
Proc. IEEE ICDCS'93 Conference 1

An Algorithm for Distributed Groupware Applications

Alain Karsenty and Michel Beaudouin-Lafon
Laboratoire de Recherche en Informatique (CNRS URA 410)

Université de Paris-Sud - Bâtiment 490
91405 ORSAY Cedex - FRANCE

Abstract
CSCW is a new and rapidly growing field. An

important problem is concurrency control: current
algorithms impose constraints on the user or are not
general enough to be used by other applications. We
present an algorithm that gives the best response time for
the interface and, using the semantics of the application,
reduces the number of undo and redo operations when
conflicts occur.

Introduction

Computer Supported Cooperative Work (CSCW) is a
rapidly growing field. Groupware applications support
groups of people working together and range from
electronic mail to real time multi-user editors that allow
users in different locations to edit the same document
simultaneously. Although a number of groupware systems
have been implemented, including some commercial
products [3, 10, 5], many architectural and structural
issues remain. Some problems that are already difficult,
such as the implementation of distributed systems, pose
additional problems for groupware. For example, current
tools attempt to make distribution as transparent as
possible. Yet groupware requires a combination of
transparency and awareness, to let users be aware of other
users in the system. Because these requirements do not
match, much of the research on distributed systems cannot
be applied directly to groupware. Groupware developers
are thus unable to use the tools designed for implementing
distributed systems and must develop such tools
themselves.

We are investigating real-time (or synchronous)
groupware and are particularly interested in extending the
usual interaction paradigms to include the dimension of
the group [2]. This work led us to implement a specific
system for managing the distribution of the application.
This paper reports on the architecture and concurrency
control algorithm used in this system. The algorithm is
based on the semantics of the application and can be used
by the developers of other groupware systems. We begin

by introducing the notion of a purely replicated
architecture and then present GroupDesign, a shared
drawing tool implemented with this architecture. We then
present the main parts of the algorithm that implement the
distribution. We conclude with a review of related work
and a discussion.

The purely replicated architecture

We address real-time groupware systems that allow a
group of users to edit a shared document. We advocate a
fully distributed architecture for such systems, both to
optimize the response time and to make the system more
fault-tolerant. Our architecture replicates the application at
each site and does not need a centralized component.
Because each site runs the full application, the whole
system continues to work even if one site crashes. We call
this a purely replicated architecture. We can view the
system as a set of interactive applications that
communicate with each other, rather than as a single
distributed system. This is particularly true in a
heterogeneous environment where the different replicas
are different programs [12]. Our architecture acts as a
super-architecture over existing architectures and is
compatible with the current models and architectures used
for interactive systems.

We have identified several requirements for the
implementation of real-time groupware. First, it must
provide immediate response time. User commands must
be handled immediately without waiting for either
authorizations or acknowledgments from the other sites. In
our architecture, whenever a user issues a command, the
local state of the user's replica is immediately updated,
thus introducing an inconsistency with the states of the
other replicas. The command is then sent asynchronously
to the other sites. The state will become consistent again
when the message has been received and handled by all
other sites. The property of immediately handling local
commands insures the best possible response time, namely
that of a single-user application. Moreover, the fact that
the protocol is asynchronous means that distant sites
connected with a low bandwidth network will not impair

Proc. IEEE ICDCS'93 Conference 2

the global performance of the system. Each site can go at
its pace without affecting the whole system. This
requirement is fundamental for the success of groupware
systems: users will not use groupware that slows down
their individual tasks.

The second requirement is that the replicated
architecture should neither enforce nor favor any particular
coordination scheme, such as floor control. It is quite
obvious that enforcing floor-taking simplifies the problem
of concurrency control, while running an open floor makes
it more difficult. Our architecture runs an open floor and
supports a wide range of coupling mechanisms [7].

Finally, the protocol must be as application
independent as possible. It should be possible to provide a
software package that encapsulates the management of the
replication. Our experience in implementing GroupDesign
from an existing application shows how this is possible.

