

CrossY:
A Crossing-Based Drawing Application

Georg Apitz & François Guimbretière

Department of Computer Science
Human-Computer Interaction Lab

University of Maryland,
College Park, MD, 20742

{apitz, francois}@cs.umd.edu

ABSTRACT
We introduce CrossY, a simple drawing application
developed as a benchmark to demonstrate the feasibility of
goal crossing as the basis for a graphical user interface. We
show that crossing is not only as expressive as the current
point-and-click interface, but also offers more flexibility in
interaction design. In particular, crossing encourages the
fluid composition of commands which supports the
development of more fluid interfaces.
While crossing was previously identified as a potential
substitute for the classic point-and-click interaction, this
work is the first to report on the practical aspects of
implementing an interface based on goal crossing as the
fundamental building block.

CATEGORIES AND SUBJECT DESCRIPTORS
H.5.2 Graphical User Interfaces, Input Devices and
Strategies; D.2.2 User Interfaces; I.3.6 Interaction
Techniques

ADDITIONAL KEYWORDS AND PHRASES
Crossing based interfaces, command composition, fluid
interaction, pen-computing

INTRODUCTION
The recent introduction of portable, pen-based computers
has demonstrated that, while very powerful, the standard
WIMP-interface (Windows, Icons, Menus, and Pointers) is
not very well adapted to direct pen interaction. Many
WIMP interactions that were originally developed for the
mouse are difficult to perform with a pen on a tablet
computer. A prime example is the double click: while easy
to perform in a mouse environment (since the pointer is
stable), it proves to be quite difficult in pen-based
interfaces. Other difficulties that arise in pen-based

interfaces include occlusions created by the user’s hand due
to the direct setting, difficulties in using modifier keys
(such as pressing shift to extend the current selection), and
reduced access to keyboard shortcuts which are crucial for
expert performance.
Several solutions have been proposed to address these
problems. However, by its very nature, the design paradigm
of current Graphical User Interfaces (GUI) is not well
adapted to the pen's natural affordance of drawing strokes.
Traditional point-and-click interfaces insist on segmenting
user interactions in a sequence of point-and-click
interactions. Using such interfaces with a pen may be
frustrating, as users are forced to alternate between a very
natural and fluid input mode for sketching or taking notes
and a very rigid and segmented interaction while using the
GUI elements.
At the same time, recent experimental results by Accot et
al. [3] have suggested that steering through goals can be at
least as efficient as pointing and clicking and could be a
viable substitute to pointing and clicking. Yet, with a few

Figure 1 The CrossY interface showing the brush-
palette (left) and the main palette with a find/replace
dialogue box (right).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.

 Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

3Volume 6, Issue 2

exceptions limited in scope (e.g. Lotus Notes [13] and
Baudish’s toggle maps [5]), designers have not explored the
potential of crossing as a building block for GUIs.
In this paper we begin to systematically explore crossing as
a fundamental building block of graphical interface
interactions. We developed CrossY (Figure 1), a simple
sketching application for which all interface elements
(including menus, buttons, scrollbars, and dialog boxes)
rely solely on crossing. Our work not only demonstrates the
feasibility of crossing as an interaction paradigm in a real
life application, it also provides initial feedback on the
unique challenges of developing such a crossing-based
interface. We found that crossing is well adapted to both
pen-based and mouse-based interactions, it is more
expressive than the equivalent point-and-click interfaces,
and it encourages a fluid composition of commands. We
also found that, to leverage this latter advantage, special
consideration of the interface layout is required. This factor
is less important in traditional interfaces.

MOTIVATION AND DESIGN GOALS
While the point-and-click interface has been very
successful for desktop computers, many Tablet-PC users
find that it is not well adapted to pen-based interactions. In
part, the problem arises from the mismatch between
interface and interaction device: while the current
interfaces were designed in an indirect pointing
configuration with a stable pointer controller, tablet
computing provides a direct setting with a pen, a “noisy”
input device. We believe that the problem has an even
deeper root: pen use encourages a fluid, continuous style of
interactions based on strokes, whereas point-and-click
interfaces insist on segmenting interactions into a series of
pointing steps.
To address this fundamental issue, we decided to explore
the use of crossing instead of pointing as suggested by
Accot et al. [3]. CrossY, a simple drawing application, was
developed to examine the strengths and weaknesses of
crossing as a building block of interaction design.
We decided to limit the scope of this early exploration by
focusing on the following key aspects:
• Expressiveness. One of the most important

questions to be addressed is: Can the new language
express as rich a set of features as the language it
means to replace? Therefore, we decided to examine
how the key elements of a basic WIMP interaction
can be implemented in a crossing interface. As a
starting point we decided to implement standard
buttons, scrollbars, menu systems, dialog boxes
(including selection of items from a list) and a
simple set of window management tools (Figure 2).
In each case, our initial goal was to mimic existing
capabilities before developing new features.

