
Jim Whitehead is an Associate Professor of Computer Science at the
University of California, Santa Cruz. Jim received the Bachelor of
Science in Electrical Engineering from the Rensselaer Polytechnic
Institute in 1989, and a PhD in Information and Computer Science
from the University of California, Irvine in 2000, under his advisor,
Richard N. Taylor. From 1996-2004, Jim created and led the Internet
Engineering Task Force Working Group on Web Distributed Authoring
and Versioning (WebDAV), and participated in the creation of the
DeltaV follow-on standard for versioning and configuration
management. In 2005-06, Jim led efforts to create a new major at UC
Santa Cruz, the Bachelor of Science in Computer Science: Computer
Game Design.

Collaboration in Software Engineering: A Roadmap
Jim Whitehead

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Collaboration in Software Engineering: A Roadmap

Jim Whitehead
Univ. of California, Santa Cruz, USA

ejw@cs.ucsc.edu

Abstract

Software engineering projects are inherently cooperative,
requiring many software engineers to coordinate their
efforts to produce a large software system. Integral to this
effort is developing shared understanding surrounding
multiple artifacts, each artifact embodying its own model,
over the entire development process. This focus on model-
oriented collaboration embedded within a larger process is
what distinguishes collaboration research in software
engineering from broader collaboration research, which
tends to address artifact-neutral coordination technologies
and toolkits. This article first presents a list of goals for
software engineering collaboration, then surveys existing
collaboration support tools in software engineering. The
survey covers both tools that focus on a single artifact or
stage in the development process (requirements support
tools, UML collaboration tools), and tools that support the
representation and execution of an entire software process.
Important collaboration standards are also described.

Several possible future directions for collaboration in
software engineering are presented, including tight
integration between web and desktop development
environments, broader participation by customers and end
users in the entire development process, capturing
argumentation surrounding design rationale, and use of
massively multiplayer online (MMO) game technology as a
collaboration medium. The article concludes by noting a
problem in performing research on collaborative systems,
that of assessing how well certain artifacts, models, and
embedded processes work, and whether they are better
than other approaches.

1. Introduction
As humans, we have several limitations that affect our
ability to create almost any piece of software. When
working at high levels of abstraction—as when writing
requirements, designing software, writing code, or creating
test cases—we are slow and error-prone. As a consequence,
we must work together to complete large projects in
reasonable time, and have other people try to catch our
mistakes. Once we start working together, we face other
problems. The natural language we use to communicate is
wonderfully expressive, but frequently ambiguous. Our

human memory is good, but not quite deep and precise
enough to remember a project’s myriad details. We are
unable to track what everyone is doing in a large group, and
so risk duplicating or clobbering the work of others. Large
systems can often be realized in multiple ways, and hence
engineers must converge on a single architecture and
design.
Collaboration techniques in software engineering have
evolved to address our limitations. Software engineering
collaboration has multiple goals spanning the entire
lifecycle of development:
• Establish the scope and capabilities of a project.

Engineers must work with the users and funding
sources (stakeholders) of a software project to describe
what it should do at both a high level, and at the level
of detailed requirements. The form of this
collaboration can have profound impact on a project,
ranging from the up-front negotiation of the waterfall
model, to the iterative style of evolutionary
prototyping [1].

• Drive convergence towards a final architecture and
design. System architects and designers must
negotiate, create alliances, and engage domain experts
to ensure convergence on a single system architecture
and design [2].

• Manage dependencies among activities, artifacts, and
organizations. [3]. This encompasses a wide range of
collaborative activities, including typical management
tasks of subdividing work into tasks, ordering them,
then monitoring, assessing, and controlling the plan of
activities. Modularization decisions also affect
dependencies.

• Reduce dependencies among engineers. An important
mechanism for managing dependencies is to reduce
them where possible, thereby reducing the need for
collaboration. Modularization decisions frequently
follow organizational boundaries [4], a mechanism for
reducing cross-organization coordination. Software
configuration management systems permit developers
to work in per-developer workspaces, thereby isolating
their changes from others, and reducing the number of
change dependencies among developers. With
workspaces, developers no longer need to wait for all

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

developers to finish their current changes before
compiling.

• Identify, record and resolve errors. Errors and
ambiguities are possible in all software artifacts, and
many approaches have been developed to find and
record their existence. Among the collaborative
techniques are inspections and reviews, where many
people are brought together so that their multiple
perspectives can identify errors, and their questions
can surface ambiguities. Testing, where one group
creates tests to uncover errors in software developed
by others is another collaborative error finding
technique. Users of software also collaborate in the
identification of errors, whether in explicit beta testing
programs, or through normal use, when they submit
bug reports. Bug tracking (issue management) systems
permit engineers to record problems, as well as
manage the process of resolving them.

• Record organizational memory. In any long running
collaborative project, people may join and leave. Part
of the work of collaboration is recording what people
know, so that project participants can learn this
knowledge now, and in the future [5]. SCM change
logs are one form of organizational memory in
software projects, as are project repositories of
documentation. Process models also record
organizational memory, describing best practices for
how to develop software.

Software engineers have adopted a wide range of
communication and collaboration technologies to assist in
the coordination of project work. Every mainstream
communication technology has been adopted by software
engineers for project use, including telephone,
teleconferences, email, voice mail, discussion lists, the
Web, instant messaging, voice over IP, and
videoconferences. These communication paths are useful at
every stage in a project’s lifecycle, and support a wide
range of unstructured natural language communication.
Additionally, software engineers hold meetings in meeting
rooms, and conduct informal conversations in hallways,
doorways, and offices. While these discussions concern the
development of a formal system, a piece of software, the
conversations themselves are not formally structured
(exceptions being automated email messages generated by
SCM systems and bug tracking systems).
In contrast to the unstructured nature of conversations,
much collaboration in software engineering is relative to
various formal and semi-formal artifacts. Software
engineers collaborate on requirements specifications,
architecture diagrams, UML diagrams, source code, and
bug reports. Each is a different model of the ongoing
project. Software engineering collaboration can thus be
understood as artifact-based, or model-based collaboration,
where the focus of activity is on the production of new

