competence
and investment in the project. For example, P8 watched
commits occurring in the various forks of his project to
identify skilled and committed developers who could
contribute more actively. In some cases this was based on
past successful contributions to the project and observed
commitment. For example P2, a newer member of GitHub
was ‘recruited’ by a project owner after submitting several
good commits. The project owner began sending him tasks
such as requests to address incoming issues. Intense interest
in the project, inferred from a high volume of commit
actions in a short period of time, sent a strong signal that a
contributor was invested in the project, and could be trusted
to contribute more centrally (P17 & P21). In the cases
observed this perceived investment seemed to translate into
trust, with project owners granting commit rights, allowing
new members to influence project vision, and sometimes
even turning over ownership to the newcomer after they
had demonstrated high levels of investment (P2, P8, P11,
P17, P21, P22).

Identifying user needs
Transparency also supported identification of user skills
and needs. Here the term user refers to other developers
who make use of a particular project in their own work,
becoming dependent on that project for certain functionality
[23]. Developers inferred user needs by watching their
activity in forks (personal copies) of the project (P3, P6, P9,
P13, P11). For example, one developer described awareness
that users were forking his project to deal with various
incompatibilities with a new version of another piece of
software they used in concert. He was made aware based on
their activity in the forks, which incompatibility issues were
particularly problematic for his users (P9).

 “I saw somebody trying to use it with Rails master I'm like well
crap I don't know if it works with Rails master so let me check.
So that type of stuff has been useful just to get a sense of the
kinds of things people might like to see, you know?” (P9).

In almost all cases these user modifications represented
innovations that extended the project in interesting ways,
making it compatible with other systems or more generally
useful (P3, P21, P9, P13, P11).

Although observable behavior in the forks provided
information about user needs, developers often sought
direct interaction with users to get feedback on their needs.
Several developers mentioned also posting information
about a change (using a direct URL to the code) into a
project mailing list (P3, P4, P11). In many cases this was to
get user input or buy in for a new design decisions that
would go into the next release of a project (e.g. P11). Users
would also contact developers directly to let them know
about a change they wanted to make to the code or an issue
they were having with the project (P1, P3, P9, P11). These
interactions helped surface user needs but were also seen as
a nuisance in some cases when responses were sought in a
private channel such as e-mail rather than a public channel
where everyone could observe the interaction.

Managing incoming code contributions
Perhaps the most important project management activity
developers engaged in on GitHub was managing incoming
code contributions. As noted above, users and other
developers could submit changes to a project by forking the
project and then making a pull request (a request that the
changes be merged back into the master branch).
Developers were constantly making decisions about what
code to accept back into the project (P1, P2, P4, P8, P9,
P11, P16, P19, P21). For very large and popular projects,
owners dealt with many pull requests per day (P1, P8, P22).
As noted above, they described making inferences about the
quality of a code contribution based on its style, efficiency,
thoroughness (e.g. were tests included?) and in some cases
the submitter’s competence (P8, P11, P22). Some
developers indicated prioritizing requests that were tied to
issues or integrated a feature that users had been requesting
(P11, P21). Not all of the projects on GitHub used the pull
request mechanism. In some cases because of legacy
reasons, patches to a project had to be sent to a mailing list
(P14, P24) for approval, where the community would chime
in on their acceptability. Interestingly in this way, the
GitHub pull request mechanism centralized control over
changes by allowing managers to bypass a public mailing
list notification and discussion mechanism.

Visibility across forks (or copies) of a project took the
pressure off of project owners to accept all changes, and
allowed niche versions of a project to co-exist with the
official release. Thus contributors could build directly on
each other’s work, even if the project owner did not
approve of the changes. As one developer put it:

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1282

“I can ignore bad changes but know that the network of
experimenters can continue.” (P13)

The cross-fork visibility also meant that project owners
could proactively solicit changes from developers as they
were working, and use the transparency to track the status
of ongoing changes by others. Several respondents
indicated using the network view (Figure 3) to identify the
leading wave of changes to their project, or the newest code
(P9, P11, P21). As noted above, they could see what people
were trying to do with their code (P1).