GroupDesign allows a set of users, each on a
Macintosh, to create and modify a diagram
simultaneously. A diagram is a set of pages that contain
structured graphics which can be edited, as in MacDraw.
We implemented the algorithm described below on top of
an existing extensible drawing tool called MetaDesign
[14]. We could add the replication algorithm without
modifying the existing application, using Apple System
7’s new features for inter-process communications (High
Level Events) [1]. We developed a set of features that
complement the drawing tool in order to support the
shared aspect of the editing tasks. The purely replicated
architecture made these features easy to implement; a
more detailed description can be found in [2].

In the rest of the paper, we use GroupDesign to
illustrate the purely replicated architecture and to explain
the concurrency control algorithm. We begin with a
description of the ORESTE (Optimal RESponse TimE)
concurrency control algorithm for groupware applications
and the PROMOTE algorithm included in ORESTE. We
first outline the algorithm and then present the model and
a formal description of the algorithm based on this model.

ORESTE Concurrency Control Algorithm

The algorithm is based on a semantic model of the
application. A document is a set of objects that are
identified by a globally unique identification number.
Users issue commands which correspond to operations.
These operations are first immediately executed on the
local site and then broadcasted to the other sites as events.
Events contain the operations and other bookkeeping
information, including a timestamp. Timestamps define a
total ordering of events. The PROMOTE algorithm.
relaxes this total ordering by allowing an event to be
executed out of order only if the final state of the

document is the same as if the events were executed in the
total order. Moreover, if the execution of an event does not
modify the resulting diagram (we say that the event is
masked), then the event need not be executed.

The algorithms use two sets: L and Q. L is the log of
operations which have been executed. It is used in the
PROMOTE algorithm whenever conflict occurs and
operations need to be undone. Q is the queue of operations
that cannot be executed because the object to which they
are applied is not yet created.

The ORESTE algorithm has the following properties:
(1) operations are immediately executed at the local site;
(2) events from a remote site are executed as soon as
possible; (3) the size of the log is bounded.

Property (1) ensures the best response time of the
interface (first requirement). Property (2) means that the
system will not be impeded if an event sent by a site is
delayed since even events sent at a later time are executed.
Property (3) makes the algorithm realistic, i.e. possible to
implement since L does not grow indefinitely.

We now introduce the model of a groupware session,
which is defined as a set of sites that communicate with
each other. The document is replicated; each site holds a
copy that consists of a set of objects.

Objects and operations
An object is defined as a 2-tuple o = (ido, sto). ido ∈ I

is the unique identification number of the object and sto is
its state. Ids must be unique over a whole session. The set
of all possible objects is called O.

Each site has a function called Obj that maps ids to
objects. This function distinguishes between currently
existing objects, objects to be created and objects that have
been deleted.

Obj: I → O ∪ {∅, ⊥}
id → (id, st) if the object exists
id → ∅ if the object does not exist yet
id → ⊥ if the object does not exist anymore

F is the set of functions that can be applied to objects. F
is partitioned into families: F = {F1,F2,...Fn}. Each family
corresponds to a type of operation. For example color
change is a family that includes the functions for changing
color to red, blue, etc. The functions of family Fi have a
domain of definition OFi

. For example, the family of font

change functions applies only to text objects while the
family of resizing objects applies only to graphic objects.

An operation is defined as a function f ∈ Fi :
f: OFi

→ O

(ido, sto) → (ido, st'o)
Two particular families of functions for creating and

deleting objects are defined as follows:
f ∈ Create :{ ∅} → O

∅ → (ido, sto)

Proc. IEEE ICDCS'93 Conference 3

f ∈ Delete : O → { ⊥}
(ido, sto) → ⊥

In order to undo operations we assume that every
function has an inverse:

∀ F, ∀ f ∈ F, f o f-1 = Identity

Events and sites
An event is a message that contains an operation to be

executed by the receiving site. An event is a 5-tuple e =
(fe, ide, te, sitee, seqe) with:

fe: operation;
ide: id of the object to apply fe to;
te: logical time when the event was sent, as

defined in [13];
sitee: id of the sending site;
seqe: sequence number of the event.

