Computer-Supported Cooperative Work

Michel Beaudouin-Lafon Université Paris-Saclay mbl@lri.fr

Thanks to Nicolas Roussel, Inria

Humans are social beings ...

Groups structure human activity

Professional life: teams, management chain,

Private life: family, friends, sport teams, choir, etc.

Groups are more than the sum of their parts

Division of labor

Take advantage of different expertise

Transfer of skills: learning

... but computers are (mostly) personal

Time-sharing systems create the illusion that each user has access to all the resources and do not support awareness of what other users are doing.

Example: file system

IBM SSEC, 1948

Don Norman

"Most work done on any complex entity is done by more than one person"

"Social impact of technology is hard to predict"

Augmenting the human intellect

1968: Engelbart and his colleagues NLS/Augment, a system that supported file sharing, personal annotations, electronic messaging, videoconferencing, screen sharing, telepointers, etc.

NLS / Augment - Douglas Engelbart (1968)

Emergence of a field

Software that supports group work

- Groupware (Johnson-Lenz, 1982)
- Computer Supported Cooperative Work (Greif & Cashman, 1984)

In French:

- Collecticiel
- Travail Coopératif Assisté par Ordinateur (TCAO)

Conferences: CSCW (ACM) and ECSCW since 1986 Journal of CSCW

Social definition

CSCW should be conceived as an endeavor to understand the nature and characteristics of cooperative work with the objective of designing adequate computer-based technologies. [...]

The focus is to *understand*, so as to *better support*, cooperative work.

Bannon et Schmidt, 1989

Engineering definition

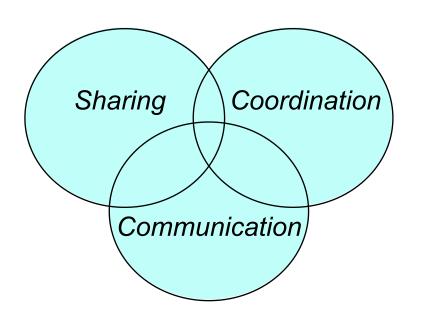
```
Computer-based systems
that support
groups of people
engaged in
a common task (or goal)
and that provide
an interface to a shared environment
```

Ellis, Gibbs & Rein, 1991

Software definition

Groupware is distinguished from normal software by the basic assumption it makes: groupware makes the user aware that he is part of a group, while most other software seeks to hide and protect users from each other.

Lynch, Snyder & Vogel, 1990


Challenges

What should groupware systems do? How to design them? How do they affect use?

A multidisciplinary endeavor: sociology, ethnography, anthropology, design, computer science, etc.

Problems are both technical and human Solutions are both technical and human

Functional taxonomy

Communication exchanging information among participants

Sharing creating and computer artifacts and actions for editing them

Coordination organization of labor among participants

A sample of groupware systems

Some groupware systems

- e-mail, distribution lists
- discussion groups (EMISARI, 1976)
- chat, talk, IRC
- workflow systems
- group calendars
- shared editors
- audio-video communication systems
- argumentation tools
- roomware, collaborative buildings
- etc.

Information lens

Malone et al., 1987

To:

From: Thomas Malone

Cc: Anyone

Subject: LENS Meeting This Monday

Topic : Lens

Day: Monday

Meeting Date: Time: 3:00

Place: E53-301

Text:

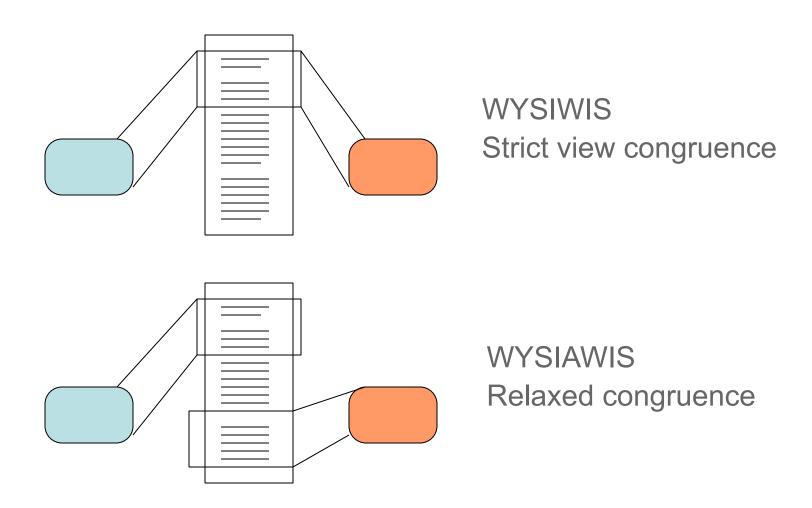
15

Colab Stefik et al., 1987

Meetings of small group in a specially-equipped room

"Shared external memory"

Boardnoter: hand drawing


Cognoter: outlining ideas

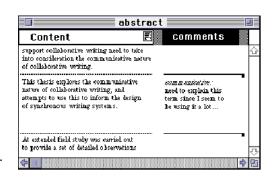
Argnoter: argumentation spreadsheet

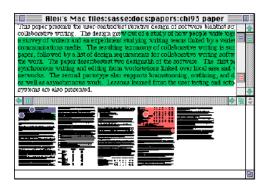
View, space and time congruence
What You See is What I See
What You See Is Almost What I See

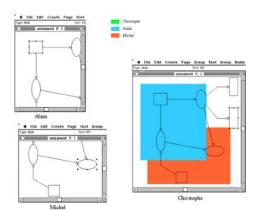
WYSIWIS / WYSIAWIS

Shared editing

Text, asynchronous


- Quilt (Leland, Fish & Kraut, 1988)
- Prep (Neuwirth et al., 1989)


Text, synchronous

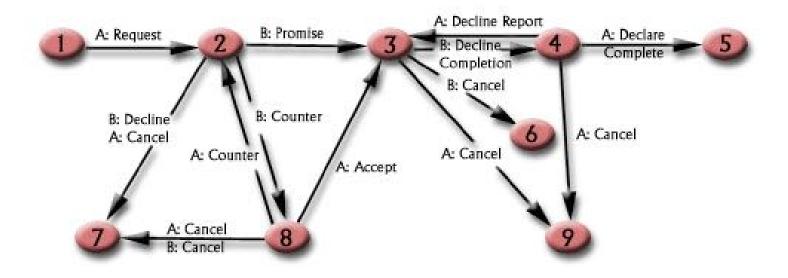

- Grove (Ellis, Gibbs & Rein, 1989)
- ShrEdit (McGuffin & Olson, 1992)
- SASSE (Baecker et al., 1993)

Graphics, synchronous

GroupDesign (Karsenty & Beaudouin-Lafon, 1992)

Workflow systems

Managing a document across an organization Example: a document includes metadata describing its path through an organization

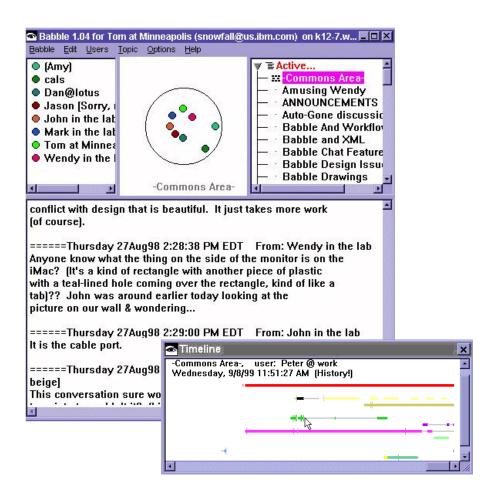

- must be written by Anne by April 15
- must be proofread by Bob bt April 22
- must be approved by Charlie by April 29
- must be sent to Charlie by May 4

