
Shared Editing

Michel Beaudouin-Lafon

mbl@lri.fr 
Université Paris-Saclay

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Concept

Collaborative creation and editing of shared computer artifacts 
 - Typically a shared document 
 - All users have the illusion that they edit the same document 

Notion of group awareness 
 - Knowing what the others are doing 
 -> different from, e.g., a multi-user database 

Notion of collaborative task 
 - Users work towards the same goal 
 - Implicit or explicit coordination of their actions

2

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Types of shared editors

Different document types: text, graphics, spreadsheet, etc. 

Synchronous: Changes immediately visible to all 
Asynchronous: Changes visible to others at a later time 

Homogeneous: All users must use the same software 
Heterogeneous: Users can use different software 

Collaboration-aware: Include group awareness features 
Collaboration-transparent: No group awareness features

3

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



The notion of congruence

View congruence 
 Part of the document being viewed 

Display space congruence 
 Organization of the windows 

Time of display congruence 
 When changes are seen by other users 

Subgroup congruence 
 Users who see the changes

Stefik et al., 1987

4

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



WYSIWIS / WYSIAWIS

WYSIWIS 
Strict view congruence

WYSIAWIS 
Relaxed view congruence

5

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Text, asynchronous (different time) 
– Quilt (Leland, Fish & Kraut, 1988) 
– Prep (Neuwirth et al., 1989) 

Text, synchronous (real-time) 
– Grove (Ellis, Gibbs & Rein, 1989) 
– ShrEdit (McGuffin & Olson, 1992) 
– SASSE (Baecker et al., 1993) 

Graphics, synchronous (real-time) 
– GroupDesign (Karsenty & Beaudouin-Lafon, 1992)

Sample shared editors (historical)

6

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Real-time text editor: GROVE

Group Outline Viewing Editor 

– Concurrent editing at the character level 

– Private, Shared and Public views  

– Clouds to show the activity of other users 

– Aging text: blue at first, then progressively black

Ellis et al., 1989

7

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Asynchronous text editor: Prep Neuwirth et al., 1992

8

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Real-time text editor: Sasse

Group-awareness widgets 
 - Scrollbars 
 - Radar view

Baecker et al., 1993

9

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Real-time graphics: GroupDesign Karsenty, 1992

10

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



GroupDesign

Group-awareness features: 
– Show participants as colors 
– Immediate feedback of commands for the local user 
– Echo of the command for the other users, until completed

Local site Remote sites

During resize 
interaction

At the end  
of resize  
interaction

Karsenty, 1992

(icon)

(animation)

11

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Single-display groupware

Connect multiple input devices to a single computer+display 
Useful in colocated situations, e.g. classrooms and meetings 
Also applies to tabletop interfaces 

MMM (Bier & Freeman, 1991) 
 fine-grain shared editing  

KidPad (Druin et al.): local tools

12

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Modern systems

                         SubethaEdit 

Microsoft Office                        Google docs

13

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Problems of modern systems

Homogeneous 
 All users must use the same application 

Mostly cloud-based 
 Who owns your documents and where are they? 
 What if you do not have network access? 

Do not support different levels of coupling 
 Strong coupling: pure WYSIWIS 
 Loose coupling: WYSIAWIS 
 Very loose coupling: asynchronous

14

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Implementation of real-time groupware

15

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Approaches

Collaboration-transparent system 
– Wrapping a single-user application 
– Screen and window sharing 
– Turn taking 
– Example: VNC 

Collaboration-aware system 
– Designed from the start for collaborative work 
– Consistency of distributed copies 
– Robustness: a failure of a distant network or computer should 

not affect the local user 
– Example: Google Docs

16

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Some vocabulary

Participant: a user in a session 
Session: one or more documents, edited by one or more users 
Invitation: giving a user access to a session 
Floor control: policy for managing input from multiple users 
Turn-taking: Floor control where one user can edit at a time 
Telepointer: visualization of one’s cursor on other users’ screens 

Coupling: how local actions are tied to remote actions 
Response time: time for an action to be executed locally 
Notification time: time for an action to be executed remotely 
Replication: transparently managing multiple copies of a document 
Robustness: sensitivity to remote faults

17

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Implementation

Some similarities with operating systems and databases: 
– Several users,  

geographical distribution,  
concurrent access,  
replication,  
faults... 