The total order relationship of events (p) is defined
as follows:

� � p � � ⇔ � � � < � � �() ∨ � � � = � � � ∧ � � � � � � < � � � � � �()
A site is defined as a 8-tuple s = (sites, Ss, ts, Ls, Qs,

Objs, lastSeqs, lastClocks)
sites: unique id of the site;

Ss: set of all sites;
ts: logical clock of site sites;

Ls: log of events;
Qs: queue of events waiting for execution;

Objs: function mapping an id to an object.
lastSeqs: array holding the sequence number of the

last event received in sequence from each sit
lastClocks: array holding the timestamp of the last

event received in sequence from each site.

Properties of events
• commute (e1, e2): events e1 and e2 commute iff

(ide1 ≠ ide2) or (ide1 = ide2
and fe1 o fe2 (Obj(ide1)) = fe2 o fe1 (Obj(ide1)))

• mask (e1, e2): event e1 masks e2 iff
ide1 = ide2 and fe1 o fe2 (Obj(ide1)) = fe2 (Obj(ide1))

• conflict (e1, e2): events e1 and e2 are in conflict iff
not commute (e1, e2) and not mask (e1, e2)

• commuteWithSet (e, S): event e commutes with set S iff
∀ ei ∈ S, commute (e, ei)

Quiescence
The system is said to be quiescent when all the events

sent by the sites have been received and handled. We
assume that the network is reliable: events that are sent
arrive only once, but they need not arrive in the order they
were sent. The sequence number contained in the events
can be used to implement a reliable protocol over an
unreliable network.

Algorithmic notation
The sets L and Q are sorted by increasing timestamp.

They are modified by the procedures Insert and Remove.
To step through a set we use the notation:

for e in L do instruction() endfor
This expression steps through the set L in timestamp

order (from the oldest to the most recent event) and
executes "instruction()" for each event. The following
steps through a set in reverse order:

for e in reverse(L) do instruction() endfor

/* the procedures execute(Event) and undo(Event) must
be defined in the application */

procedure SendEvent (e : Event)
begin

/* send to everybody else */
Multicast (e, Ss - {sites});
/* update local state */
ts := ts + 1;
seqs := seqs+ 1;
Insert (e, Ls);

end /* SendEvent */

procedure ReceiveEvent (e : Event)
begin

case Objs(ide) of
∅: /* object does not exist */

if fe ∈ Create then
/* creation of an object */
execute (e);
Insert (e, Ls);
/* execute pending operations in Q */
for ei in Qs do

if idei = ide then
execute (ei);
Remove (ei, Qs);

endif
endfor

else
/* object not yet created: defer operation */
Insert (e,Qs);
return;

endif
⊥: /* object already deleted: log event */

Insert (e, Ls);
(ide, ste): /* object exists: execute event */

if te > ts then
execute (e);
Insert (e, Ls);

else
Promote (e);

endif
endcase
Update(e);

end /* ReceiveEvents */
Figure 1

Proc. IEEE ICDCS'93 Conference 4

procedure Promote (e : Event)
var

P : SetOfEvents; /* events that do not commute */
begin

P := ∅;
for ei in L where e p ei do

if commuteWithSet (ei , P) then
if mask (ei, e) then

return; /* don't execute masked event */
else

if not commute (ei, e) then
Insert (ei, P); /* ei will be undone */

endif
endif

else
Insert (ei, P); /* ei will be undone*/

endif
endfor
/* undo-redo sequence */
/* if P = ∅, there is nothing to undo-redo */
for ei in reverse (P) do undo (ei) endfor
execute (e);
Insert (e, Ls); /* log e in Ls in the correct order */
for ei in P do execute (ei) endfor