“I would look at this [network] view and actually find folks who
had uploaded a patch and say, ‘Hey are you planning on
sending that back to [my project], this is what I think of it,
here’s some changes you could make, here's some suggestions,’
and that kind of got the ball rolling.” (P8)

In some cases, the changes would not be submitted back
because the person did not finish doing what they had
intended to with the project (P1, P11). Here respondents
described pinging the developer to solicit a pull request
(P21, or receiving a ping P2), or asking when they would
finish the change. In some cases, if the change was novel or
useful enough, the project owner would take over the code
and finish it themselves (P11).

As with user needs, in many cases, project owners needed
to directly communicate around a code contribution. This
was sometimes an attempt to solicit and motivate changes
as described above. More often, however, this interaction
consisted of negotiation around incoming pull requests.
There was a clear sense that project owners had a view of
the trajectory for the project, and there was a need for
others to get buy in before making changes (P1, P9, P16).
Project owners would often see potential problems that a
code submission would cause with other parts of the code,
or with changes they wanted to make in the future. In both
cases their reaction was based on implicit knowledge about
code organization or their future plans for the code (their
‘vision’ for the project as they often called it):

“I could tell that was actually going to cause some serious
problems down the road, so I just responded. I always thank
them because it’s a big help when people contribute back, but it
wouldn't work so I kind of explained to him why it didn't work.”
(P19)

This information was not transparent to submitters and
could only be elicited through direct communication around
the code. Similarly the developer’s reasoning behind a
change or the organization of a code submission was not
always clear to the project owner. In some cases, several
rounds of comments around a pull request were required to
establish shared understanding of what the developer was
trying to accomplish and why (P16). The inline interaction
with code supported negotiation around a submission so
that in some examples, the developer submitting a change
would be able to modify the code he had submitted to
address concerns a project owner might have about
potential conflicts or conformity to project style norms.

Managing dependencies with other projects
Cross project visibility allowed project owners to
proactively manage the dependencies their code had with
other projects. Project owners were in almost all cases
‘users’ of the code of many other project owners, meaning
changes to those projects would affect the functioning of
their own project (P8, P9, P16, P19). Because of this, they
attended closely to change events from projects they were
dependent on. They watched for commit events in the feed,
and reported paying special attention to new releases
(which likely contained new features they could make use
of) and changes to files they knew their project used (P8,
P9, P16).

“[Popular website] their entire engineering team uses [My
Project], and so they keep an eye out for any changes as well,
because when I do a release, it breaks something then I
essentially broke [Popular website]’s entire development for a
day or something.” (P19)

In some cases, they were watching for changes they knew
were coming because they had heard about them in other
forums (mailing lists, blogs etc.), or had discussed them
directly with project owners or other developers (P9).

When changes occurred that affected their code, developers
often directly contacted the project owner or contributor
who had made a specific change (P9) or joined in on
discussion about a proposed change (P19). For example,
one project owner showed us a case where a third party
chimed in on the discussion around a pull request someone
else had submitted because the change affected
functionality his company depended on (P19).

Developers would also handle conflicting or problematic
changes by directly modifying the dependent project to
address the problem (P9, P16, P20). Transparency
supported this behavior because the code artifacts of the
dependent project were open and accessible, and the
visibility of changes meant the project owner knew exactly
why something was no longer working. The project owners
in this case were users of others projects, and then had to
lobby and negotiate with the dependent project owner to get
their changes accepted (e.g. P9).

Learning from others
Interestingly, the transparency on GitHub supported
learning from the actions of other developers. Being able to
watch how someone else coded, what others paid attention
to, and how they solved problems all supported learning
better ways to code and access to superior knowledge.

Following rockstars
Developers in our sample described following the actions of
other developers because they deemed them particularly
good at coding. They referred to these developers with
thousands of followers as ‘coding rockstars’ (P20) and
reported interest in how they coded, what projects they
were working on, and what projects they were following. In
most cases this was because these developers were deemed

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1283

to have special skill and knowledge about the domain (P17,
P20) in part as a function of their large following.

Watching watching
Developers also reported interest in which projects other
users were looking at, and described certain users as acting
almost as curators of the GitHub project space (P1, P4, P18,
P16, P22). As one developer put it:

“I follow people if they work on interesting projects, [then] I’m
interested in the projects they’re interested in.” (P4)

Certain developers were deemed to have a knack for
finding useful projects in a particular interest area:

“This guy has good taste in projects. He curates for me.
Watching him is like watching the best of objective C that
GitHub has to offer.” (P16).

This interest in finding the ‘hottest’ new projects through
what others were watching highlighted the importance that
GitHub users seemed to place on novelty more generally.