– BUT groupware tries to be transparent, i.e. not hide users 

Specific issues: 
– Group awareness 

• View congruence (WYSIWIS, WYSIAWIS) 
• Feedthrough (telling other users what I am doing) 

– Latecomers 
• Getting users that arrive during the session up to speed

18

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Implementation

Three main types of software architecture: 
– Centralised:  

simple, but low response time, brittle 

– Replicated (peer-to-peer):  
good response/notification time, but complex 

– Hybrid:  
mostly replicated with some centralized functions

19

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Fundamental problem: the CAP theorem

Theory of distributed systems: 
A distributed store can only provide 2 of these 3 properties: 

Consistency: every read gets the most recent write 
Availability: every request receives a response 
Partition tolerance: the system works despite messages 

being dropped or delayed 

In groupware, we typically want Partition tolerance, 
so we have to choose between Consistency and Availability 

Most groupware systems choose Availability 

Therefore the state is not always consistent across nodes

C
PA

20

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Managing conflicts

Problem: eventual consistency of distributed data 
 Each site generates events and sends them to other sites 
 Each site must execute the events so that the result is 

eventually consistent across sites 

Two classes of algorithms 
– pessimistic (locks) 
– optimistic (events) 

Optimistic algorithms: 
– optimized undo/redo, e.g. ORESTE (GroupDesign)  
– operational transformation, e.g. dOpt (GROVE) 
– Conflict-free Replicated Data Types - CRDTs

21

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Causality and logical clocks

Strong notion of causality 
 If A happened before B, then A must be executed before B 
 (because A may have influenced B) 

Total ordering of events: Lamport’s logical clocks 
 One logical clock per site (counter) 
 Incremented for each local event, Sent with each event 
 When an event arrives with a timestamp t 
  if t > localClock then localClock <- t +1 
 Timestamp defines a partial order of events 
  Turned into a global order with an ordering of sites 
  (t1, s1) < (t2, s2) iff t1 < t2 or (t1 = t2 and s1 < s2) 
 

22

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Undo-redo algorithm

Principles 
 Every operation op must have an inverse op-1 

 Each site maintains a history of events 
  (op1, t1, s1) … (opn, tn, sn) 
  
 When an event arrives out of sync 
  (opi, ti, si) with (ti, si) < (tn, sn)  
  Undo the operations between i and n 
  Execute opi 

  Redo operations between i and n 

  

23

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



ORESTE

Principle 
– Consistent state when the system is quiescent  

(all sent messages have been received and processed) 
– Uses Lamport timestamps for total ordering 
– Undo/redo when a message arrives out of order 

Optimizing undo/redo 
– Concept of compatible order 
– Take advantage of commutativity and masking  

between operations 
– Use total order in case of a conflict

Karsenty & Beaudouin-Lafon, 1993

24

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



ORESTE : commutativity

A changes the shape to an ellipse 
B changes the color to orange 
Total order is A then B

B A

A B

A and B commute
25

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



ORESTE : masking

A changes color to blue 
B changes color to orange 
Total order is A then B

A B

B A

A can be ignored because it is masked by B

26

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Text editing: problem

Text is a sequence of characters 
Each user represented by the offset of his/her cursor 
Basic operations: 
 Move cursor forward, backward 
 Insert character  
 Delete character 
Problem: 
 Site A        Site B 
 Hello |w|orld       Hello |w|orld 
 Hello m||world (A inserts m)      Hello ||orld     (B deletes character) 

 Hello |w|orld (A receives delete B)      Hello |m|orld   (B receives insert m at A)

27

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Text editing: solving the problem?