end /* Promote */
Figure 2

var
timeOut; /* time limit for a site to be idle */

procedure Update (e : Event)
begin

/* update local time */
ts := max (ts, te+ 1);
/* update lastClocks and lastSeqs */
Let ei ∈ Ls be the last event received in sequence

from the sending site sitee
if seqei = lastSeqs[sitee] + 1 then

lastSeqs[sitee] = seqe;
lastClocks[sitee] = te

endif
/* discard useless events from the log Ls*/
for ei in L do

if tei ≤ Min (lastClocks) then
Remove (ei, Ls)

endif
endfor;
/* send alive event if inactive for a long time */
if ts > lastClocks(sites) then

SendEvent (AliveEvent)
endif

end /* Update */
Figure 3

The ORESTE Algorithm

Let S = (sites, Ss, ts, Ls, Qs, Objs, lastSeqs, lastClocks)
be the current site and e = (fe, ide, te, sitee, seqe) be an
event. Figure 1 describes the algorithms for sending and
receiving events. Figure 2 describes the PROMOTE
algorithm that reduces the number of operations to undo-
redo. Figure 3 is the updating procedure that ensures that
the size of Ls does not grow indefinitely.

The PROMOTE algorithm

The PROMOTE algorithm (Figure 2) is central to the
ORESTE algorithm since it reduces the number of
operations to undo and redo when an event does not arrive
in the correct order. To minimize or even avoid undo-redo,
the PROMOTE algorithm relaxes the total ordering of
events into a partial order compatible with the semantics
of operations. A partial order is defined as an order that
gives the same result as the total order.

The total order can be relaxed in three cases: (1) if
objects are independent, operations on distinct objects are
independent and can thus be applied in any order; (2) if
two operations commute, they can be executed in any
order. For example, in a drawing program, moving an
object and changing its color attribute gives the same
result irrespective of the order in which the operations are

applied to the object; (3) if an operation is masked by a
more recent operation, then the operation does not need to
be executed at all. For example, if a site first receives the
destruction of an object and then its modification, the
destruction masks the modification and the modification
does not need to be executed.

The PROMOTE algorithm tries to commute the
received event e with all events that occurred at a greater
logical clock; if an event e’ does not commute with e, it
attempts to commute the sequence (e, e’) with events that
occurred at a greater logical clock. This process is
repeated and stops when either the event is masked or all
the events have been treated. The algorithm reduces (but
does not minimize) the number of operations to undo. In
the best cases, either the event is masked and need not be
executed at all or it commutes with all more recent events
and can be executed without undoing anything.

Reducing the size of L: the Update procedure.

L is used to undo previous events when “old” events
arrive. The Update procedure’s main purpose is to discard
“old” events from the log L. Otherwise the space required
by the algorithm would grow linearly with the number of
received events. We can discard events in L whose logical
clock is such that no older event will ever arrive. We use
two arrays for this:

Proc. IEEE ICDCS'93 Conference 5

• lastSeq[i] stores the sequence number of the last event
received in sequence from site i.

• lastClock[i] stores the logical clock of the last event
received in sequence from site i.

The array lastSeq is necessary unless the order in
which events are sent by a site is the same as the order in
which they are received by each other site. If this is not the
case, it allows a site to detect missing events and events
received more than once.

The last step of the algorithm insures that L cannot
grow indefinitely. If a site is idle, it is not sending events.
Thus the minimum value of lastClock stays the same and
the size of L never decreases. Sending “still alive” events
avoids this problem. Furthermore, the system can detect
sites that have crashed or are unreachable by monitoring
“still alive” events.

Implementation issues

Objects are assigned unique ids as follows: each site s
holds the number ncs of objects it has created and a unique
site number sites. When site s creates an object, it assigns
the id (sites || ncs) to it. The function Obj that maps ids to
objects can be implemented by an associative table con-
taining live objects and a set containing deleted objects.

