
CH1'89 P R O C E E D I N G S M A Y 1989

PLANAR MAPS: AN INTERACTION PARADIGM
FOR GRAPHIC DESIGN
Patr ick Baudelaire Michel Gangnet

Digi ta l E q u i p m e n t C o r p o r a t i o n

P a d s R e s e a r c h L a b o r a t o r y

85, A v e n u e V i c t o r H u g o

92563 R u e i l - M a l m a i s o n F r a n c e

In a world of changing taste one thing remains
as a foundation for decorative design - -
the geometry of space division.
Talbot F. Hamlin (1932)

ABSTRACT
Compared to traditional media, computer illustration soft-
ware offers superior editing power at the cost of reduced free-
dom in the picture construction process. To reduce this dis-
crepancy, we propose an extension to the classical paradigm
of 2D layered drawing, the map paradigm, that is conducive
to a more natural drawing technique. We present the key
concepts on which the new paradigm is based: a) graphical
objects, called planar maps, that describe shapes with multi-
ple colors and contours; b) a drawing technique, called map
sketching, that allows the iterative construction of arbitrarily
complex objects. We also discuss user interface design is-
sues in map based illustration software.

KEY WORDS
Illustration Software, Drawing Paradigm, Planar Map, Map
Sketching, User Interface Design.

INTRODUCTION

Consider drawing on a computer screen, using a typical in-
teractive graphics program, two orthogonal pairs of parallel
lines as shown in Fig. 1. This is a trivial task on any geomet-
rical drawing software. However, this apparent ease actually
hides an intriguing difficulty. To the eye of the designer, this
picture can be viewed in many different ways, two possibil-
ities being as a set of four lines or as a rectangular area. If it
is viewed as a rectangular area, then a natural option would
be to fill the rectangle with color. With traditional graphic
arts media (pencil, ink, paint, etc.), the designer would have
complete freedom to do so.

Permission to copy without fee all or part of thls material is
granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the ACM copyright
notice and the title of the publication and Its date appear,
and notice Is given that copying is by permission of the As-
sociation for Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific permission.

© 1989 A C M 0-89791-301-9 /89 /0004-0313 1.50

Figure 1: Four lines or a rectangular area ?

Unfortunately, with typical drawing software this dual in-
terpretation is not possible. The picture contains no manipu-
lable objects other than the four original lines. It is impossi-
ble for the software to color the rectangle since no such rect-
angle exists. This impossibility is even more striking when
the four lines are abutting as in Fig. 2. We feel that such a
restriction, counter to the traditional practice of the designer,
is a hindrance to productivity and creativity. In this paper
we propose a new drawing paradigm that will permit a dual
interpretation of Fig. 1 and Fig. 2.

Figure 2: A rectangle or four lines ?

The solution we present here is an extension to the classi-
cal drawing paradigm that is the foundation of current graph-
ics software. Our solution allows the designer to create
and manipulate 2D graphical objects of arbitrary complexity,
which we callplanar maps. We also propose a new drawing
method, called map sketching, that seems more natural and
more efficient for constructing certain classes of drawings.
We begin by describing the classical paradigm. Then we
present the map concepts and we discuss several issues that
come up when designing a user interface that accomodates
both the classical and the planar map drawing paradigms.
All figures were produced with map sketching software. The
most general graphics primitive in the current implementa-
tion is a path made of B6zier arcs [10].

Digital Equipment Corporation is pursuing patent protection
on part of the technology described in this paper.

3 1 3

CH1'89 PROCEEDINGS MAY 1989

THE CLASSICAL DRAWING PARADIGM
To set the stage, let us first summarize the objects and edit-
ing functions that characterize the classicalparadigm for 2D
drawing. We are excluding from our analysis bitmap or pixel
painting software. Instead, we are interested in the interac-
tive construction of drawings that are represented as geomet-
ric objects and that can be viewed and printed in a resolution
independent way.