• Fluid composition of commands. As illustrated by
Lotus Notes [13] and the toggle maps system [5]
interfaces based on goal crossing promote the fluid
composition of commands. This allows users to
issue several actions (e.g., selecting among a group
of toggle switches) in one single stroke. Our goal
was to determine if this feature could be extended to
a wider set of interactions such as a search and
replace task. We also examined if the advantages of
transitioning from a visual interface to a gesture

Functionality Point-and-Click Crossing

Standard

Radio

B
ut

to
ns

Checkbox

M
en

u

Pull-down

Scrollbar

Dialog

Figure 2 Correspondence table showing elements
of traditional, point-and-click GUIs and their CrossY
counterparts.

4

based interface (as demonstrated in the Marking
Menu [15]) could be extended to the selection of
several commands inside a dialog box.

• Efficiency. Expressiveness and fluidity are of little
use if they come at the price of an inefficient
interface. Therefore, efficiency was an important
consideration during the design process.

• Visual footprint. Screen real estate is a valuable
resource and the new interaction language needs to
use it efficiently. Crossing-based interfaces are
unique, since the visual layout affects both the
composition and the efficiency of commands.

It is important to note that in contrast to previous
conceptual explorations (such as Winograd and
Guimbretière [29]), we did not focus on the creation of
new, application-specific interactions. This is a deliberate
choice. Focusing on standard widgets gives us a reference
point against which our design can be evaluated.

PREVIOUS WORK
Several previous systems have departed from strictly point-
and-click interfaces. One example is Lotus Notes [13]
which lets users select several emails by pointing and
clicking on the first one and then crossing through adjacent
emails to select them in the same stroke. Another example
is the toggle map system [5] in which users can draw on
top of a set of toggle buttons to trigger them in one gesture
instead of being forced to click on each of them
individually. Yet few have conducted a systematic
exploration of crossing as a general interface design tool. A
notable exception is the conceptual prototype described by
Winograd and Guimbretière [29]. While Winograd presents
a conceptual prototype of visual instruments, a full
implementation of the system was never reported.
The theoretical foundation of crossing as a fundamental
aspect of interface design was laid out by Accot who first
developed the steering law [1, 2], and then presented a
more detailed analysis on how it might lead to a new
interaction paradigm [3]. The work presented here
leverages this theoretical basis and shows the practical
aspects of developing such an interface.
Many pop-up menu systems are well adapted for pen-based
interaction. Several systems, such as Pie Menu [12] and
Marking Menu [15], use direction and pen-up transition to
select commands. Other menu systems such as Control
Menu [24] and FlowMenu [9] use crossing as a way to
select commands. Since our system is crossing-based, we
decided to use FlowMenu as our primary pop-up menu
system.
 In the recent years, several systems also challenged the use
of the point-and-click interface for pen computing in
whiteboard environments such as Tivoli [22], FlatLand [20]
and PostBrainstorm [10], on the desktop [26], or for pen
computing [27]. These systems are in general tuned to a

certain class of applications (such as brainstorming for
example) and did not focus on crossing as the sole
interaction paradigm. They were nevertheless influential to
us.
Finally, several systems, such as SATIN [11], have
explored gesture-based interactions. Although gestures are
important to crossing-based interfaces, the gestures
implemented in CrossY are relatively simple and, by
adding a crossing requirement, ambiguity is reduced. In
that respect our system is similar to Geißler’s Gedrics [8], a
system in which users can select the action performed by
an icon by drawing a given gesture on top of it.

CROSSY
CrossY is a simple sketching program offering several tools
(e.g., a pen, a highlighter, an eraser). It was designed to run
on the Tablet-PC platform without a keyboard. CrossY
offers a simple search-and-replace feature which lets users
find strokes based on their attributes (color and thickness)
and replace them. It also let users modify tool attributes.
Although this drawing system is primitive by today’s
standards, CrossY demonstrates how most of the standard
widgets of point-and-click interfaces (Figure 2) can be
implemented in a goal crossing framework.

Command selection
Like many drawing applications, the CrossY interface
implements two kinds of menu systems. Common tools are
accessed through a tool palette placed on the right of the
display (see Figure 1). This layout was adopted to limit

Figure 3 Comparison of the traditional scrollbar to
our scrollbar. The stars indicate a click. The dots
indicate that the pen is touched to the screen, and
the strokes show the gesture which triggers the
action.