The set of deleted objects can grow indefinitely.
However, a technique similar to the reduction of the log
can be applied to this set: a deleted object can be removed
from the set if the logical time at which it was deleted is
older than the oldest value in lastClock. The function Obj
will never be called for an object removed from the set,
since no event referencing such an object will ever be
received.

We implement the functions commute and mask used
in the PROMOTE algorithm by defining the notion of
masking and commutability at the level of functions and
families instead of events:

let f1, f2 ∈ F and let F1, F2 be two families,
• Commute (f1, f2) iff

∀ ο ∈ O, f1 o f2 (o) = f2 o f1 (o)
• Mask (f1, f2) iff

∀ ο ∈ O, f1 o f2 (o) = f2 (o)
• COMMUTE (F1, F2) iff

∀ f1 ∈ F1, ∀ f2 ∈ F2, Commute (f1, f2)
• MASK (F1, F2) iff

∀ f1 ∈ F1, ∀ f2 ∈ F2, Mask (f1, f2)
Indeed, families correspond to types of operations,

such as change color, move, etc. It is natural to state that
change color and move commute, meaning that any
change of color on any object commutes with any move of
that object. Such properties of the families are stored in a
two-dimensional matrix used to implement the functions
commute and mask. Note that in the case where every pair

of families either commute or mask events never need to
be undone: any event will be either masked or executed
without undoing anything.

Correctness of the ORESTE algorithm

We must prove that for any given sequence of events
exchanged between sites, the document state is the same at
each site when the system is quiescent. This can be proven
by showing that the execution by a site of any given
sequence of events is equivalent to the execution of this
sequence in the total order. This property is ensured by the
PROMOTE algorithm. If an event is received late, i.e. if
its timestamp is older than the current logical clock, then
the set of precedent events is examined and transformed
using commuting and masking rules. By definition these
rules ensure that the algorithm yields the same result as the
execution in the total order.

As an example, we show the execution of the ORESTE
algorithm when three sites simultaneously exchange three
events (Figure 4). The total order of events is

� 	 p �
 p � � .
They have the following properties: mask (e3, e1) and
commute (e1, e2). Figure 5 shows how each site handles
the incoming events in an order that is equivalent to the
total order.

Open issue

The PROMOTE algorithm reduces the number of
operations to undo and redo when a late event arrives but
it does not minimize it. This minimization problem can be
formalized as follows:

Let � = � 	 �
 � � � �
 be a sequence of events and let ℜ
	

and ℜ

 be transformation rules associated with this

sequence:

•

ℜ 	 = � � � � � � → � � � � � � � � � � � � � � � � � → � � � � � �{ } :

commutability rules.

•

ℜ
 = � � � � � � → � � � � � � � � � � � � � � → � � �{ } : masking rules.

Let
� � � � � � � � �() be the sequence of events to the right

of
� � in s. The problem is to find a polynomial algorithm

that returns for a given
� � the shortest sequence

� � � � � � � � �() by applying the rules in ℜ

	 and ℜ

 to s.

The complexity of the PROMOTE algorithm is
polynomial, which makes its implementation efficient.
However, it is not optimal. Let us consider the sequence

 � = � 	 �
 � � with the rules mask (e3, e1) and commute (e1,
e2). PROMOTE does not reduce the sequence although
the following rules reduce it to zero:

� 	 �
 � � � � � � � � � � � � �

 → � 	 � � � � � ! " � � � � � � � �
 → � � � 	

Proc. IEEE ICDCS'93 Conference 6

Site 1 Site 2 Site 3
e1 is executed locally.

ReceiveEvent(e3)
e3 is executed.

ReceiveEvent(e2)
Since e2 and e3 are in conflict, e3

is undone and e2 and e3 are executed,
thus the event are finally executed in
the total order

e2 is executed locally.

ReceiveEvent(e1)
Since commute (e1,e2), e1 is

executed.