models, the creation of shared meaning around the models,
and elimination of error and ambiguity within the models.
The broad extent of this model-based collaboration is a
hallmark of software engineering collaboration. It
distinguishes the study of collaboration within software
engineering from the more general study of collaboration,
which tends to lack this focus on model creation.
This model orientation to software engineering
collaboration is important due to its structuring effect. The
models provide a shared meaning that engineers use when
coordinating their work, as when engineers working
together consult a requirements specification to determine
how to design a portion of the system. Engineers also use
the models to create new shared meaning, as when
engineers discuss a UML diagram, and thereby better
understand its meaning and implications for ongoing work.
The models also surface ambiguity by making it possible
for one engineer to clearly describe their understanding of
the system; when this is confusing or unclear to others,
ambiguity is present. Without the structure and semantics
provided by the model, it would be more difficult to
recognize differences in understanding among
collaborators.
Software engineers have developed a wide range of model-
oriented technologies to support collaborative work on their
projects. These technologies span the entire lifecycle,
including collaborative requirements tools [6, 7],
collaborative UML diagram creation, software
configuration management systems and bug tracking
systems [8]. Process modeling and enactment systems have
been created to help manage the entire lifecycle, supporting
managers and developers in assignment of work,
monitoring current progress, and improving processes [9,
10]. In the commercial sphere, there are many examples of
project management software, including Microsoft Project
[11] and Rational Method Composer [12]. Several efforts
have created standard interfaces or repositories for software
project artifacts, including WebDAV/DeltaV [13, 14] and
PCTE [15]. Web-based integrated development
environments serve to integrate a range of model-based
(SCM, bug tracking systems) and unstructured (discussion
list, web pages) collaboration technologies.
The remainder of the paper provides an overview of
existing model-based collaboration techniques (Section 2).
It then outlines several potential areas for improving the
state of collaboration support technologies for software
projects (Section 3), and notes the challenges in assessing
the impact of collaboration tools (Section 3.5). The paper
concludes with a brief summary.

2. Collaboration tools, environments, and
infrastructure
Tool support developed specifically to support
collaboration in software engineering falls into four broad
categories. Model-based collaboration tools allow

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

engineers to collaborate in the context of a specific
representation of the software, such as a UML diagram.
Process support tools represent all or part of a software
development process. Systems using explicit process
representations permit software process modeling and
enactment. In contrast, tools using an implicit
representation of software process embed a specific tool-
centric work process, such as the checkout, edit, checkin
process of most SCM tools. Awareness tools do not support
a specific task, and instead aim to inform developers about
the ongoing work of others, in part to avoid conflicts.
Collaboration infrastructure has been developed to
improve interoperability among collaboration tools, and
focuses primarily on their data and control integration.
Below, we give a brief overview of previous work in these
areas, to provide context for our recommendations for
future areas of research on software collaboration
technologies.

2.1 Model-based collaboration tools
Software engineering involves the creation of multiple
artifacts. These artifacts include the end product, code, but
also incorporate requirements specifications, architecture
description, design models, testing plans, and so on. Each
type of artifact has its own semantics, ranging from free
form natural language, to the semi-formal semantics of
UML, or the formal semantics of a programming language.
Hence, the creation of these artifacts is the creation of
models.
Creating each of these artifacts is an inherently
collaborative activity. Multiple software engineers
contribute to each of these artifacts, working to understand
what each other has done, eliminate errors, and add their
contributions. Especially with requirements and testing,
engineers work with customers to ensure the artifacts
accurately reflect their needs. Hence, the collaborative
work to create software artifacts is the collaborative work
to create models of the software system. Systems designed
to support the collaborative creation and editing of specific
artifacts are really supporting the creation of specific
models, and hence support model-based collaboration.
Collaboration tools exist to support the creation of every
kind of model found in typical software engineering
practice.
Requirements. In the requirements phase, there are many
existing commercial tools that support collaborative
development of requirements, including Rational
RequisitePro [12], Borland CaliberRM [16], and Telelogic
DOORS [7] (a more exhaustive list can be found at [17]).
These tools allow multiple engineers to describe project use
cases and requirements using natural language text, record
dependencies among and between requirements and use
cases, and change impact analyses. Integration with design
and testing tools permits dependencies between

requirements, UML models, and test cases to be explicitly
represented.
Collaboration features vary across tools. Within
RequisitePro, requirements are stored in a per-project
requirements database, and can be edited via a Web-based
interface, by editing a Word document that interacts with
the database via a plugin, or by direct entry using the
RequisitePro user interface. Multiple engineers can edit the
requirements simultaneously via these interfaces. While
cross-organization interaction is possible via the Web-
based interface, the tool is primarily designed for within-
organization use. RavenFlow [18] supports collaboration
via a built-in checkout/checkin process on individual
requirements. While most requirements tools are desktop
applications, Gatherspace [19] and eRequirements [20] are
web-based collaborative requirements tools, with
capabilities only accessible via a Web browser.
Research on collaborative requirements tools has focused
on supporting negotiation among stakeholders, use of new
requirements engineering processes, and exploration of
new media and platforms. WinWin was designed to support
a requirements engineering process that made negotiation
processes explicit in the interface of the tool, with an
underlying structure that encouraged resolution of conflicts,
creating “win-win” conditions for involved stakeholders
[6]. ART-SCENE supports a requirements elicitation
approach in which a potentially distributed team writes use
cases using a series of structured templates accessible via a
Web-based interface. These are then used to automatically
generate scenarios that describe normal and alternative
situations, which can then be evaluated by requirements
analysts [21]. Follow-on work has examined the use of a
mobile, PDA-based interface for ART-SCENE, taking
advantage of the mobility of the interface to show use cases
to customer stakeholders in-situ [22]. The Software Cinema
project examined the use of video for recording dialog
between engineers and stakeholders, allowing these
conversations to be recorded and analyzed in depth [23].
Architecture. Though the creation of a final software
architecture for a project is a collaborative and political
activity, much of this collaboration takes place outside
architecture-focused tools. Rational Software Architect is
an UML modeling tool focused on software architecture.
Engineers can browse an existing component library and
work collaboratively on diagrams with other engineers,
with collaboration mediated via the configuration
management system. Research systems, such as ArchStudio
[24] and ACMEStudio [25] typically support collaborative
authoring by versioning architecture description files,
allowing a turn-taking authoring model. The MolhadoArch
system is more tightly integrated with an underlying fine-
grain version control system, and hence affords
collaboration at the level of individual model elements
[26]. Supporting an explicitly web-based style of