5Volume 6, Issue 2

potential hand occlusion. CrossY offers five basic tools to
choose from: a pen, an eraser, a lasso, a highlighter and a
search tool. Each of these tools can be selected by simply
crossing its icon from right to left. Users can also move the
palette to a more convenient place. To do so, users cross the
center of the title bar between the two black marks from
left to right. This action starts the dragging interaction
which will stop as soon as the pen is lifted from the screen.
Crossing the same area from right to left brings the palette
back in its original position. This behavior is present for all
palettes. In addition, CrossY uses FlowMenu as the primary
command selection mechanism to control the application.
This includes commands for lasso, open a file, save the
current file, and quit the application

Navigating within the document
Users navigate the document with a crossbar, the equivalent
of the standard scrollbar shown in Figure 3. The crossbar
looks like a simple bar spanning the length of the document
viewport and shows the current location inside the
document. To interact with it, users perform gestures
crossing the bar. We provide several standard features such
as page up and page down. These commands are triggered
by open triangles drawn on top of the crossbar in the
direction of the desired movement (see Figure 3). To start a
continuous page down or page up, the user simply crosses
the bar a third time after issuing the initial command. The
document now scrolls continuously until the pen is lifted.
To jump to a specific position inside the document, the user
crosses the bar in the vicinity of the target location and then
finely adjusts the position by simple dragging motions on
the right side of the bar. Because absolute access and
adjustment are now two different parts of the same
interaction, it is possible to provide a different gain for both
phases. While the initial gain is defined by the ratio of the
document length to the scrollbar length, the gain can be
reduced during the adjustment phase to allow for finer
adjustments. While some experimental scrollbars such as
the FineSlider [17] provide similar options, the fluid

integration of the two phases is typically difficult to
achieve in a point-and-click interface. Another advantage of
the crossbar is that users are not required to reach a given
area of the bar before interacting. For example, they can
initiate scrolling commands anywhere on the scrolling area.
They also don’t need to acquire the crossbar‘s slider before
moving to an absolute position in the document; they just
need to cross the crossbar at the target position. This makes
the scrolling process faster and reduces the reliance on
visual feedback.

Selecting pen attributes
In CrossY, users can select pen attributes by using either the
pen attribute dialog box or the brush palette.
Pen attribute dialog box
The Pen attribute dialog box is opened by crossing the pen
tool button and extending the stroke towards the left.
Unlike current implementations, which present “dual-use”
in a tool palette (such as in Adobe Illustrator [4]), our
implementation does not force the user to dwell over the
button to access the extended features. This increases the
fluidity of the interaction and promotes chunking.
The pen attribute dialog box is presented in Figure 4, left. It
contains a set of radio buttons used to select the size and
color of the stroke. Radio buttons are designed such that
crossing along the horizontal axis of the label (in either
direction) will toggle the button. This feature reinforces the
notion that radio buttons represent exclusive choices
(Figure 4, left). By contrast, check boxes can be crossed
either horizontally or vertically (Figure 4, middle). For one,
this feature reinforces the fact that the check boxes are not
mutually exclusive. Further, we noticed that it was difficult
to cross only one item with a vertical stroke. Therefore we
provided tilted lines as a convenience to select several
items in a vertical stroke and one item in a horizontal stroke
(Figure 4 right).
An unusual aspect of the dialog boxes presented in Figure 4
is that they do not seem to include an OK/Cancel

Figure 4 Left: The CrossY palette with the pen-panel opened. A single stroke opens the pen-panel, selects width and
color of the strokes, and validates the selection. By convention, the left and bottom edges of each dialog box are
validation edges (shown in green), and the top and right edges are cancellation edges (shown in red). Middle: The
dialog box with check boxes to set the stroke-rendering attributes. A single stroke selects all items. Right: The dialog
box with the check boxes to set the stroke-rendering attributes. A single stroke selects only two items.

6

mechanism. The corresponding buttons are in fact very
close to the edge of the window. Both the bottom and left
border are validating borders (shown in green in our
implementation), while the top and right border are
cancellation borders (shown in red in our implementation).
This layout lets users select all relevant options and
validate the selection in one stroke.
Brush palette
The brush palette is used to set the pen attributes when a
wider range of selections is desired or the exact result is not
as important. The brush palette is built by setting two
sliders side by side. To select a new attribute, users simply
cross one of the sliders at the desired position. Again, note
that the user can select different attributes in one stroke,
and can memorize combinations as a specific gesture (see
Figure 5).