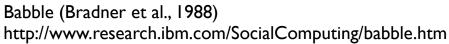
The document "knows its way" and can send reminders to the various people involved

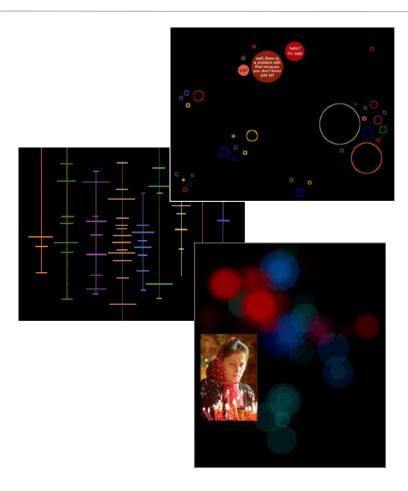
The Coordinator

Winograd & Flores, 1988

Based on the theory of speech acts

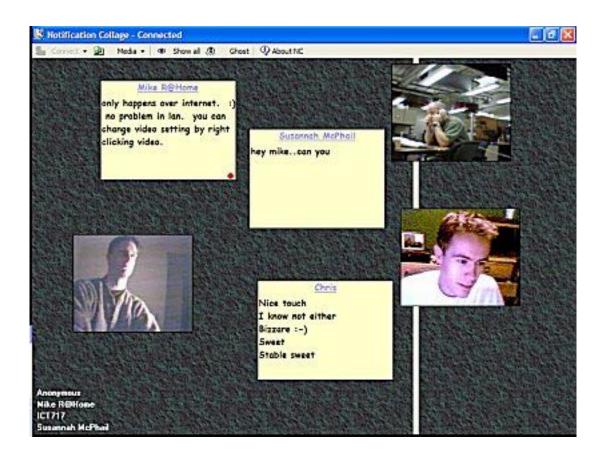



From communication to social networking


```
[No connection yet]
[Connection established with hipo@localhost.]
hi glad to talk ya t00
how iz life ??
hi hi ;)
Glad to talk you here.
```

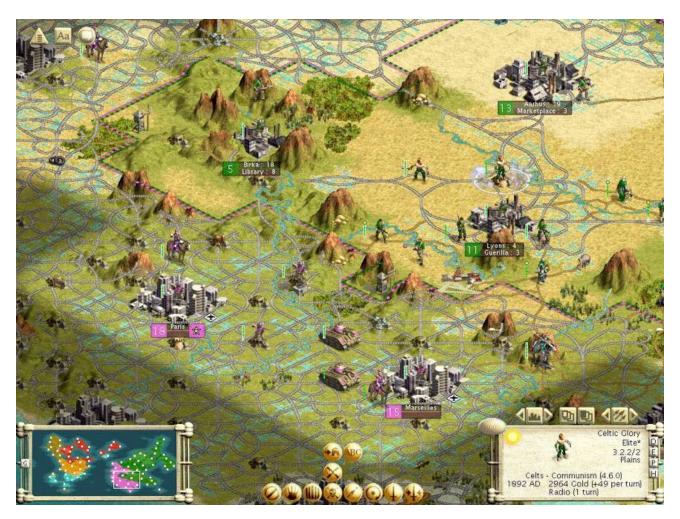
Unix talk

Chat rooms



Chat circles (Viégas et al., 1999) http://web.media.mit.edu/~fviegas/circles/ http://web.media.mit.edu/~fviegas/CC2/

Notification Collage


Greenberg & Rounding, 2000

Social networks

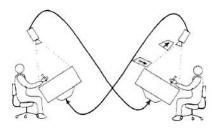
Networked games

Civilization

Video-mediated communication systems

Hole-in-Space (1980)

Mediaspaces (1983-)