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

collaboration, [27] describes a web-based tool that supports
the ATAM architecture evaluation methodology.
Design. Today, due to the strong adoption of the Unified
Modeling Language (UML), mainstream software design
tools are synonymous with UML editors, and include
Rational Rose [28], ArgoUML [29], Borland Together [30],
Telelogic Rhapsody [31], and Altova UModel [32] (a more
complete list is at [33]). Collaboration features of UML
authoring tools mostly depend on the capabilities of the
underlying software configuration management system. For
example, ArgoUML provides no built-in collaboration
features, instead relying on the user to subdivide their UML
models into multiple files, which are then individually
managed by the SCM system. Telelogic Rhapsody
similarly depends on SCM support, but also provides some
model merge capabilities, so that parallel work on the same
UML model is possible. The Rosetta UML editor [34]was
the first to explore Web-based collaborative editing of
UML diagrams, using a Java applet diagram editor.
Recently, Gliffy [35] has launched a web-based diagram
editor that supports UML diagrams. It uses linear
versioning to record document changes, and can inform
other collaborators via email when a diagram has changed.
SUMLOW supports same-time, same-place collaborative
UML diagram creation via a shared electronic whiteboard
[36].
Testing and Inspections. Like requirements, testing often
involves substantial collaboration between an engineering
team and customers. Testing interactions vary substantially
across projects and organizations. Application software
developers often make use of public beta tests in which
potential users gain advance access to software, and report
bugs back to the development team. As well, best practices
for usability testing involves multiple people performing
specific tasks under observation, another form of testing
based collaboration. Adversarial interactions are also
possible, as is the case with a formal acceptance test, where
the customer is actively looking for lack of conformance to
a requirements specification.
Within an engineering organization, testing typically
involves collaboration between a testing group and a
development team. The key collaborative tool used to
manage the interface between testers (including public beta
testers) and developers is the bug tracking (or issue
management) tool [37]. Long a staple of software
development projects, bug tracking tools permit the
recording of an initial error report, prioritization, addition
of follow-on comments and error data, linking together
similar reports, and assignment to a developer who will
repair the software. Once a bug has been fixed, this can be
recorded in the bug tracking system. Search facilities
permit a wide range of error reporting. A comparison of
multiple issue tracking and bug tracking systems can be
found at [38].

Software inspections involve multiple engineers reviewing
a specific software artifact. As a result, software inspection
tools have a long history of being collaborative. Hedberg
[39] divides this history into early tools, distributed tools,
asynchronous tools, and web-based tools. Early tools (circa
1990) were designed to support engineers holding a face-
to-face meeting, while distributed tools (1992-93)
permitted remote engineers to participate in an inspection
meeting. Asynchronous tools (1994-97) relaxed the
requirement for the inspection participants to all meet at the
same time, and Web-based tools supported inspection
processes on the Web (1997-onwards). MacDonald and
Miller [40] also survey software inspection support systems
as of 1999.
Traceability and consistency. While ensuring traceability
from requirements to code and tests is not inherently a
collaborative activity, once a project has multiple
engineers, creating traceability links and ensuring their
consistency is a major task. XLinkit performs automated
consistency checks across a project [41], while [42]
describes an approach for automatically inferring
documentation to source code links using information
retrieval techniques. Inconsistencies identified by these
approaches can then form the starting point for examining
whether there are mismatches between the artifacts created
by different collaborators.

2.2 Process centered collaboration
Engineers working together to develop a large software
project can benefit from having a predefined structure for
the sequence of steps to be performed, the roles engineers
must fulfill, and the artifacts that must be created. This
predefined structure takes the form of a software process
model, and serves to reduce the amount of coordination
required to initiate a project. By having the typical
sequence of steps, roles, and artifacts defined, engineers
can more quickly tackle the project at hand, rather than
renegotiating the entire project structure. Over time,
engineers within an organization develop experience with a
specific process structure. The net effect is to reduce the
amount of coordination work required within a project by
regularizing points of collaboration, as well as to increase
predictability of future activity.
To the extent that software processes are predictable,
software environments can mediate the collaborative work
within a project. Process centered software development
environments have facilities for writing software process
models in a process modeling language (see [43] for a
retrospective on this literature), then executing these
models in the context of the environment. While a process
model lies at the core of process centered environments,
this process guides the collaborative activity of engineers
working on other artifacts, and is not the focus of their
collaboration. Hence, for example, the environment can
manage the assignment of tasks to engineers, monitor their

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

completion, and automatically invoke appropriate tools. A
far-from-exhaustive list of such systems includes Arcadia
[44], Oz [45], Marvel [46] , ConversationBuilder [47], and
Endeavors [9]. One challenge faced by such systems is the
need to handle exceptions to an ongoing process, an issue
addressed by [48].

2.3 Collaboration awareness
Software configuration management systems are the
primary technology coordinating file-based collaboration
among software engineers. The primary collaborative
mechanism supported by SCM systems is the workspace.
Typically each developer has their own workspace, and
uses a checkout, edit, checkin cycle to modify a project
artifact. Workspaces provide isolation from the work of
other developers, and hence while an artifact is checked
out, no other engineer can see its current state. Many SCM
system permit parallel work on artifacts, in which multiple
engineers edit the same artifact at the same time, using
merge tools to resolve inconsistencies [49]. Workspaces
allow engineers to work more efficiently by reduce the
coordination burden among engineers, and avoiding turn-
taking for editing artifacts. They raise several issues,
however, including the inability to know which developers
are working on a specific artifact. Palantir addresses this
problem by providing engineers with workspace awareness,
information about the current activities of other engineers
[50]. By increasing awareness of the activities of other
engineers, they are able to perform coordination activities
sooner, and potentially avoid conflicts. Augur is another
example of an awareness tool [51]. It provides a
visualization of several aspects of the development history
of a project, extracted from an SCM repository, thereby
allowing members of a distributed project to be more aware
of ongoing and historical activity.