Finding and replacing stroke attributes
Our application also provides a simple “find-and-replace”
function which lets users change the attributes of some
strokes on the screen. The function is accessible through a
dialog box which is structured around two panels (Figure
6). On the top panel, the user can select the width and color
of the target strokes using a set of radio buttons. On the
bottom panel, the user can select the new width and color
for the selected strokes. After setting the target attributes,
the user can find the next stroke forward by crossing the
"find" button from right to left. Similarly, replacement is
triggered by crossing the "replace" button from left to right

(Figure 6, left). While this layout seems somewhat unusual,
it has been selected to encourage command composition.
For example a user can in one single gesture select
“medium” and “red”, cross the "find" button to find the
first occurrence of this type of line, cross the "replace"
button to indicate the need for replacement, and select
“blue” and “thin” as the replacement values (Figure 6,
middle). The command is executed as the pen is lifted from
the panel. Once the parameters have been correctly
selected, there is no need to reselect them, and a simple
circular motion between the "find" and "replace" button
will trigger the replacement (Figure 6, right). It is also easy
to skip some replacements by only circling around the
"find" button without crossing the "replace" button.
Backwards search is provided by crossing the "find" button
from left to right. An undo for replacements is achieved by
crossing the "replace" button from right to left.

Loading an existing drawing
The file dialog box (Figure 7) is called up through
FlowMenu. It lets users navigate the file system and load
an existing drawing. At first glance, using crossing to
navigate the file system hierarchy seems like a challenge
since current interfaces rely heavily on the use of sequential
point-and-click operations for this function. In traditional

Figure 5 The brush-palette and a single stroke
which selects color and width. The two small lines
in the title bar shows the crossing position to move
the widget.

Figure 6 Left: Separate strokes are shown in the find-and-replace dialog box. Users select the values for the target
stroke in the upper panel and the replacement values in the lower panel. Middle: The separate strokes are combined
into one single stroke. Right: Repeated find-and-replace operations are carried out with one continuous stroke.

Figure 7 The file dialog box. The small vertical line
in the middle of the widget is the crossing target for
expanding a prefix or opening a directory/file.

7Volume 6, Issue 2

navigation systems, users first have to search through the
list of files that is present at the current level. This is
typically achieved by using the scrollbar tab for coarse
adjustment and the arrow at the end of the scrollbar for line
by line movement. Next, users have to select the next
directory (or the target file) by double-clicking on its name.
For directories containing a large number of items, this
method can be quite cumbersome and is far less efficient
than a text based interface with auto-completion enabled.
We believe that the crossing paradigm provides ways to
combine the convenience of the graphical interface with the
speed of auto-completion.
In our directory navigation tool, the local directory is
scanned and its contents are parsed into a hierarchy of
display levels. Exploration of the file hierarchy works on
the same basis as auto-completion in text-based systems. At
the first level, we include all the names which are
unambiguous (i.e. which do not share a common prefix
with any other name) as well as the maximum common
prefixes for all other names in the directory. Exploration is
performed by expansion of successive prefixes as users
move through successive levels. For each prefix, we add
the list of unambiguous names and maximum common
prefixes derived from that prefix by adding in turn all
possible letters following this prefix (see Figure 8,
left/middle). It is important to note that there are only a
limited set of possible characters (256 in theory but far less
in practice) that may follow a given prefix. As a
consequence, moving from one level to the next only adds
a small number of new options for each prefix (often less
than ten). Yet, assuming an average of 10 new words per
prefix, after crossing only 3 levels 1000 elements can be
accessed.
Once created, this hierarchy can be navigated as follows
(Figure 8, right): At all times, the currently selected item is
presented highlighted at the center of the widget. Users can
change the currently selected item by moving the pen up
and down anywhere on the widget. To move one level
downward in the display hierarchy, users simply make a
left-to-right horizontal movement in the current gesture.

This causes the current highlighted prefix (represented with
an ellipsis, e.g. “P…”) to extend one level. A movement to
the right while an unambiguous name is selected, loads the
corresponding directory or file. To move one level upward
in the display hierarchy, users need to make a small right-
to-left horizontal movement in their gesture. Going upward
at the root display level loads the parent directory.
During navigation, feedback is provided in several ways:
when the user starts a horizontal segment, a crossing goal is
displayed in form of a little bar indicating the point at
which the transition to the next level will be triggered. This
feedback is mostly useful for the novice. For more expert
users, we also provide a “click” sound each time a
transition between levels occurs and a “select” sound each
time a directory (or a file) is selected. To distinguish
between files and directories, we display a slash at the end
of directory names.
This system is very efficient to navigate through large
directory structures given that the number of levels in the
prefix structure of each directory is typically small. This
allows the user to navigate through several directory levels
in the space of a small window.