Objects are typically open or closed paths, made of line seg-
ments or curves, with rendering attributes such as color, tex-
ture, width, etc. A closed path (also called a contour) may
be filled with a single color, texture, pattern, paint, bitmap,
etc. A path may be self-intersecting. These objects share a
unifying feature: they are drawn in one single stroke, without
lifting the pen. Note that in the PostScript language, paths can
include "move to" statements, which means that PostScript
objects may have holes or comprise distinct pieces. How-
ever, to our know.ledge, no interactive 2D drawing software
takes advantage of this possibility.

Drawing tools provide two ways to create a path:

• From a template that produces a stretchable predefined
path such as a rectangle, circle, oval, etc.

• As an ordered list of points: for instance a polyline,
polygon, or polyspline, defined by its end points, ver-
tices, spline knots, B6zier control points, etc. In this
paper, we will cover all these cases by generic terms:
polyarc and control points.

The classifications of a path as either open or closed, and as
either a template or polyarc, are independent of each other.

Layering serves two distinct purposes:

Rendering : The image is produced by overlaying ob-
jects from back to front, a process that harmonizes com-
puter graphics technology (e.g., algorithms for paint-
ing bitmaps, the concept of a display list, the PostScript
imaging model) with traditional graphic arts techniques
such as cut and paste or animation cells.

Logical ordering: Semantic attributes or names are as-
sociated with sets of layers, allowing either partial dis-
play or selective user action. This feature is typically
found in CAD applications.

Here we only consider rendering layers, a concept usually de-
scribed as 2 1/2D imaging. In the classical paradigm, there
is one and only one object per layer.

Global editing functions are used to rearrange and layout
the picture: erase, move, copy, transform, group, etc. They
apply in an identical manner to both template and polyarc ob-
jects.

Shape editing functions are specific to each type of path.

Bounding box handles are used for resizing and reshaping
templates. Polyarcs are modified by editing control points.

A number of known research and commercial applications
that have been developed for electronic publishing follow
this drawing paradigm, including: Draw [6], Griffin [16],
MacDraw [3], Illustrator [1], Freehand [2].

EXTENDING THE CLASSICAL PARADIGM
Although i t is feasible to create intricate pictures with cur-
rent CAD or illustration software it is not always easy. A
good measure of a program's effectiveness is not the maxi-
mum image complexity that i t can produce but the simplicity
of the drawing process i t induces. In this respect, the classi-
cal paradigm has dear limitations: certain kinds of illustra-
tions are difficult to construct even though they are graphi-
cally simple. Too often, to achieve a desired graphical result
the designer must resort to an indirect drawing strategy. Let
us consider two typical examples.

The "jigsaw puzzle" problem is a common one: in Fig. 3
a shape is to be divided by some arbitrary path. Typically,
the designer must carefully construct two pieces whose edges
match perfectly. Even with a good replication function, this
process is more work than it needs to be.

Figure 3: Building a divided shape.

Another case is when a given shape cannot be produced with
available drawing tools (often limited to rectangles, ovals,
and polylines). To produce a non standard shape, the de-
signer must resort to collage and masking, hiding parts of
objects with other overlapping objects (often in the color of
the background) to create an illusion that looks like the de-
sired result (Fig. 4--masking shapes are outlined).

L
Figure 4: Collage and masking.

Computer drawing certainly provides superior editing power
for modifying objects after they have been drawn. But com-
pared to a pencil and eraser, today's computer techniques are
still too restrictive.

3 1 4

CH1'89 PROCEEDINGS MAY 1989

Figure 5: Map sketching.

Several avenues of research towards more effective draw-
ing systems have been explored. In Juno, Nelson offers a
constraint language to express spatial relationships between
objects [14]. Pier, Bier, and Stone, propose in Gargoyle so-
phisticated construction tools reminiscent of the ruler and
compass [8], [15]. In Tweedle, double view editing gives
a choice of direct manipulation or procedural description of
pictures [4].

In the two examples of Fig. 3 and 4, the common miss-
ing feature is the ability to build shapes from other shapes.
It would be nice to regain this freedom, without losing the
known advantages of computer drawing. In the work pre-
sented here, we propose a new paradigm that induces a draw-
ing process closer to traditional practice. More importantly,
we achieve this by extending the classical paradigm, which
remains fully adequate in many cases.