2.4 Collaboration infrastructure
Various infrastructure technologies make it possible for
engineers to work collaboratively. Software tool integration
technologies make it possible for software tools (and the
engineers operating them) to coordinate their work. Major
forms of tool integration include data integration, ensuring
that tools can exchange data, and control integration,
ensuring that tools are aware of the activities of other tools,
and can take action based on that knowledge. For example,
in the Marvel environment, once an engineer finished
editing their source code, it was stored in a central
repository (data integration), and then a compiler was
automatically called by Marvel (control integration) [46].
The Portable Common Tool Environment (PCTE) was
developed from 1983-89 to create a broad range of
interoperability standards for tool integration spanning
data, control, and user interface integration [15]. Its greatest
success was in defining a data model and interface for data
integration. The WebDAV effort (1996-2006) aimed to
give the Web have open interfaces for writing content,

thereby affording data integration among software
engineering tools, as well as a range of other content
authoring tools [13, 14]. Today, the data integration needs
of software environments are predominantly met by SCM
systems managing files via isolated workspaces. However,
the world of data integration standards and SCM meet in
tools like Subversion [52] that use WebDAV as the data
integration technology in their implementation.
For control integration there are two main approaches,
direct tool invocation, and event notification services. In
direct tool integration, a primary tool in an environment
(e.g., an integrated development environment, like Eclipse)
directly calls another tool to perform some work. When
multiple tools need to be coordinated, a message passing
approach works better. In this case, tools exchange event
notification messages via some form of event transport.
The Field environment introduced the notion of a message
bus (an event notification middleware service) in
development environments [53], with the Sienna system
exemplifying more recent work in this space [54].

3. Future directions in software engineering
collaboration
In the gaps between existing collaboration efforts are
several areas for improving collaboration in software
engineering. Desktop-based IDEs can enhance project
collaboration if they are better integrated with web-based
IDEs, a task that requires new interoperability standards.
Support for multi-project and multi-organization
collaboration has not been significantly addressed in the
software engineering community, yet is an emerging
concern in increasingly large systems-of-systems. Tools for
capturing project-specific design tradeoff argumentation
can help capture project rationale that is not explicitly
represented in requirements, designs, or code. Software
engineers have consistently appropriated new general-
purpose communication technologies for project
collaboration, often with some adaptation to the needs of
projects. This may very well be the case with networked
3D game-like environments.
The sections below provide some ideas on improving
collaboration within software projects, thereby providing a
glimpse into the future of collaboration in software
engineering. Mindful of novelist William Gibson’s quote,
“the future is here, it’s just not evenly distributed yet,”
many of the trends below are already present, either in
kernel form that can be extrapolated, or are in widespread
use in contexts other than software engineering.

3.1 Integrating web and desktop
environments
One clear trend in the overview of collaboration tools given
in the previous section is the existence of web-based tools
in every phase of software development. This mirrors the
broader trend of moving applications to the web, afforded

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

by the greater interactivity of AJAX (asynchronous
JavaScript and XML), more uniformity in JavaScript
capabilities across browsers, and increasing processing
power available in the browser. Web-based applications
have the benefit of centralized tool administration, and
straightforward deployment of new system capabilities.
Traditionally, the most significant drawback to web-based
applications has been the lack of user interface
interactivity, and so graphics or editing intensive
applications were traditionally not viewed as being suitable
for the web. In the realm of software engineering, this
meant that UML diagram editing and source code editing
were relegated to desktop only applications.
Google Maps smashed the low interactivity stereotype in
early 2005, and is now viewed as the vanguard of the
loosely defined “Web 2.0” movement that began in 2004.
Web 2.0 applications tend to have desktop-like user
interface interactivity within a web browser, as well as
facilities for other sites to integrate their data into the
application, or integrate the site’s data into another
application. Recent web applications like Gliffy that
support browser-based UML diagram editing can thus be
viewed as part of the broader Web 2.0 movement.
Even though there is a trend towards creating web-based
software engineering tools, there is also longstanding
practice surrounding the use of desktop integrated
development environments such as Visual Studio, Eclipse,
and JBuilder. Each of these tools is a platform in its own
right, with substantial ecosystems of third party extensions
and substantial developer investment in work practices
surrounding their use. Clearly, desktop IDEs are not going
to be displaced by completely web-based environments.
Instead, future projects are likely to adopt a mixture of
web-based and desktop tools. Requirements and bug
tracking tools are two areas where web-based tools already
have widespread use, and where using the Web permits
easier cross-organization collaboration, either to gather
feedback from stakeholders about requirements, or to
gather bug information from users. Code editing, and the
edit-compile-debug cycle seems destined to remain on the
desktop for now, since the desktop is more interactive, and
the need for cross-organization collaboration in the coding
phase is currently well handled by SCM systems.
With future environments composed of a mix of web-based
and desktop systems, improvements in project
collaboration can come from creating a series of interface
standards by which desktop IDEs can access the
information and capabilities of Web-based services. For
example, it would be beneficial for developers to have rich
access to bug tracking data within their desktop IDEs. This
would permit better access to existing capabilities,
including improved linking between bug reports and code
modifications, and submission of bug reports from within
the IDE. It would open up advanced capabilities as well,
such as automatically searching the bug database for bug

reports related to the code currently open in the code editor,
and display of prior bug report information in currently
edited code, giving developers improved rationale
information for the code they see in front of them. In a
similar vein, standard interfaces to requirements
management software would permit better traceability
between source code and requirements, as well as the
ability to comment on requirements based on insights
developed while coding. Ultimately, the existence of open
standards for integrating desktop IDEs and web-based
environments would permit more seamless interaction with
the complex information space created by each software
project. This would permit delivery of rich assistance
services, as described in [63].
Open research questions revolve around the type and
characteristics of the interface standards. While creating
interfaces to access the capabilities of a bug tracking
system or a requirements management system appear to be
useful, the exact nature of the capabilities supported by
these interfaces is somewhat unclear. For example, in the
case of bug tracking software, there are many different use
models and data models supported by these systems. This
raises the traditional issues faced by interoperability
standards: should the standard aim for a union of all
available features with each system supporting only a
subset, or should it support only a limited set of features
that are frequently used? This, in turn raises questions
about exactly which features are most useful, and how an
engineer might incorporate these features into their work
practices.