Implementation
Our system was implemented in C# on a Tablet-PC using
the Windows XP Ink API and the .NET framework [14] as
the basis for our design. However, it could be easily ported
to any other language or operating system as it relies
primarily on basic windowing constructs (with the
exception of ink management).

DISCUSSION
CrossY was implemented as a platform to investigate how
crossing may improve the overall fluidity of pen-based
interactions on tablet computers. While it is missing many
advanced features of today’s graphical applications, it
clearly shows the potential of crossing as a design
paradigm. In this section we are reporting the insights we
gathered while designing CrossY.

Figure 8 Exploring a directory. Left: The directory content. Middle: The corresponding prefix structure. Right:
Navigating through a directory to open the file Papers04/Crossy.pdf. First, the prefix P is set in focus and expanded.
Second, the prefix Papers0... is selected and expanded. Next, the Papers04 directory is opened. Finally, Crossy.pdf
is selected and opened.

8

Expressiveness
From our experiences gained while implementing CrossY it
is clear that the crossing paradigm is at least as expressive
as the standard point-and-click interface and provides the
same level of functionality as the latter. It is possible to
offer a wide range of features with a minimal visual
footprint on the screen because the system accounts for the
crossing location (in the crossbar and the palette for
selecting pen attributes), the performed gesture (in the
crossbar), and the direction of the stroke. Similar
advantages were achieved in Gedrics [8] which uses
gestures on top of icons. We now report on the insights we
gathered while building our prototype.
Overloading versus easy discovery
Overloading different functions on top of the same visual
artifact is certainly attractive from the designer's point of
view. However, this approach raises the problem of
discovery: users need to “learn” the system as not every
interaction is self-explanatory in the first place. This is not
a new problem in interface design and was identified in
many systems such as the Marking Menu [15]. There are
several techniques to facilitate discovery. First, compared
to pure gesture based systems (such as [11]), the crossing
system provides visual cues suggesting that some actions
are available at a specific location. If we assume the use of
consistent design guidelines (such as the color-coded
borders for dialog boxes), the users will acquire the basic
set of overloading as they become more and more familiar
with the system. For example, this set includes the typical
direction used to perform an action as well as movement in
the reverse direction as a natural undo for the action. It is
also important to remember that while the WIMP interfaces
provide a lot of visual feedback, the semantics of this
feedback is not always clear for users. This prompted the
introduction of ToolTips. We are also considering to
implement the same technique as in Gedrics [8]: drawing a
question mark gesture on top of the widget will present a
description of the widget features.
Fluid composition of commands
Another interesting aspect of the crossing paradigm is the
possible composition of commands in one single stroke. We
see the feature of command composition as a unique and
fundamental aspect of this approach since it allows users to
smoothly move from novice to expert. Novice users will
perform one command at a time, while relying heavily on
visual feedback. As they become more and more proficient,
they start to remember the shape of the strokes
corresponding to a particular dialog box and rely less and
less on visual feedback. As described earlier, each
command combination can also be executed in separate
steps. This reduces the cost of making a mistake while
performing a long sequence of actions because the user
only needs to restart the gesture at the point where the error
occurred. While menu systems such as the Marking Menu
were designed to encourage such transitions in the case of

single command selections, we believe that this work is the
first to explore how the same effect can be obtained for a
succession of commands.
Although it is certainly too early to judge the success of the
composition approach, our initial experience implies that
the natural use of the pen in an interaction setting with the
computer supports command compositions. For example,
our implementation demonstrates how crossing may
alleviate the need for dwell time for several types of
interactions.
Somewhat like the keying system proposed by Zhai [30]
(and Quikwriting [23]), we envision a system in which as
novice users discover the interface, they also train
themselves towards generating accurate gestures for the
most commonly used commands. At some point, users will
be able to remember the shape of the gesture well enough
to be able to generate it on top of the interface elements
without the need for visual feedback. We believe that such
a system could be implemented by having two concurrent
tracking mechanisms for user input. The first mechanism
will be based on the system described above and will track
the crossing of each interface element. This mechanism
will typically require visual feedback. The second tracking
mechanism will use a gesture recognition engine to classify
user input into possible strings of commands. Depending
on specific aspects such as the start of the stroke, the scale
of the stroke, or its overall speed, the input of both systems
can be integrated to infer the user's commands.
Our implementation of the directory navigation system is
the first step in that direction and shows how relaxing the
strict constraints of goal crossing can help to improve
interaction fluidity. As shown in Figure 9, our first design
for the directory navigator was based on a simple but rigid
paradigm: the user had to build the prefix one letter at a
time, from left to right, by crossing a virtual crossbar with
A at the top and Z at the bottom. While very simple in
principle, this approach proved to be very difficult to
manipulate. The layout creates abrupt changes in direction

Figure 9 Original design for the directory navigation
system. The system was based on an absolute
mapping scheme (A on top and Z at the bottom)
with a transition from one level to the next on strict
boundaries, shown as light lines.