The solution can be summarized as follows:

• Extend objects to be multicolor, multicontour shapes,
which we call maps, an abbreviation for planar maps of
graph theory [17]. Thus, a path is a simple map.

• Offer a new construction process for building and edit-
ing maps by iteration of three basic steps: drawing, eras-
ing and coloring. We call this process map sketching.

We keep everything else the same: 2 1/2D layering,
global editing and shape editing functions. Hence, the map
paradigm is a superset of the classical drawing paradigm. In
the next section, we describe the map sketching process and
illustrate with examples that show the properties of maps.

At this stage, let us present some more terminology bor-
rowed from graph theory. End points and corner points of the
strokes, along with points at which they intersect, are called
the vertices of the map. A portion of a stroke delimited by
two adjacent vertices is called an edge. A region of the plane
that is bounded by a set of connected edges is called a face.

To modify a map, two more operations are used: erasing
an edge and coloring a face (Fig. 5 bottom). These are simply
variants of the erasing and coloring operations of the classi-
cal paradigm. Drawing, erasing, and coloring can be iterated
in any order to build a map. Graphical objects of arbitrary
complexity can be constructed in this way. The fundamen-
tal property of a map is that it is transformed into another
map by simple graphical operations. Map sketching is thus a
general process for building shapes from other shapes. In ad-
dition, automated compound operations, easy to implement
on a map data structure, are sometimes useful. They are best
described by the following illustrations (Fig. 6, 7, and 8).

Figure 6: Cleaning a map removes dangling edges.

MAP SKETCHING
This technique consists of applying a succession of elemen-
tary drawing, erasing, and coloring operations in a single
layer, as if working with pen, eraser and color on a trans-
parent sheet of paper. Consider doing in sequence several
standard drawing operations, either template or polyarc, so
that the strokes cross each other (Fig. 5 top). At each step,
the resulting graphical object is a multi-contour or multi-path
shape that becomes more and more complicated: it is a map. Figure 7: Outlining a map yields its outer contour.

3 1 5

CH1'89 PROCEEDINGS MAY 1989

/

Figure 8: Cutting or punching a map with a contour.

Map sketching is in fact somewhat similar to the traditional
pencil and eraser techniques. The following examples illus-
trate the convenience of the process.

In many designs, contours are traced over elaborate con-
struction lines. In Iraditional media, ink and color are applied
over precisely built pencil slxokes. This drawing technique
is commonly used in designing logos, monograms and other
symbolic artwork [5]. Even with the help of grids and align-
ment tools, exact positioning and fitting of separate pieces is
difficult or cumbersome. In map sketching, one goes directly
from intersecting construction lines to final contours by eras-
ing the parts of the construction lines that do not belong to
the contours (Fig. 9 and 10, design by Eurosud [5]).

II II II II II ,, ,,,, ,,,, ,,

i i :,,ff i i fi //12;,;,'" "22"/2"

/ / / / / /): f . ' . , ,

Figure 9: Construction line map for a monogram.

NNY)
Figure 10: Final map of monogram.

Other designs rely explicitely on the visual interplay of in-
tersecting contours, see [12] and [11]. This contruction style,
akin to op-art, is frequently used in logos (Fig. 11). Map
sketching seems the most straightforward drawing technique
in this case.

Figure 11: Map for CHI'88 logo.

Another category is illustrated on Fig. 12. These are sim-
ple pseudo-3D drawings where perspective and hidden line
removal are done by the user. Edge erasing on a map is a
very simply way of removing hidden lines on a hand-drawn
wire-frame perspective.

0

Figure 12: Map sketching of a simple 3D view.

USER INTERFACE DESIGN ISSUES
Maintaining compatibility with the classical paradigm and
taking the new vantage point offered by planar maps turn
out to be somewhat opposing goals. The main difficulty is
that the user interface must deal in a homogeneous manner
with simple objects (the single stroke paths of the classical
paradigm) and with complex objects (maps) that are them-
selves built from simpler objects. The need to address both
levels of complexity arises for most commands and the re-
sulting asymmetry is a significant interface design obstacle.
We have found that the two key design problems were lay-
ering and local editing of maps.