3.2 Broader participation in design
Many forms of software have high costs for acquiring and
learning the software, leading to lock-in for its users. This
is especially true for enterprise software applications,
where there can be substantial customization of the
software for each location. This leads to customer
organizations having a need to deeply understand product
architecture and design, and to have some influence over
specific aspects of software evolution to accommodate their
evolving needs. In current practice, customers are consulted
about requirements needs, which are then integrated into a
final set of requirements that drive the development of the
next version of the software. Customers are also usually
participants in the testing process via the preliminary use
and examination of various beta releases. In the current
model, customers are engaged during requirements
elicitation, but then become disengaged for the
requirements analysis, design, and coding phases, only to
reconnect again for the final phase of testing.
Broadened participation by customers in the requirements,
design, coding and early testing phases would keep
customers engaged during these middle stages, allowing
them to more actively ensure their direct needs are met.
While open source software development can be viewed as

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

an extreme of what is being suggested here, in many
contexts broadening participation need not mean going all
the way to open source. Development organizations can
have proprietary closed-source models in which they still
have substantial fine-grain engagement with customers in
which customers are directly engaged in the requirements,
design, coding, and testing process. Additionally,
broadening participation does not necessarily mean that
customers would be given access to all source code, or
input on all decisions. Nevertheless, by increasing the
participation of the direct end users of software in its
development, software engineers can reduce the risk that
the final software does not meet the needs of customer
organizations. As in open source software, a more broadly
participative model can allow customers to fix those bugs
that mostly directly affect them, even if, from a global
perspective, they are of low priority, and hence unlikely to
be fixed in traditional development. A participatory
development model could also permits customers to add
new features, thereby better tailoring the software to their
needs.
The trend toward providing support for distributed
development teams in a wide range of development tools
makes a broader engagement possible. Open source SCM
tools such as Subversion, as well as web-based
requirements tools and problem tracking tools make it
possible to coordinate globally distributed teams. To date, it
has primarily been open source software projects that take
full advantage of tool distribution to have broadly
participative development teams drawing from a broad
array of organizations and individuals. Commercial
development has made use of this improved distribution
support as well, but generally to support globally
distributed teams in the same organization, or
contractor/subcontractor relationships. Commercial projects
currently do not leverage existing tools’ support for
distributed teams to incorporate greater customer
participation.

3.3 Capturing rationale argumentation
An important part of a software project’s documentation is
a record of the rationale behind major decisions concerning
its architecture and design. As new team members join a
project over its multi-year evolution, an understanding of
project rationale makes it less likely that design
assumptions and choices will be accidentally violated. This,
in turn, should result in less code decay. A recent study
[55] shows that engineers recognize the utility of
documenting design rationale, but that better tool support is
needed to capture design choices and the reasons for
making them.
Technical design choices are often portrayed as being the
outcome of a rational decision making process in which an
engineer carefully teases out the variables of interest,
gathers information, and then makes a reasoned tradeoff.

What this model does not reflect is the potential for
disagreement among many experienced software engineers
on how to assess the importance of factors affecting a given
design. One of the strongest design criteria used in software
engineering is design for change, which inherently involves
making predictions about the future. Clearly we do not yet
have a perfect crystal ball for peering into the future, and
hence experienced engineers naturally have differing
opinions on which changes are likely to occur, and how to
accommodate them. As well, architectural choices often
involve decisions concerning which technical platform to
choose (e.g., J2EE, Ruby on Rails, PHP, etc.), requiring
assessments about their present and future qualities. As a
result, the design process is not just an engineer making
rational decisions from a set of facts, but instead is a
predictive process in which multiple engineers argue over
current facts and future potentials. Architecture and design
are argumentative processes in which engineers resolve
differences of prediction and interpretation to develop
models of the software system’s structure. Since only one
vision of a system’s structure will prevail, the process of
architecture and design is simultaneously cooperative and
competitive.
Effective recording of a project’s rationale requires
capturing the argumentation structure used by engineers in
their debates concerning the final system structure. Outside
of software engineering, there is growing interest in visual
languages and software systems that model the structure of
arguments [56]. While models vary, argumentation support
systems generally record the question or point that is being
contested (argued about), statements that support or contest
the main point, as well as evidence that substantiates a
particular statement. Argumentation structures are
generally hierarchical, permitting pro and con arguments to
be made about individual supporting statements under the
main point. For example, a “con” argument concerning the
use of solar panels as the energy source for a project might
state that solar electric power is currently not competitive
with existing coal-fired power plants. A counter to that
argument might state that while this is true of wholesale
costs, solar energy is competitive with peak retail electric
costs in many markets.
Providing collaborative tools to support software engineers
in the recording and visualization of architecture and design
argumentation structures would do a better job of capturing
the nuances and tradeoffs involved in creating large
systems. They would also better convey the assumptions
that went into a particular decision, making it easier for
succeeding engineers to know when they can safely change
a system’s design.
There are several open research issues in collaborative
argumentation support for software engineering. It is
currently unclear what argumentation structure would best
support design rationale capture for software projects.
Existing argumentation systems often start their

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

argumentation structure with a single driving question, such
as “can computers think?” as exemplified by Robert Horn’s
set of seven poster-sized argumentation maps
(http://www.macrovu.com/CCTGeneralInfo.html).
Software feature variability analysis research ([57] is one
example) generally represents software as having a number
of features, each of which is hierarchically broken down
into multiple sub-features and choices. This suggests that
argumentation structures for software would have multiple
starting points (a forest instead of a tree), and should also
be integrated with its variability structure. Some existing
approaches for modeling design rationale can be found in
[58] and [59].
Since argumentation involves multiple actors,
argumentation support systems need to be collaborative,
allowing many people to modify the evolving argument. A
wiki-like system with a built-in notion of argumentation
might be a useful way to collect and structure software
system design rationale. Recent work on tool support for
capturing argumentation surrounding design rationale is
[60] which describes the Compendium project.