ReceiveEvent(e3)
e3 is executed.
Since we used the rule of

commutation, the sequence of events
is equivalent to the execution in the
total order

e3 is executed locally.

ReceiveEvent(e1)
Given the masking rule, mask

(e3,e1), e1 is not executed.

ReceiveEvent(e2)
Since e2 and e3 are in conflict, e3

is undone and e2 and e3 are executed,
thus the event are finally executed in
the total order

Figure 5

It is easy to write an exponential algorithm that finds
the optimal solution but we do not know whether a
polynomial algorithm exists. For our current needs, the
PROMOTE algorithm is sufficient since conflicts do not
happen often and consist of undoing short sequences of
events. But in a situation where a large number of
participants modify the same area of a document, a better
PROMOTE algorithm would be useful.

Related Work

Various methods have been used to implement
concurrency control algorithms in groupware applications.
The first is to not implement anything, e.g. BoardNoter
[17] and Commune [15] which are bitmap editors for
tightly coupled meetings. They do not need to address
conflicts since it is improbable that two users will modify
the same pixel simultaneously. Other graphic editors, such
as Aspects [3], allow joint editing of a structured graphic

.

Site1 Site2 Site3

e1 e2 e3

e3
e1

e3

e1

e2

e2

lo
gi

ca
l t

im
e

Figure 4

but do not address concurrency control. By not handling
conflicts, it is possible to get into an inconsistent state. The
chance of conflicts is also higher, since they lack
groupware features that help users be aware of each other.

Other groupware applications use a floor control
mechanism that allows only one participant to be active at
a time. For instance, CaptureLab [10] and Timbuktu [5]
use floor control to take over a different computer.
MMConf [6] encourages turn-taking floor control; when
running an open floor, the events are not guaranteed to
arrive in the same order at all sites. This is well-suited to
cases where the participants are in the same room or
connected via a video link and do not need much
parallelism. However, this floor control mechanism would
slow down the users of a text editor, since two users could
not edit the document simultaneously.

Many algorithms exist for concurrency control in
databases [16]. Unfortunately, most results do not apply to
real-time groupware: databases are designed to give the
illusion of being the only user on the system, whereas
groupware systems are designed to make users aware of
each other. The most important property of a groupware
system, interface response time, is not as important in a
distributed database.

If distributed operating systems were widely available,
the purely replicated architecture would be easy to
implement. For instance the ISIS system [4] is a good
candidate for the implementation of replicated systems. It
introduces the notion of process groups. Any message sent
to a process group is sent to each participant of the group.
Several primitives provide different semantics over the
delivery of messages. In particular, one semantic is that all
sites receive the events in the same order. This simplifies
the implementation of the replicas, but one must be aware
that such message passing is more expensive than weaker
semantics, i.e. sending a message to the process group
requires the acknowledge of the receiving sites, thus

Proc. IEEE ICDCS'93 Conference 7

impairing response time. For our purposes, ISIS has two
drawbacks: it runs only on Unix workstations, and it is too
powerful for our needs. We seek a lightweight
implementation of the replication that fits the precise
needs of groupware systems.

Within the domain of real-time multi-user editors,
Grove [8,9] is the closest to our system, although it is
dedicated to text editing. Grove also uses a replicated
architecture, with concurrency control being achieved by a
distributed operational transformation algorithm (dOpt) :
operations which arrive out of date are transformed so that
they can be executed without disrupting the session. If
there are n operations, this technique requires n2

transformation procedures, some of which are not trivial to
write whereas our algorithm requires a matrix that holds
the operations that commute and mask plus n functions of
undo. Also, Grove uses a model based on a text editor and
their techniques are not general enough to apply to
graphics editor. Finally, to reduce the size of the log, the
quiescence is enforced, but this technique might slow
down the performance of the system. Our system uses a
similar architecture with a simpler concurrency control
scheme.