9Volume 6, Issue 2

which causes users to overshoot the path they are supposed
to follow. By providing only one selection and letting the
user create a crossing mark at its current location our
current implementation provides a very similar conceptual
model but simplifies the general interaction constraints on
the user.

Space and time efficiency
In our experience, if one considers novice users, the space
requirement of a crossing-based interface will be similar to
the equivalent point-and-click interface. This is derived
from the fact that the crossing efficiency is similar to that
of aiming [3], so one can simply substitute every standard
button with a crossing button of the same size.
Yet, when one wishes to leverage command composition, a
space vs. speed trade-off will appear because some space
will be needed due to the sloppiness of rapid gestures. This
means that we need to provide more space for each widget
in order to ensure reliability. Based on our experience, we
believe that a slightly larger footprint may be acceptable as
the expected speed benefits from command composition
are substantial. Furthermore, natural constraints of efficient
visual layout (such as the use of negative space as
described in Mullet et al. [19]), may be all that is needed.
Of course, it is too soon to know for sure and we intend to
conduct user experiments to confirm or disconfirm this
conjecture.

Navigation through large lists (or hierarchies)
Our exploration of the crossing-based interface led us to a
novel way to navigate large lists (and by extension large
hierarchies) which seems more efficient and fluid than the
traditional list box approach. This problem has been
explored before in speed-dependent zooming [11],
geometric Fisheye distortion in the FishEye menu [6],
user's directed pruning of the hierarchy as in Favorite
Folders [16], and in a combination of data visualization,
keyword and category search in Masui’s multi-view
information retrieval system [18]. By using the prefix
hierarchy as the basis for our progressive disclosure
strategy (a fisheye in the general sense described by Furnas
[7]), we create the pen equivalent of the keyboard based

auto-completion system. This approach (somewhat similar
to the Dasher [28] predictive text entry mechanism) limits
the number of choices to be performed by users and offers
a more fluid way to navigate hierarchies.
While we demonstrated this system for lists, it can be
applied to any data set for which one can define an ordered
prefix hierarchy. This includes information such as date
(structured by year, month, day, hour…), but also any
tabular data with columns that have a natural order.

Consistency
In general the consistency over the whole application is
stringent in the sense that crossing widgets from right to
left triggers the action. This creates the main interaction
direction (right to left) which minimizes occlusion for
right-handed users. There are nevertheless several
exceptions to this rule in our system. The first concerns the
find-and-replace dialog box. In this case, the replace button
is crossed from left to right in order to trigger the
replacement. This enables the user to control the whole
find-and-replace-dialog with one single stroke, and makes
it possible to use the reverse movement as “undo replace”
for the replace button and as “find backwards” for the find
button. This potential for command composition was
judged to be more important that consistency. The second
instance concerns the file dialog box. Here, the role of the
normal reading direction in Western languages was so
overwhelming that it seemed more important than
consistency. For both cases, it is not clear yet, if these
inconsistencies are a source of confusion for users. Note
also that sometimes we offer more flexibility. For example,
dialog boxes have two validation borders (left and bottom)
and two cancellation borders (right and top). This was
required to simplify “exit” paths.

Hardware and software considerations
Early Tablet-PCs were unable to track the pen outside the
screen area. This causes problems when a gesture is started
on the screen but extended outside of it. This problem is
common in the direct setting, and could be easily addressed
by extending the tracking area beyond the limit of the
screen. While newer models, such as the Toshiba Portégé

Figure 10 Leveraging the tracking information during a scrollbar interaction. If the system only uses the information
gathered after the pen touches the screen (shown here as a solid line), it may be difficult to recognize the intended
gesture since the first stroke is very small. Taking into account the information gathered while the pen is in tracking
range (shown here as a dotted line) can greatly improve gesture recognition since the system can observe a longer
stroke.