3.4 Using novel communication and presence
technologies
Software engineers have a long track record of integrating
new communication technologies into their development
processes. Email, instant messaging, and web-based
applications are very commonly used in today’s projects to
coordinate work and be aware of whether other developers
are currently active (present). As a result, engineers would
be expected to adopt emerging communication and
presence technologies if they offer advantages over current
tools.
Networked collaborative 3D game worlds are one such
emerging technology. The past few years have witnessed
the emergence of massively-multiplayer online (MMO)
games, the most popular being World of Warcraft (WoW).
These games support thousands of simultaneous players
who interact in a shared virtual world. Each player controls
an avatar, a graphic representation of the player in the
world. Communication features supported by games
include instant messaging, email-like message services, and
presence information (seeing another active player’s
avatar). Many players use a third-party voice
communication service to coordinate groups of player
engaged in joint combat during quests.
Steve Dossick’s PhD dissertation [61] describes early work
on the use of 3D game environments to create a “Software
Immersion Environment” in which project artifacts are
arranged in a physical 3D space, a form of virtual memory
palace. Only recently have MMOs like Second Life
emerged that are not explicitly role-playing game worlds,
and hence are framed in a way that makes them potentially
usable for professional work. While Second Life’s focus on
leisure activities makes it unpalatable for all but the most

adventurous of early adopters, these environments still hint
at their potential for engineering collaboration.
One problem in both distributed collaboration between
multiple organizations and telecommuting workers is the
need for improved awareness of the presence and activity
of co-workers. While instant messaging software provides
presence information, it is limited in its ability to provide
awareness. For example, it cannot show that people have
gathered for a meeting. A 3D virtual environment could
potentially let other engineers know about each others
activities, and be able to have meetings where distributed
project participants can be physically proximate, at least in
the virtual world. The 3D environment could also be used
to provide a physical topology to the structure of
information in a large software project, which might permit
more rapid browsing and access of project data.
Very speculatively, it might also be possible for projects to
graft the narrative and reward structure of MMO role-
playing games onto traditional engineering project work. In
a game like WoW, in order to advance, players go on
quests, a goal-oriented activity in the game world (go to a
dungeon, kill all monsters, retrieve valuable artifact, return
for reward). As players perform quests, their abilities
increase, which is reflected in their character “leveling up.”
Many players find the game setting (typically from fantasy
or science fiction) combined with the quest narrative and
leveling reward structure to be very motivational, and for
some addictive. It would be intriguing for a project to map
development activities onto this style of gameplay. One
could imagine engineer experience and capabilities
represented in the form of levels, with project subgoals
broken down into quest-like units. If this could tap into the
motivational aspects of MMO style gameplay, it might
increase team productivity by providing a range of
incentive structures in addition to the traditional ones of
salary, promotion, and satisfaction at completing a project.
There is a range of research issues inherent in the use of 3D
virtual environments as a collaboration infrastructure. One
issue is how to synchronize physical and virtual worlds. If a
number of workers are in the office, and some are not, how
should the behavior of the office workers in the physical
office be reflected in the virtual environment? In reverse,
should physical office workers be made aware of the
presence of virtual workers, perhaps by the use of screens
placed in the office, or a form of ambient awareness such as
a desk light that goes on when virtual workers are present?
The architecture of virtual project spaces is also unclear.
One possibility is to have the virtual space represent the
organization of the various software project artifacts
including requirements, designs, code, test cases, and so on.
Alternately, the virtual space could be a form of idealized
work environment, where everyone has a nice, large office
with window. Combinations of the two are also possible,
given the lack of real-world constraints. Finally, the utility
of adopting a 3D virtual world needs careful examination,

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

as the benefits of the technology need to clearly exceed the
costs. It is currently very unclear that this is true.

3.5 Improved assessment of collaboration
technology
Adoption of collaboration technologies in a software
development organization involves the injection of new
technology and associated (evolving) work practices
surrounding its use, into the highly complex and variable
activity of writing software. Since software effort
estimation remains a difficult task even for experienced
engineers, the productivity and overall outcome of software
projects is highly variable. As a result, assessing the impact
of the introduction of new technology into a project is
difficult, and usually subjective. This creates substantial
difficulty for the objective assessment of collaboration
technology. Without the ability to objectively assess the
pros and cons of specific collaboration tools, forward
progress in the field of software collaboration support tools
is hard to measure. This, in turn, yields the potential for
churn as it is difficult to assess whether a new idea is truly
beneficial, or, if a slight tweak on some old idea is an
improvement that would lead to adoption this time around.
It is clear that the past 20 years have brought tremendous
advances in collaboration tools for software engineers, in
the form of Internet-aware SCM tools, broad adoption of
email, web-based bug tracking systems, instant messaging,
and so on. Just as clearly, there are no studies that quantify
the benefits received from using these collaboration tools.
Developing improved methods for assessing the impact of
collaboration tools would boost research in this area by
increasing confidence in positive results, and making it
easier to convince teams to adopt new technologies. Work
by de Souza and Redmiles on how activity theory could
inform research on collaborative software engineering tools
offers one possible framework for structuring the
assessment of collaboration tools [62].

4. Summary
Software engineering project work is a highly cooperative
activity, and promises to continue in this way. To the extent
that advances in software engineering team collaboration
can reduce accidental difficulties inherent in the
coordination of large teams of people, and can better
leverage the unique talents and capabilities of each team
member, new work in this area will improve the
productivity and quality of software projects. This paper
has presented an overview of the goals of collaboration in
software engineering, and a brief survey of existing
collaboration tools. The distinguishing quality of software
engineering collaboration tools as being model-based helps
to focus this survey. An important trend uncovered by this
survey is the movement towards web-based tools in all
phases of software development. However, at present there
is no integrated web-based environment that covers the
entire software development lifecycle, with existing tools

typically covering a single phase, such as requirements, or
UML diagramming.
A series of potential future directions for collaboration
research in software engineering were presented. These
include better integration of desktop and web-based
development environments, broadening participation in
software projects, capturing design rationale in the form of
an argumentation structure, and the use of 3D virtual game
environments as a presence, communication, and
potentially motivational infrastructure. Finally, the
challenges inherent in assessing collaboration technologies
leads to a plea for improvement in how such systems are
assessed.
Predicting the future is notoriously difficult. So, while the
specific future directions outlined herein may not
necessarily come to pass, it is clear that our improving
understanding of software engineering as a collaborative
endeavor, combined with the rapidly declining cost of
communications and the rapidly increasing capabilities of
our computational and communication platforms, will lead
to improvements in how engineers collaborate to create
large software artifacts.

Acknowledgements
Discussions with Rohit Khare contributed the idea of
broadening participation in design. I am grateful to
Guozheng Ge for assistance in preparing the manuscript.

References

[1] S. McConnell, "Lifecycle Planning," in Rapid Development:
Taming Wild Software Schedules Redmond, WA: Microsoft
Press, 1996.

[2] R. Grinter, "Systems Architecture: Product Designing and
Social Engineering," in ACM Conference on Work Activities
Coordination and Collaboration (WACC'99), San Francisco,
California, 1999, pp. 11-18.