3 1 6

CH1'89 PROCEEDINGS MAY 1989

Layering
Reducing ambiguity is a good principle in user interface de-
sign but ambiguity cannot be avoided in graphics: there is
never a unique way to construct or interpret a drawing. For
instance, the rectangular shape in Fig. 2 can be built in at least
nine ways from a rectangular template or polyline primitives.

This first aspect of graphical ambiguity results from object
typing: four abutting lines forming a rectangle will behave
differently than a template rectangle. The map paradigm
tends to suggest a unique representation for objects: as a map,
the drawing of Fig. 2 allows action both on the edges (i.e., the
lines) and on the face (i.e., the rectangle).

Another source of potential ambiguity is layering: how
many objects, in how many layers, compose a drawing ?

One way to reduce ambiguity would be a single-layer
single-map paradigm. Although drawings of arbitrary com-
plexity could be produced with this paradigm, it is clearly
too restrictive: multi-object layering appears to be a funda-
mental graphics design principle, and we have adopted this
requirement from the start for compatibility with the classical
paradigm.

In the classical drawing process, any new object (either
created from scratch or by duplication) becomes a new layer.
In the map sketching process, the designer creates a new
shape by working repeatedly on the same layer. Clearly, we
want a user interface that allows both.

To achieve this goal, we view a drawing as composed of
layers, each of which contains either a classical single stroke
path, produced by standard drawing tools, or a map created
by sketching. This solution raises two distinct questions:
layer control and connectivity.

Layer control addresses three functions:

• Switching between the standard drawing process (single
stroke paths) and map sketching.

• Getting a blank sketching layer, to start a new map.

• Getting an existing layer, to modify a map or a single
stroke path.

Thus, map sketching and the classical drawing process
have to be alternate drawing modes. We believe that this can
be done by adding only one new explicit layer control com-
mand, for instance to conclude a map sketching sequence.

In addition, we also have found it useful to provide a func-
tion that extracts a sequence of edges from a map and turns
it into a simple path, in a new layer, that can be edited with
the standard tools. This is discussed further below.

The issue of connectivity has a bearing on the concrete
metaphor used for maps. In the classical paradigm, discon-
nected shapes are by definition separate objects contained in
separate layers, even when there is no way to check this fact
visually. To use a graphic arts analogy, objects can be seen as
pieces of colored paper cut into different geometrical shapes.

The map paradigm calls for a quite different physical anal-
ogy. Theoretically, the concept of a planar map allows dis-
connected shapes in a single layer to compose a unique map.

This may cause ambiguity since there is nothing that distin-
guishes visually the rendering of one map with two compo-
nents from that of two separate maps.

Although this multiple component principle apparently
conflicts with the classical paradigm, we believe that it is
useful to preserve it. Invoking the analogy of geographical
maps, it seems natural to consider that an island belongs to
the same map as the mainland nearby. To conclude on what
appears to be an adequate physical metaphor, a map should
be viewed as an infinite a-ansparent sheet on which colored
faces are painted, allowing any number of separate compo-
nents as well as holes, which are just transparent faces.

Editing a Map
Although map sketching is the fundamental creation and lo-
cal editing paradigm for maps, there are other local editing
methods that also deserve attention.

Moving a vertex and its incident edges is simple, but it
may cause edges to cross. More generally, this situation will
come up if we want to apply to maps the same control point
functions that are used with polyarcs. Self-crossing, although
allowed in a polyarc, contradicts the very definition of a map:
two edges may cross during rubber-banding, but they will
necessarily produce a new vertex in the final map. This rule
puts constraints on vertex editing, as demonstrated in Fig. 13.
A good solution is to extract a set of edges from a map, edit it
outside the map as a polyarc path and reinsert it into the map.

..,.~ ~ , ~

:~:i:i~:~ i:; ".::::: .,?.:'.~

/X

Figure 13: The effect of edge-crossing on vertex dragging.