10

are doing just that, the mouse information provided to the
application framework is still clipped at the boundary of the
screen. We believe that providing the pen coordinates
outside the boundary of the screen (at least for requesting
applications), will significantly improve the usability of
these devices.
We further observed that sometimes users started their
crossing gestures before landing the pen. Also, they often
landed the pen very close to the crossing threshold (Figure
10). While this is not a problem for simple widgets such as
buttons, it makes it difficult to recognize the intended
gesture before the line is crossed and feedback needs to be
provided. For example, this might happen when setting the
absolute position of a document. To address this problem,
our system keeps a small queue of pen positions when the
pen is flying over the tablet. Values in that queue are used
at pen touchdown as a way to prime the gesture recognition
and increase its reliability.
While our interface was developed for pens on a Tablet-PC,
the results presented here can also be applied to other
configurations, such as digital whiteboards and desktop
computers using either a traditional mouse or a pen.

Initial user feedback
While we have not yet conducted formal user testing, we
can report on informal user feedback gathered during a
public demonstration of CrossY during our lab’s open
house. Generally, reactions were very positive and all users
liked the basic idea and interaction style. Yet, we observed
that it was difficult for naïve users to discover how to use
the interface without some initial explanation. Once the
system was briefly demonstrated, they adapted the new
technique very rapidly and were able to use it without any
further assistance. None of the users considered initial
problems with the system as a fundamental hindrance and
the overall opinion is best described by the comment of one
user: “We are so used to point-and-click, it will take a while
to get used to crossing.” Several of the users worked with
CrossY in direct comparison to standard drawing
applications and all users agreed that the way of interaction
with CrossY was much more intuitive and better suited for
the task (i.e., drawing) and the tool (i.e., a pen).

FUTURE WORK
We are planning to develop a richer toolkit of widgets to
extend the scope of our work. This toolkit will provide the
standard widgets used for building graphical interfaces as
well as new widgets that emerge from the new interaction
technique. We would also like to develop a set of design
rules which help to design applications based on crossing.
As part of this effort, we are planning an extensive user
evaluation program to investigate both low level
interactions (such as crossing a single goal), and sound
design rules. We would also like to investigate how to
improve self-discovery.

Beyond visual feedback
Further, we are investigating ways to foster a rapid
transition from visually-oriented interaction to gesture
based interaction. Our current prototype is already using
sound in some cases (e.g. during the directory navigation).
Tactile feedback transmitted from the screen through the
pen tip seems another obvious candidate. We are planning
to explore how new haptic techniques that simulate the feel
of physical buttons on displays [21, 25] could be extended
to create “haptic channels”. This might help users to
navigate through complex dialog boxes with minimum
visual feedback.

CONCLUSION
We presented the first exploration of crossing as the
primary building block of a graphic user interface. We
found that crossing is as expressive as the more traditional
point-and-click interface and provides designers with more
flexibility than the latter because it takes into account the
shape and direction of the strokes. We also found that a
crossing-based interface can encourage the fluid
composition of commands in one stroke. We illustrated this
feature with several examples such as our find-and-replace
dialog box. We believe that this fluid composition of
commands will ultimately lead to more efficient and natural
interfaces for pen computing. We also believe that our
findings can be applied in other domains such as
whiteboard environments and mouse-based desktop
computing.

ACKNOWLEDGEMENTS
The authors would like to thank Grecia Lapizco-Encinas
and Alejandro Rodriguez who implemented an early
prototype of a crossing-based interface as part of a graduate
HCI seminar project. We also wish to thank Corinna
Löckenhoff, Anja Szustak and all other reviewers of early
drafts of this paper for their comments. This work has been
supported in part by Microsoft Research for the Microsoft
Center for Interaction Design and Visualization at the
University of Maryland. Dave Levin drew the screen
content of Figure 1.

REFERENCES
1. Accot, J. and S. Zhai. Beyond Fitts' Law: Models for

Trajectory-Based HCI Tasks. Proceedings of Human
Factors in Computing Systems, CHI'97, pp. 295 - 302.

2. Accot, J., Les Tâches Trajectorielles en Interaction
Homme-Machine—Cas des tâches de navigation., PhD
thesis, Université de Toulouse 1. 2001

3. Accot, J. and S. Zhai. More than dotting the i's ---
foundations for crossing-based interfaces. Proceedings
of Human Factors in Computing Systems, CHI'03, pp.
73 - 80.

4. Adobe System Incorporated, Illustrator 10.
5. Baudisch, P. Don't click, paint! Using toggle maps to

manipulate sets of toggle switches. Proceedings of

11Volume 6, Issue 2

User Interface Software and Technology, UIST'98, pp.
65 - 66.