“I learn about new projects and new technologies way faster
than ever before and it's just encouraged me to get dialed in to
a bunch of different tech communities I never would have had
access to before.” (P4)

Identifying new technical knowledge
Developers were also interested in watching the actions of
other developers and other projects to find new technical
knowledge. In some cases other projects served as a
resource to see how other developers had solved a similar
problem to theirs (P17, P23). Developers were also
interested in watching development over time within
projects that were similar in nature to their own.

“When I find a project that solves a problem that I had and I’m
going to continue to have then I will watch it” (P19).

By watching these projects and getting updates on the
changes they made as they happened, they learned how
their technical ‘neighbors’ were approaching related
problems, informing their own development (P5, P16).

Direct feedback
Developers also learned from others through direct
interaction. Through comments on pull requests, developers
got feedback about their code from more experienced
developers. This was sometimes comments about ‘good
form’ or the ‘right’ way to do things in terms of coding
style or what was normative. This was also feedback about
code correctness or more efficient ways of writing the same
code (e.g. P1). These interactions helped improve the
quality of the code submissions.

Communication also supported learning about another
developer’s project and getting help with attempts to build
on that project (P16). Some developers were extremely
forthcoming with this type of help, checking their IRC
channels and issue requests constantly to find and address
those in need (e.g. P11, P19, P22). For some, this was an
opportunity to grow a potential contributor, and project

owners saw this as a process of ramping up users to
eventually become full-fledged contributors (e.g. P8, P6).

Managing reputation and status
The public visibility of actions on GitHub led to identity
management activities centered around gaining greater
attention and visibility for work.

Self-promotion
Visibility for work was recognized as a valuable aspect of
the GitHub community (P13, P16). The developers we
interviewed talked about the positive utility of visibility,
which led to increased use of a project, extension by others,
ideas from a broader audience and exposure for other
projects created by the owner (P16).

At the same time, self-promotion, active attempts to gain
additional visibility for work, was recognized as a
somewhat distasteful activity and something the developers
said they wouldn’t do (P17). Regardless, many developers
consciously managed their self-image to promote their
work through consistent branding (giving their project and
blog the same name, or using the same Twitter handle and
GitHub user id), and by publicizing their work on other
platforms outside of GitHub (P9, P19, P17, P23). As one
user noted:

 “I think a lot of people that use GitHub are trying to promote
themselves. This is very self-promotional. It's like I have this
project, you will be interested in it” (P16).

The attention associated with self-promotion was
motivating for some of the developers we talked to. One
developer noted that watchers kept him working on
something he might have otherwise abandoned:

“Watching lets me know someone cares” (P17).

Social capital, identity and recognition
Because watching was recognized as a signal of project
quality, it carried meaning as a sign of community approval
for a project as well. Several developers we talked to
mentioned watching a friend’s project to increase their
‘social capital’ on the site, or promote their work (P23).
This was also done explicitly by posting projects to external
sites such as HackerNews, a common source of information
for developers in the GitHub community, or suggesting a
project for RailsCast. Projects featured there were known to
receive a boost in watchers. The reciprocal visibility of
actions in GitHub meant that a certain amount of face
management was associated with behavior on the site.
Developers did not want to offend others by, for example
publicly rejecting code contributions from long time
contributors (P9, P21), or not following someone who
followed them (P9, P16).

Being onstage
Many of the heavy users of GitHub expressed a clear
awareness of the audience for their actions (P1, P6, P13).
This awareness influenced how they behaved and

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1284

constructed their actions, for example, making changes less
frequently (P6), because they knew that ‘everyone is
watching' (P1) and could ‘see my changes as soon as I
make them’ (P13). There was a concern to get things right
because of how public changes to the code would be. One
developer contrasted his heavily watched project with a
niche project, noting that he could be more experimental in
the niche project because no one was watching (P21).
Another developer directly compared it with the pressure of
performing:

“³I try and make sure my commit messages are snappy and my
code is clean because I know that a lot of people are watching.
…It’s like being on stage, you don’t want to mess up, you’re
giving it your best, you’ve got your Hollywood smile” (P4).

DISCUSSION
Three interesting themes cross-cut the observations in our
data about the value of visibility and transparency in the
GitHub community: the micro-supply chain ecosystem on
GitHub, the value of observation versus direct interaction,
and the affordances of attention signals.