[3] T. W. Malone and K. Crowston, "The Interdisciplinary Study
of Coordination," in ACM Computing Surveys (CSUR), vol
26, no 1, pp. 87-119, 1994.

[4] C. R. B. d. Souza, D. F. Redmiles, L.-T. Cheng, D. R.
Millen, and J. Patterson, "How a Good Software Practice
Thwarts Collaboration - The Mulitple Roles of APIs in
Software Development," in Proc. Foundations of Software
Engineering (FSE 2004), Newport Beach, CA, 2004, pp.
221-230.

[5] M. S. Ackerman and D. W. McDonald, "Collaborative
Support for Informal Information in Collective Memory
Systems," in Information Systems Frontiers, vol. 2, no. 3/4,
pp. 333-347, 2000.

[6] B. Boehm and A. Egyed, "Software Requirements
Negotiation: Some Lessons Learned," in the 20th
International Conference on Software Engineering
(ICSE'98), Kyoto, Japan, 1998, pp. 503-507.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[7] Telelogic, "Getting Started with DOORS (DOORS 7.1)," Feb
5, 2004, http://endymion.ugent.be/~stijn/doors/doors_getting
_started.pdf.

[8] The Bugzilla Team, "The Bugzilla Guide - 2.23.3
Development Release," October 15, 2006,
http://www.bugzilla.org/docs/tip/html/.

[9] G. A. Bolcer and R. N. Taylor, "Endeavors: a Process
System Integration Infrastructure," in 4th International
Conference on the Software Process (ICSP'96), Brighton,
UK, 1996, pp. 76-89.

[10] B. S. Lerner, L. J. Osterweil, Stanley M. Sutton Jr., and A.
Wise, "Programming Process Coordination in Little-JIL
Toward the Harmonious Functioning of Parts for Effective
Results," in European Workshop on Software Process
Technology, 1998.

[11] Microsoft Corportation, "Microsoft Office Project Standard
2007 Product Guide," April 2006,
http://office.microsoft.com/en-us/project/
HA101680121033.aspx.

[12] Rational Software Corporation, "Rational RequisitePro
User's Guide," June 2003, http://www.se.fh-
heilbronn.de/usefulstuff/Rational%20Rose%202003%20Doc
umentation/reqpro_user.pdf.

[13] L. Dusseault, WebDAV: Next-Generation Collaborative Web
Authoring, Prentice Hall PTR, 2003.

[14] E. J. Whitehead, Jr. and Y. Y. Goland, "WebDAV: A
Network Protocol for Remote Collaborative Authoring on
the Web," in 6th European Conference on Computer
Supported Cooperative Work (ECSCW'99), Copenhagen,
Denmark, 1999, pp. 291-310.

[15] L. Wakeman and J. Jowett, PCTE: The Standard for Open
Repositories: Prentice Hall, 1993.

[16] Borland Software Corporation, "CaliberRM 2006 User
Tutorial," Nov 2006, http://info.borland.com/techpubs/
caliber_rm/2006/EN/CaliberRM%20Tutorial.pdf.

[17] Ludwig Consulting Services, "Requirement Management
Tools," 2006, http://www.jiludwig.com/Requirements
_Management_Tools.html.

[18] Ravenflow, "RAVEN: Requirements Authoring and
Validation Environment," 2007, http://www.ravenflow.com/
products/index.php.

[19] GATHERSPACE.COM, "Gatherspace: Requirements
Management and Use Case Software," 2007,
http://www.gatherspace.com/static/product2.html.

[20] eRequirements, "eRequirements Product Tour," 2007,
http://www.erequirements.com/app?service=page/ProductTo
ur.

[21] N. Maiden, "Discovering Requirements with Scenarios: The
ART-SCENE Solution," in ERCIM News, vol. 58, July
2004.

[22] N. Maiden, N. Seyff, P. Grunbacher, O. Otojare, and K.
Mitteregger, "Making Mobile Requirements Engineering
Tools Usable and Useful," in 14th Int'l Requirements
Engineering Conference (RE'06), 2006, pp. 26-35.

[23] O. Creighton, M. Ott, and B. Bruegge, "Software Cinema-
Video-based Requirements Engineering," in 14th Int'l
Requirements Engineering Conference (RE'06), 2006, pp.
106-115.

[24] UCI Software Architecture Group, "ArchStudio 4: Software
and Systems Architecture Development Environment," 2007,
http://www.isr.uci.edu/projects/archstudio/.

[25] A. Kompanek, "Modeling a System with Acme," 1998,
http://www.cs.cmu.edu/~acme/html/WORKING-
%20Modeling%20a%20System%20with%20Acme.html.

[26] T. N. Nguyen and E. V. Munson, "Object-oriented
Configuration Management Technology can Improve
Software Architectural Traceability," in 3rd ACIS
International Conference on Software Engineering Research,
Management and Applications (SERA'05), Mount Pleasant,
Michigan, USA, 2005, pp. 86-93.

[27] P. Maheshwari and A. Teoh, "Supporting ATAM with a
Collaborative Web-based Software Architecture Evaluation
Tool," in Science of Computer Programming, vol. 57, no. 1,
pp. 109-128, 2005.

[28] IBM, "Rational Rose Product Overview," 2007, http://www-
306.ibm.com/software/awdtools/developer/rose/index.html.

[29] A. Ramirez, P. Vanpeperstraete, A. Rueckert, K. Odutola, J.
Bennett, L. Tolke, and M. v. d. Wulp, "ArgoUML User
Manual (v0.22)," 2006, http://argouml-stats.tigris.org/
documentation/manual-0.22/.

[30] Borland Software Corporation, "Borland Together Product
Overview," 2007, http://www.borland.com/us/products/
together/index.html.

[31] Telelogic, "Rhapsody: Model-Driven Development with
UML 2.0, SysML and Beyond," 2007,
http://www.ilogix.com/sublevel.aspx?id=53.

[32] Altova, "UModel Product Overview," 2007,
http://www.altova.com/products/umodel/uml_tool.html.

[33] Wikipedia.org, "List of UML Tools," 2007,
http://en.wikipedia.org/wiki/List_of_UML_tools.

[34] T. C. N. Graham, A. G. Ryman, and R. Rasouli, "A World-
Wide-Web Architecture for Collaborative Software Design,"
in Software Technology and Engineering Practice
(STEP'99), Pittsburgh, PA, 1999, pp. 22-29.