Discussion

We now discuss a set of issues regarding the algorithm
and implications for the interface.

Causality between events

The current algorithm does not take into account the
causal relation between events [11]. For instance, if a
given site sends two events, our algorithm handles them in
the order received, which may be the reverse order. The
masking and commutability rules define a dependency
relation that is less constraining than causality because it
takes into account the semantics of the application.

Another issue is how to cope with the simultaneous use
of a video link to coordinate tasks. If a user is talking
about an object that has not yet been created on another
user's computer, it may create confusion. Implementing
causality between events might resolve some such cases.
We plan to experiment with video links in order to explore
solutions to this problem.

Dependence between objects

The independence of objects varies with the
application. For example, objects in a drawing tool should
probably be independent, but not objects in a text editor.
Masking operations within the same family of
parameterized functions is generally easy. For example,

ChangeColor (c: Color) defines a family of functions
ChangeColor (red), ChangeColor (green), etc. Such
functions generally affect a part of the state of the object.
Applying two functions from the same family is
equivalent to applying the second one: ChangeColor (red)
followed by ChangeColor (green) is equivalent to
ChangeColor (green). For this to hold, the result of each
operation must not depend on the part of the state of the
object being modified. For example, MoveBy (10, 10) is
not masked by MoveBy (5, 5) because they are relative
moves, but MoveTo (50, 50) is masked by MoveTo (100,
100) because they are absolute moves.

Finally, in order for operations in different families to
commute, they must manipulate independent subparts of
the state of the object. For example, changing the color
and moving an object are independent operations and thus
commute. However, moving and resizing an object may
not be independent. For example, if an object is resized
from a corner and its position is determined from the
center, resizing will change both the object's size and
position. Such dependencies can be avoided by sending
two resize events (see next section).

Even though our algorithm is designed to handle
independent objects, one need only change the definition
of the commute and mask functions to make it handle
dependent objects. The basic structure of the algorithm
would not change.

Operations vs. commands

Commands issued by the user differ from the actual
operations sent via events between sites. As for any
interactive system, the command set must be designed
based on the task space of the application and its
conceptual model. However, the set of operations must be
designed based on the optimal performance of the
replication algorithm. The optimal situation for this is:

• all objects are independent,
• any pair of operations in the same family Fi mask

each other,
• any pair of operations in two different families Fi

commute.
These properties ensure that any latecoming event can

be handled without undoing any previous command,
providing the most responsive interactive behavior.

The mapping between operations and commands need
not be one to one, especially for "long" commands. In
many interactive systems, a command is activated by
selecting an object and then selecting an item in a menu.
Sometimes, a dialogue box opens in order to specify extra
arguments to the command. In this case, the command is
actually carried out when the user clicks OK in the
dialogue box. Other long commands are issued by direct

Proc. IEEE ICDCS'93 Conference 8

manipulation, e.g. dragging the mouse. Although the
command is actually executed when the "long" interaction
finishes, it might be useful to send an operation when the
command starts and another operation when it finishes.
The start operation serves two purposes: feedback to other
users that something is going to happen to the object and
partial locking of the object at the other sites. Partial
locking prevents other users from starting a command on
that object that would conflict with the command in
progress. This technique reduces dramatically the
likelihood of user conflicts, because each user knows what
is being done by others, and not only what has been done
by others. This improves the sense of a shared
environment.

Mapping one command to several operations can also
be used to avoid dependencies. In a previous section, we
have shown how to map the resize command to two
independent operations (change size and change position).

Conclusion and future work

We have introduced the notion of a purely replicated
architecture and presented a concurrency control algorithm
for real-time groupware systems. The algorithm optimizes
response time for the interface, a critical factor for the
success of groupware. Furthermore, by using the
semantics of the application, we have shown how to
reduce the number of operations to undo when events
arrive out of order.