Visibility across micro-supply chains
We found that transparency in GitHub allowed work to
progress and projects to evolve to become more general as a
function of micro-supply chain management. Because all
artifacts are visible on the GitHub site, users of a particular
project can access its contents, and are made aware of
changes to the project on a continuous basis. This
awareness and visibility supported direct feedback and
interaction between project owners and their users, creating
what we refer to as a “micro supply chain.” Visibility
between the supplier (project owner) and consumer (user)
meant that the owner could infer more clearly who their
user base was, how they were using the project, and when
they were having problems. Consumers were notified about
changes to the product, meaning they could anticipate
problematic modifications and provide immediate feedback
about them. Once notified, consumers could directly
communicate with the project owner about changes being
made to discuss their consequences or request adaptations
that would suit their needs. But they could also directly
modify the product and customize it to suit their needs with
or without direct communication, if they so desired. In
contrast to relatively static and sequential supply chain
relationships, what emerged was a far more interactive
producer-consumer relationship, characterized by reciprocal
dependencies [25].

Communication occurs at the limits of transparency
Communication generally seemed to be a response to the
limits of transparency, when the information and inferences
afforded by transparency were insufficient for the purpose
at hand. Users interacted when conflicts arose between two
dependent projects, or when negotiating modifications to
pull requests. In each case, communication seemed to

happen when transparency broke down -- there was certain
information developers could not directly observe.

People seemed to work independently until certain events
brought them together, making the dependency more
salient, such as when a potentially problematic change
would show up in the feed, or when a pull request would
create problems for other aspects of the code. Direct
communication functioned in these cases, much as mutual
adjustment, allowing individuals to directly share
unobservable information about their rationale (why they
were doing what they were doing), and plans (what they
were planning to do next), and negotiate mutually
compatible solutions to a conflict. These negotiations were
supported by direct communication interactions in code
comments, IRC channels, campfire, mailing lists, and a
variety of other web-based communication tools.

Thus although passive activity traces of others’ behavior are
powerful in some ways, they are limited when joint action
is required. In part this is because of the lack of feedback or
interactivity these visible traces provide. Our results suggest
these traces support knowing what someone has done, and
who might be looking at something, at the individual level,
and when new collaborative actions introduce new
dependencies, two-way communications are required.

Signals of attention
Visible signals of attention provided notification of other
developers’ behavior on the GitHub site. Interestingly,
these signals of attention seemed to help users manage the
downsides of transparency across a large-scale network.
Visible cues of what others were watching or commenting
helped developers find ‘interesting’ or ‘useful’ projects and
events (in their words). These signals, when aggregated,
also gave some users higher status because they indicated
community approval or admiration. As one user put it, “I'm
kind of giving them some token of my attention. I'm saying,
I like what you're doing” (P23). Signals of attention
functioned to provide awareness of what other users cared
about or were looking at. This awareness is one aspect of
social translucence as described by [8].

These signals of attention also in some cases motivated
behavior, giving developers a feeling that someone cared
about what they were doing. This connects with the notion
of accountability in social translucence and collective
effort. This affordance of transparency relates to research
investigating how working with others affects one’s own
productivity through social pressure (e.g., [15]), the flow of
ideas [1] and help. Our findings suggest that the visibility of
actions might act to facilitate information flows and help-
giving, both of which have important implications for the
quantity and quality of work.

CONCLUSION
In this work we examined how individuals interpreted and
made use of information about others’ actions on code in an
open social software repository. We found that four key

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1285

features of visible feedback drove a rich set of inferences
around commitment, work quality, community significance
and personal relevance. These inferences supported
collaboration, learning, and reputation management in the
community. Our results inform the design of social media
for large-scale collaboration, and imply a variety of ways
that transparency can support innovation, knowledge
sharing, and community building.

ACKNOWLEDGEMENTS
This research is supported by the Center for the Future of
Work at Carnegie Mellon University’s Heinz College and
by the National Science Foundation under award: CNS-
1040801.

REFERENCES
1. Azouley, P., Graff Zivin, J.S., & Sampat, B.N. The

diffusion of scientific knowledge across time and space.
NBER Working Paper Series (2011).

2. Bardram, J. E. & Hansen, T. R. Context-based
workplace awareness. Computer Supported Cooperative
Work (CSCW) 19, 2 (2010), 105-138.