When inserting at C, cursors after it should move to the right 
When deleting at C, cursors after it should move to the left 

 Site A        Site B 
 Hello |w|orld       Hello |w|orld 
 Hello m|w|orld (A inserts m)      Hello ||orld     (B deletes character) 

 Hello m||orld (A receives delete B)      Hello m||orld   (B receives insert m at A) 

Is this sufficient? 
 Unfortunately not: 
 Problems occur when users move their cursors

28

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Text editing: not solving the problem

Cursor motion includes relative information 
This leads to different results depending on event order 

 Site A        Site B 
 Hello w|o|rld       Hello w|o|rld 
 Hello wo||rld (A moves right)      Hello w||rld (B deletes character) 

 Hello w||rld (A deletes character)      Hello wr||ld (B receives move A right) 

 Hello ||rld (A receives delete B)      Hello w||ld (B receives delete A) 

The resulting text is different,  
and the cursors are in different positions!

29

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Solution: Operational Transform (OT)

Total ordering of operations (Lamport timestamps) 
When an operation arrives out of order, it is transformed: 
 It is modified to take into account the effects of the 

operations that have occurred since it was issued 

For each pair of operations op1, op2,  
where op2 arrived after op1 but occurred before it, 
we need a transformation T(op1, op2) = op’2 so that 

 op’2(op1(text)) = op1(op2(text)) 

When an operation arrives, it is transformed by those that 
have occurred since then 

Note: this requires a potentially unbounded history buffer

Ellis et al., 1989

30

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Operational Transform: example

Forward transformation: include impact of op2 into op1 
T(insert(p1, c1, ts1), insert(p2, c2, ts2)): 
 if (p1 < p2) or (p1 = p2 and ts1 < ts2)   
  then return ins (p1, c1, ts1) 
  else return ins (p1+1, c1, ts1) 

Backward transformation: exclude impact of op2 from op1 
T-1(insert(p1, c1, ts1), insert(p2, c2, ts2)): 
 if (p1 < p2) or (p1 = p2 and ts1 < ts2)   
  then return ins (p1, c1, ts1) 
  else return ins (p1-1, c1, ts1)

31

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Operational Transform: example

Basic operations include the character position 
Cursor positions are only managed locally 

 Site A        Site B 
 Hello |world        Hello |world 
 Hello a|world (A inserts a at pos 6)     Hello b|world   (B inserts b at pos 6) 

         A receives insert b at pos 6 in order B receives insert a at pos 6 out of order 

 Hello ba|world (A inserts b at pos 6)   Hello b|aworld   (B inserts a at pos 7) 

Note that each cursor is after the character inserted by the user.

32

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Operational transform

Writing the transformations is hard 
Proving that they are correct is even harder (in fact, most are not!) 

Properties: 
Causality preservation: operations that depend on each 
other are executed in the same order at each site 

 Convergence: same state at each site when all messages 
have been processed 

 Intention preservation: matching what the user meant 

A free Javascript library: ShareJS - https://sharejs.org 
Other libraries exist for other languages

33

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Other approach: CRDTs

Conflict-Free Replicated Data Types 

Idea: data types designed such that independent replicas  
can be updated without coordination, 
and it is always possible to resolve inconsistencies 

Two types: Operation-based and State-based CRDTs 

We focus on operation-based CRDTs  
We assume that the transport layer does not  
lose nor duplicate messages 
We use logical clocks to tag messages 

Javascript library: Yjs https://yjs.dev

Shapiro et al., 2011

34

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Example CRDT: LWW-Record

Last-Write-Wins Record represents an object mapping property 
names to their value 

Operations: 
Set(obj, prop, value) 
Get(obj, prop) 