To go even further, it is interesting to allow in place editing of
original constituent objects, using their intrinsic editing mode
(i.e., with the handles of a template or the control points of
a polyarc). This operation should also work if some of the
edges have been erased and even if the object spans more
than one component of the map (Fig. 14).

Figure 14: Dragging a constituent path within a map.

317

CH1'89 PROCEEDINGS MAY 1989

template & polyarc drawing tools

s t a n d a r 7 ~ ~ k e t c h i n g mode

~ ' ~ insert ,

extract

template & polyarc editing

CLASSICAL DRAWING PARADIGM

map editing

MAP PARADIGM

SUMMARY OF THE MAP PARADIGM

ACKNOWLEDGEMENTS
The initial work on planar maps was started in 1983 by
Michel Gangnet and Dominique Michelucci at Ecole des
Mines de Saint-Etienne, as a too1 for architectural design
[13]. This work was pursued at Tangram Inc. The first illus-
trator prototype demonstrating the map paradigm, Cadix, was
implemented on a Unix workstation [9]. The user interface of
a strict extension to MacDraw following the map paradigm
was specified in 1986 [7]. The technology was acquired by
Digital Equipment Corporation in 1987 and the work is being
pursued at the Digital Paris Research Laboratory.

The authors thank Jean-Manuel Van Thong for his as-
sistance in producing the figures, and Brad Chen, Henri
Gouraud, and David Salesin for helpful suggestions on the
writing of this paper.

Adobe Illustrator is a trademark of Adobe Systems Inc. PostScript is a

registered trademark of Adobe Systems Inc. Macintosh is a trademark of

Apple Computer Inc. Unix is a registered trademark of AT&T. Freehand is

a trademark of Aldus Corp. MacDraw is a trademark of ClarisCorp.

REFERENCES
[1] Adobe Hlustrator User's Manual. Adobe Systems Inc.,
Palo Alto, 1987.
[2] Freehand User's Manual. Aldus Corp., Seattle, 1987.
[3] MacDraw Manual. Apple Computer Inc., Cupertino,
1984.
[4] P. J. Asente. Editing Graphical Objects Using Procedu-
ral Representations. Research Report 87-6, Digital Equip
ment Western Research Laboratory, Palo Alto, 1987.

[5] D. Baroni. Art Graphique Design. Editions du Ch6ne,
Pads, 1987.
[6] P. Baudelaire. Draw Manual, in Alto User's Handbook.
Technical Report, Xerox Palo Alto Research Center, Palo
Alto, 1979.
[7] P. Baudelaire. MacMap : Functional Specifications and
User Interface. Technical Report, Tangram Inc., Issy-les-
Moulineaux, 1986.
[8] E. A. Bier and M. C. Stone. Snap-Dragging. ACM Com-
puter Graphics, Vol. 20(4): 233-240, 1986.
[9] M. Gangnet and J. C. Herv6. D2: Un &liteur graphique
interactif. In Actes des Journ~es SMgO, EyroUes, Pads, 1985.
[10] M. Gangnet, J. C. Herr6, T. Pudet, and J. M. Van Thong.
Incremental Computation of Planar Maps. 1989. Submitted
for publication.
[11] S. Horemis. Optical and Geometrical Patterns and De-
signs. Dover, New York, 1970.
[12] C. P. Hornung. Handbook of Designs and Devices.
Dover, New York, 1946.
[13] D. Michelucci and M. Gangnet. Saisie de plans ~ par-
tit de trac6s ~ main-lev6e. In Actes de MICAD 84, Hennas,
Pads, 1984.
[14] G. Nelson. Juno, a constraint-based graphics system.
ACM Computer Graphics, Vol. 19(3): 235-243, 1985.
[15] K. Pier, E. Bier, and M. C. Stone. An Introduction to
Gargoyle: An Interactive Illustration Tool. In Proceedings
of EP'88, CUP, Cambridge, 1988.
[16] M. C. Stone. How to use Griffin. Internal Memo, Xerox
Palo Alto Research Center, Palo Alto, 1980.
[17] W. T. Tutte. Graph Theory. Addison-Wesley, Reading,
1984.

3 1 8