Future work will take three directions. First, we are
working on heterogeneous groupware: groupware
applications that run on different hardware and software
platforms (e.g. XWindow, Macintosh). Second, we plan to
implement a multi-user text editor using our algorithm,
both to more thoroughly validate our model and to
compare our approach with that used to implement Grove
[8,9]. It would also allow us to define a more general
algorithm and eventually a software layer to be used by
groupware applications. Finally, we plan to study session
management, e.g. handling of newcomers and storage and
retrieval of shared documents in a file system.

Acknowledgments

This work is partially supported by Apple France. We
thank MetaSoftware for providing us with MetaDesign
and Design/OA and Heather Sacco and Wendy Mackay
for enhancing the readability of this article.

References

1. Apple Computer, Inside Macintosh, Volume VI, Addison
Wesley, Reading, MA, 1991.

2. Beaudouin-Lafom, M., Karsenty, A., Transparency and
Awareness in a Real-Time Groupware System. In Proc.
ACM Symposium on User Interface Software and
Technology UIST'92 (Monterey, CA, November 1992).

3. von Biel, V., Groupware Grows Up. In MacUser, June
1991, pp. 207-211.

4. Birman, K., Cooper, R., Joseph, T., Kane, and K.,
Schmuck, F., The ISIS System Manual, June 1989.

5. Coleman, Dale, Timbuktu vs. Carbon Copy Mac: Close
Race. In MacWeek (September 11, 1990), pp. 181-188.

6. Crowley, T., Milazzo, P., Baker, E., Forsdick, H., and
Tomlinson, R., MMConf: An Infrastructure for Building
Shared Multimedia Applications. In Proc. Third
Conference on Computer-Supported Coopera-tive Work
(Los Angeles, CA., October 1990) ACM, New York, 1990.

7. Dewan, P., Choudhary, R., Flexible User Interface
Coupling in Collaborative Systems. In Proc. Human
Factors in Computer Systems CHI'91 (New Orleans, LA,
April 1991), pp. 41-49.

8. Ellis, C.A., and Gibbs, S.J., Concurrency Control in
Groupware Systems. In Proc. ACM SIGMOD'89
Conference on the Management of Data, (Seattle WA, May
1989) ACM, New York, 1990.

9. Ellis, C.A., Gibbs, S.J., and Rein, G.L., Groupware Some
Issues and Experiences. In Communications of the ACM,
January 1991, 34 (1), pp. 39-58.

10. Elwart-Keys, M., Halonen, D., Horton, M., Kass, R., and
Scott, P., User Interface Requirements for Face to Face
Groupware. In Proc. Human Factors in Computer Systems
CHI'90 (Seattle, WA, April 1990), pp. 303-312. ACM,
New York, 1990.

11. Fidge, C., "Logical Time in Distributed Computing
Systems" IEEE Computer, August 1991.

12. Karsenty, A, Tronche, C., Beaudouin-Lafon, M.,
GroupDesign: Shared Editing in a Heterogeneous
Environment, Usenix Computing Systems, to appear, 1993.

13. Lamport, L., Time, Clocks and the Ordering of Events in a
Distributed System, Communications of the ACM, July
1978, 21 (7), pp. 558-565.

14. Meta Software Corporation, Design/OA Manual, 150
CambridgePark Drive, Cambridge, MA, March 1989.

15. Minneman, S. L., and Bly, S. A., Managing a Trois: a
Study of a Multi-User Drawing Tool in Distributed Design
Work. In Proc. Human Factors in Computer Systems
CHI'91 (New Orleans, LA, April 1991), pp. 217-224.

16. Son, S. H., Replicated Data Management in Destributed
Database Systems. In SIGMOD Record, 17(4), December
1988.

17. Stefik, M., Foster, G., Bobrow, D. G., Keneth, K., Lanning,
S., and Suchman, L., Beyond the Chalkboard: Computer
Support for Collaboration and Problem Solving in
Meetings. In Communications of the ACM, January 1987,
30 (1), pp. 32-47.