Implementation: 
Each property has a value and logical clock of last update 

op(“set", ts, obj, prop, val):  
if (obj.updated(prop) < ts) obj[prop] = val; obj.updated(prop) = ts 

op(“get”, ts, obj, prop): 
return obj[prop]

p1: v1 
p2: v2 
… 
pn: vn

obj
ts1 
ts2 
… 
ten

updated

35

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Example CRDT: OR-Set

Observed-Remove Set: set of values 
Each value can be in the set at most once 
If it has been removed, it cannot be added again 

Operations: add(set, elem), remove(set, elem), has(set, elem) 

Implementation:  
Each element has a list of add-tags and remove-tags 

op(“add”, ts, set, elem): add “ts” to the set of add-tags of elem 
op(“remove”, ts, set, elem): copy the tags in the add-tags list 

of elem to the remove-tags list of elem => Tombstone 
op(“has”, ts, set, elem): return true if add-tags - remove-tags 

is non empty, false otherwise
36

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Example CRDT: RGA

Replicated Growable Array: an ordered sequence of values 
where values can be inserted and deleted 

Operations: insert(seq, afterElem, elem), remove(seq, elem) 

Implementation: complex! 
uses a hash table and a vector of timestamps 
must keep tombstones for elements that have been removed 

37

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Real-time shared editing is complex! 

Maintaining consistency among replicas depends on many factors: 
- What type of network? (reliabillity) 
- How many prospective simultaneous users? (scalability) 
- Connected vs. disconnected mode? (resilience) 
- What type of data to be shared? 

The algorithms are complex and sometimes wrong! 

Trust existing libraries rather than build your own

Summary

38

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Groupware toolkits

39

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Groupware toolkits

Provide groupware widgets to support group awareness 
Embed concurrency algorithms (sometimes) 

Examples: 
 DistEdit (Prakash, 1990) 

 Suite (Dewan, 1990) 

 Rendez Vous (Patterson et al., 1990) 

 GroupKit (Roseman & Greenberg, 1992) 

 MEAD (Bentley et al., 1994) 

 Prospero (Dourish, 1996) 

 DAC (Tronche, 1998) 

 WebStrates (Klokmose et al., 2015) 

40

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



GroupKit

Developed at the University of Calgary GroupLab 

Toolkit developed in Tcl/Tk  
– Prototyping and development of shared real-time applications 
– Research and teaching about CSCW 

Features 
– Session management (participants joining and leaving) 
– Supports data distribution (1:1, 1:n) 
– Specific widgets for collaborative interaction 

Available: www.groupkit.org

41

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



GroupKit : architecture

Registrar : centralized 
process accessible  
by all computers 

Session manager : processus 
managing conferences and 
access control for one 
participant 

Conference : replicated 
process managing a single 
conference

42

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



GroupKit : awareness widgets

Who is participating? 
Where are they? 
What can they see?  

What is their activity level? 
What do they do? 
What do they need?  

What are they going to do? 
What can they do?

Telepointers 
Multi-scrollbars 
Radar views 
Fish-eye views

43

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Telepointers

44

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Multi-scrollbars

45

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Radar view

46

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Fish-eye view

47

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



GroupKit : applications

Brainstorming 
Text chat 

Drawing (bitmaps or vectors)  
Graph editing 

File browsers 
Text editors 

Games (tic-tac-toe, cards, tetrominos) 

48

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Webstrates

Shareable Dynamic Media 
Content that is inherently shared 
No distinction between application and document 
Collaboration, sharing and distribution across devices 

Webstrate = Web Substrate 
Web document served by a webstrate server 
Any change to the DOM of a document is replicated on 

any client of that document 
Transclusion: a document can be embedded into 

another document, and is still editable

Klokmose et al., 2015

http://webstrates.net 

49

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Webstrates

50

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021



Shouldn’t shared editing be part of every software application? 

Is the move towards cloud-based applications a good thing? 

Conclusion

51

Master Informatique Paris-Saclay - (c) Michel Beaudouin-Lafon 2012-2021