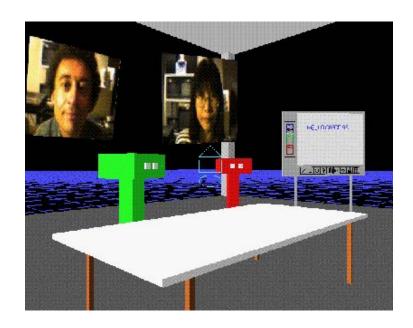
TeamWorkStation (1990)

VideoDraw (1991)

ClearBoard (1991-94)



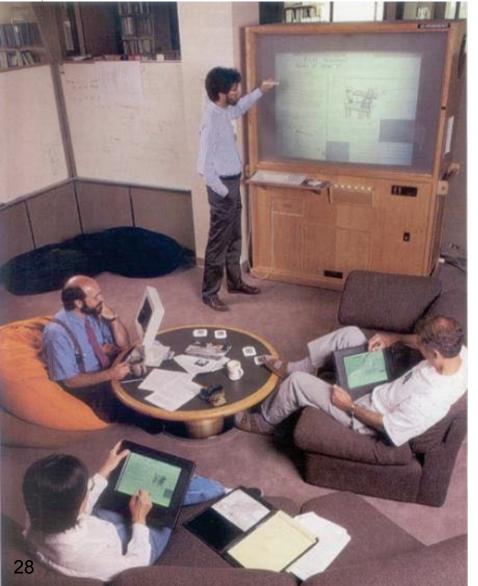
Videoplace (1974-85)



Virtual window (1995)

Collaborative Virtual Environments

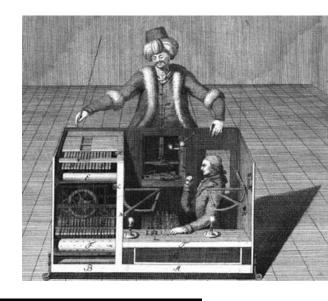
Represent participants by avatars in a virtual world



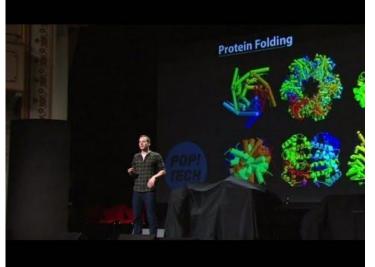
DIVE (1991)

Second Life (2005)

CSCW infrastructure


Cooperative buildings (Streitz et al., 1998)

Ubicomp (Weiser, 1991)


Crowdsourcing

Harness the power of the crowd

Combine human intelligence with machine computation

Taxonomies

Several ways to classify systems:

- Time, space and size of the group
- Sharing (e.g., editors) vs. exchanging (e.g., email)
- Structured (e.g., workflow systems),
 vs. open (e.g., whiteboards)
- Strong vs. weak computer support

Time-space matrix

Johansen, 1988

	Same place	Different place
Same time	face-to-face conversation	telephone call
Different time	Post-it note	letter

Challenges for groupware developers

Jonathan Grudin

- Who does the work vs. who gets the benefit
- Critical mass and Prisoner's dilemma problems
- Disruption of social processes
- Exception handling
- Unobtrusive accessibility
- Difficulty of evaluation
- Failure of intuition
- Careful adoption process

Privacy, and other social behaviors

"On the Internet, nobody knows you're a dog."

Plausible deniability

Some references

- C.A. Ellis, S.J. Gibbs, and G. Rein. "Groupware, some issues and experiences". *Communications of the ACM*, 34(1):39-58, January 1991.
- J. Grudin. "Groupware and social dynamics: Eight challenges for developers". *Communications of the ACM*, 37(1):92-105, January 1994.
- R. Baecker, editor. *Readings in Groupware and Computer-Supported Cooperative Work : Assisting Human-Human Collaboration*. Morgan-Kaufmann, December 1992. 882 pages.
- M. Beaudouin-Lafon, editor. *Computer Supported Co-operative Work*. John Wiley & Sons Ltd, 1999. 258 pages. http://www.lri.fr/~mbl/Trends-CSCW/