3. Begel, A., DeLine, R., & Zimmerman, T. Social media
for software engineering. In Proc. FoSER 2010, IEEE
Computer Society (2010), 33-38.

4. boyd, d.m., & Ellison, N.B. Social network sites:
Definition, history, and scholarship. Journal of
Computer-Mediated Communication, 13, 1 (2007),
article 11.

5. Corbin, J.M., & Strauss, A.L. Basics of qualitative
research. London, UK: Sage Publications, 2008.

6. DiMicco, J., Millen, D., Geyer, W., Dugan, C.,
Brownholtz, B. & Muller, M. Motivations for social
networking at work. In Proc CSCW 2008, ACM Press
(2008), 711-720.

7. Dourish, P. & Bellotti, V. Awareness and coordination
in shared workspaces. In Proc. CSCW 1992, ACM
Press (1992), 107-114.

8. Erickson, T., & Kellogg, W. Social translucence: An
approach to designing systems that support social
processes. TOCHI 7, 1 (1999), 59-83.

9. Froehlich, J., & Dourish, P. Unifying artifacts and
activities in a visual tool for distributed software
development teams. In Proc. ICSE 2004, IEEE Society
(2004), 387-396.

10. Github: Social Coding, http://github.com/, accessed
March 17, 2011.

11. Gross, T., Stary, C., & Totte, A. User-centered
awareness in computer-supported cooperative work
systems. Int. J. of HCI, 18, 3 (2005), 323-360.

12. Gutwin, C., Greenberg, S., & Roseman, M. Workspace
awareness in real-time distributed groupware:
Framework, widgets, and evaluation. In Proc. HCI on
People & Computers, Springer-Verlag (1996), 281-298.

13. Gutwin, C., Penner, R., & Schneider, K. Group
awareness in distributed software development. In Proc
CSCW 2004, ACM Press (2004), 72-81.

14. Ko, A.J., DeLine, R., & Venolia, G. Information needs
in collocated software development teams. In Proc ICSE
2007, IEEE Computer Society (2007), 344-353.

15. Mas, A., & Moretti, E. Peers at work. American
Economic Review, 99, 1 (2009), 112-145.

16. Millen, D., Feinberg, J., & Kerr, B. Dogear: Social
bookmarking in the enterprise. In Proc. CHI 2006,
ACM Press (2006), 111-120.

17. Olson, G., M., & Olson, J.S. Distance matters. Human-
Computer Interaction 15 (2001), 139-178.

18. Omoronyia, I., Ferguson, J., Roper, M. & Wood, M.
Using developer activity data to enhance awareness
during collaborative software development. Computer
Supported Cooperative Work (CSCW) 18, 5 (2009),
509-558.

19. Sarma, A., Maccherone, L., Wagstrom, P., & Herbsleb,
J. (2009). Tesseract: Interactive visual exploration of
socio-technical relationships in software development.
In Proc. ICSE 2009, IEEE Computer Society (2009),
23-33.

20. Sarma, A., Z. Noroozi, & Htreetreeoek, A. (2003).
Palantír: raising awareness among configuration
management workspaces. In Proc ICSE 2003, IEEE
Computer Society (2003), 444-454.

21. Skeels, M.M., & Grudin, J. When social networks cross
boundaries: A case study of workplace use of Facebook
and LinkedIn. In Proc. GROUP 2009, ACM Press
(2009), 95-103.

22. Storey, M.A., Ryall, J., Singer, J., Myers, D., Cheng,
L.T., & Muller, M. How software developers use
tagging to support reminding and refinding. IEEE TSE
35, 4 (2009), 470-483.

23. Storey, M., Treude, C., van Deursen, A., & Cheng, L.T.
The impact of social media on software engineering
practices and tools. In Proc. FoSER 2010, ACM Press
(2010), 359-363.

24. Teasley, S. Covi, L. Krishnan, M. & Olson, J. Rapid
software development through team collocation. IEEE
TSE 28, 7 (2002), 671–683.

25. van de ven, A.H., Delbecq, A.L., & Koenig, R.
Determinants of coordination modes within
organizations. American Sociological Review, (1976).

26. Viegas, F., Wattenberg, M., & Kushal, D. Studying
cooperation and conflict between authors with history
flow visualizations. In Proc CHI 2004, ACM Press
(2004), 575-582.

27. Weiner, B. Human Motivation: Metaphors, Theories
and Research, Newbury Park, CA: Sage Publications,
1992.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1286