6. Bederson, B.B. Fisheye menus. Proceedings of User
Interface Software and Technology, UIST'00, pp. 217 -
225.

7. Furnas, G.W. Generalized fisheye views. Proceedings
of Human Factors in Computing Systems, CHI'86, pp.
16 - 23.

8. Geissler, J. Gedrics: the next generation of icons.
Proceedings of International Conference on Human-
Computer Interaction, INTERACT’95, pp. 73 - 78.

9. Guimbretière, F. and T. Winograd. FlowMenu:
combining command, text, and data entry. Proceedings
of User Interface Software and Technology, UIST'00,
pp. 213 - 216.

10. Guimbretière, F., M. Stone, and T. Winograd. Fluid
interaction with high-resolution wall-size displays.
Proceedings of User Interface Software and
Technology, UIST'01, pp. 21 - 30.

11. Hong, J.I. and J.A. Landay. SATIN: a toolkit for
informal ink-based applications. Proceedings of User
Interface Software and Technology, UIST'00, pp. 63 -
72.

12. Hopkins, D., The Design and Implementation of Pie-
Menus. Dr. Dobb's Journal, 1991. 16(12): p. 16 - 26.

13. IBM, Lotus Notes (http://www.lotus.com). 2004.
14. Jarett, R. and P. Su, Building Tablet PC Applications.

2002: Microsoft Press.
15. Kurtenbach, G., The design and Evaluation of Marking

Menus, PhD thesis, University of Toronto. 1993
16. Lee, B. and B. Bederson, Favorite Folders: A

Configurable, Scalable File Browser UMD,
17. Masui, T., K. Kashiwagi, and I. George R. Borden.

Elastic graphical interfaces to precise data
manipulation. Proceedings of Human Factors in
Computing Systems, CHI'95, pp. 143 - 144.

18. Masui, T., M. Minakuchi, I. George R. Borden, and K.
Kashiwagi. Multiple-view approach for smooth
information retrieval. Proceedings of User Interface
Software and Technology, UIST'95, pp. 199 - 206.

19. Mullet, K. and D. Sano, Designing Visual Interfaces:
Communication Oriented Techniques. 1994: Prentice
Hall.

20. Mynatt, E.D., T. Igarashi, W.K. Edwards, and A.
LaMarca. Flatland: new dimensions in office
whiteboards. Proceedings of Human Factors in
Computing Systems, CHI'99, pp. 346 - 353.

21. Nashel, A. and S. Razzaque. Tactile virtual buttons for
mobile devices. Proceedings of Human Factors in
Computing Systems, CHI'03, pp. 854 - 855.

22. Pederson, E.R., K. McCall, T.P. Moran, and F.G. Halas,
Tivoli: an electronic whiteboard for informal
workgroup meetings, in Human Factors in Computing
Systems. INTERCHI '93. 1993, IOS Press: Amsterdam,
Netherlands. p. 391-8.

23. Perlin, K. Quikwriting: continuous stylus-based text
entry. Proceedings of User Interface Software and
Technology, UIST'98, pp. 215 - 216.

24. Pook, S., E. Lecolinet, G. Vaysseix, and E. Barillot.
Control menus: excecution and control in a single
interactor. Proceedings of Human Factors in
Computing Systems, CHI'00 Extended Abstracts, pp.
263 - 264.

25. Poupyrev, I. and S. Maruyama. Tactile interfaces for
small touch screens. Proceedings of User Interface
Software and Technology, UIST'03, pp. 217 - 220.

26. Ramos, G. and R. Balakrishnan. Fluid interaction
techniques for the control and annotation of digital
video. Proceedings of User Interface Software and
Technology, UIST'03, pp. 105 - 114.

27. Saund, E., D. Fleet, D. Larner, and J. Mahoney.
Perceptually-supported image editing of text and
graphics. Proceedings of User Interface Software and
Technology, UIST'03, pp. 183 - 192.

28. Ward, D.J., A.F. Blackwell, and D.J.C. MacKay.
Dasher—a data entry interface using continuous
gestures and language models. Proceedings of User
Interface Software and Technology, UIST'00, pp. 129 -
137.

29. Winograd, T. and F. Guimbretière. Visual instruments
for an interactive mural. Proceedings of Human
Factors in Computing Systems, CHI'99 (Extended
Abstracts), pp. 234 - 235.

30. Zhai, S. and P.-O. Kristensson. Shorthand writing on
stylus keyboard. Proceedings of Human Factors in
Computing Systems, CHI'03, pp. 97 - 104.

12