[35] gliffy.com, "Gliffy Product Information," 2007,
http://gliffy.com/features.shtml.

[36] Q. Chen, J. Grundy, and J. Hosking, "An e-whiteboard
Application to Support Early Design-stage Sketching of
UML Diagrams," in IEEE Symposium on Human Centric
Computing Languages and Environments, Auckland, New
Zealand, 2003, pp. 219-226.

[37] S. V. Shukla and D. F. Redmiles, "Collaborative Learning in
a Software Bug-Tracking Scenario," in Workshop on
Approaches for Distributed Learning through Computer
Supported Collaborative Learning, Boston, MA, 1996.

[38] Wikipedia.org, "Comparison of Iusse Tracking Systems,"
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_
systems.

[39] H. Hedberg, "Introducing the Next Generation of Software
Inspection Tools," in Product Focused Software Process
Improvement (LNCS 3009), 2004, pp. 234-247.

[40] F. Macdonald and J. Miller, "A Comparison of Computer
Support Systems for Software Inspection," Automated
Software Engineering, vol. 6, no. 3, pp. 291-313, 1999.

[41] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein,
"xlinkit: A Consistency Checking and Smart Link
Generation Service," ACM Transactions on Internet
Technology (TOIT), vol 2, no 2, pp. 151-185, May 2002.

[42] A. Marcus and J. I. Maletic, "Recovering Documentation-to-
source-code Traceability Links using Latent Semantic
Indexing," in Proc. 25th Int'l Conf. on Software Engineering
(ICSE'03), Portland, Oregon, 2003, pp. 125-135.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[43] L. Osterweil, "Software Processes are Software too," in 9th
International Conference on Software Engineering,
Monterey, CA, 1987, pp. 2-13.

[44] R. Kadia, "Issues Encountered in Building a Flexible
Software Development Environment," in ACM SIGSOFT
92: 5th Symposium on Software Development Environments,
Tyson's Corner, Virginia, 1992, pp. 169-180.

[45] I. Z. Ben-Shaul, "Oz: A Decentralized Process Centered
Environment (PhD Thesis)," in Department of Computer
Science: Columbia University, Dec 1994.

[46] I. Z. Ben-Shaul, G. E. Kaiser, and G. T. Heineman, "An
Architecture for Multi-user Software Development
Environments," in ACM SIGSOFT 92: 5th Symposium on
Software Development Environments, Tyson's Corner,
Virginia, 1992, pp. 149-158.

[47] S. M. Kaplan, W. J. Tolone, A. M. Carroll, D. P. Bogia, and
C. Bignoli, "Supporting Collaborative Software
Development with ConversationBuilder," in ACM SIGSOFT
92: 5th Symposium on Software Development Environments,
Tyson's Corner, Virginia, 1992, pp. 11-20.

[48] P. J. Kammer, G. A. Bolcer, R. N. Taylor, A. S. Hitomi, and
M. Bergman, "Techniques for Supporting Dynamic and
Adaptive Workflow," in Computer Supported Cooperative
Work (CSCW), vol. 9, no. 3/4, pp. 269-292, 2000.

[49] T. Mens, "A State-of-the-Art Survey on Software Merging,"
IEEE Transactions on Software Engineering, vol 28, no 5,
pp. 449-462, 2002.

[50] A. Sarma, Z. Noroozi, and A. v. d. Hoek, "Palantír: Raising
Awareness among Configuration Management
Workspaces," in 25th International Conference on Software
Engineering, Portland, Oregon, May 2003, pp. 444-454.

[51] J. Froehlich and P. Dourish, "Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams," in 26th Int'l Conference on Software
Engineering (ICSE'04), Edinburgh, Scotland, UK, 2004, pp.
387-396.

[52] Tigris.org, "Tigris.org: Open Source Software Engineering
Tools," 2007, http://www.tigris.org/.

[53] S. P. Reiss, The Field Programming Environment: A
Friendly Integrated Environment for Learning and
Development. Norwell, MA: Kluwer, 1995.

[54] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design
and Evaluation of a Wide-Area Event Notification Service,"
in ACM Transactions on Computer Systems, vol. 19, no. 3,
pp. 332-383, Aug 2001.

[55] A. Tang, M. A. Babar, I. Gorton, and J. Han, "A Survey of
the Use and Documentation of Architecture Design
Rationale," in 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA'05), Pittsburgh, PA, 2005.

[56] Visualizing Argumentation: Software Tools for
Collaborative and Educational Sense-Making, P. A.
Kirschner, S. Buckingham-Shum, and C. S. Carr, Eds.
London: Springer-Verlag, 2003.

[57] W. Zhang, H. Mei, and H. Zhao, "Feature-driven
Requirement Dependency Analysis and High-level Software
Design," in Requirements Engineering, vol 11, no 3, pp.
205-220, 2006.

[58] Design Rationale: Concepts, Techniques, and Use, T. P.
Morgan and J. M. Carroll, Eds.: Lawrence Erlbaum
Associates, 1996.

[59] Rationale Management in Software Engineering, A. H.
Dutoit, B. Paech, R. Mccall, and I. Mistrik, Eds.: Springer-
Verlag, New York, 2006.

[60] S. J. B. Shum, A. M. Selvin, M. Sierhuis, J. Conklin, C. B.
Haley, and B. Nuseibeh, "Hypermedia Support for
Argumentation-Based Rationale: 15 Years on from gIBIS
and QOC " in Rationale Management in Software
Engineering, A. H. Dutoit, B. Paech, R. Mccall, and I.
Mistrik, Eds., 2005.

[61] S. E. Dossick, "A Virtual Environment Framework for
Software Engineering (PhD Thesis)," Dept. of Computer
Science, Columbia University, 2000.

[62] C. R. B. d. Souza and D. F. Redmiles, "Opportunities for
Extending Activity Theory for Studying Collaborative
Software Development," in Workshop on Applying Activity
Theory to CSCW Research and Practice (with the 8th
European Conference of Computer-Supported Cooperative
Work, ECSCW'03), Helsinki, Finland, 2003.

[63] A. Zeller, "The Future of Programming Environments:
Integration, Synergy, and Assistance," in Future of Software
Engineering 2007, L. Briand and A. Wolf (eds.), IEEE-CS
Press, 2007.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

