
' ~ ~ ' Computer Graphics, Volume 23, Number 3, July 1989

Incremental Computation of Planar Maps
Michel Gangnet Jean-Claude Hervd Thierry Pudet Jean-Manuel Van Thong

Di g i t a l E q u i p m e n t C o r p o r a t i o n

Par i s R e s e a r c h L a b o r a t o r y

R u e i l - M a l m a i s o n , F r a n c e

Abstract

Aplanar map is a figure formed by a set of intersecting lines
and curves. Such an object captures both the geometrical and
the topological information implicitly defined by the data.
In the context of 2D drawing, it provides a new interaction
paradigm, map sketching, for editing graphic shapes.

To build a planar map, one must compute curve intersec-
tions and deduce from them the map they define. The com-
puted topology must be consistent with the underlying geom-
etry. Robustness of geometric computations is a key issue in
this process. We present a robust solution to Brzier curve in-
tersection that uses exact forward differencing and bounded
rational arithmetic. Then, we describe data structure and al-
gorithms to support incremental insertion of Brzier curves in
a planar map. A prototype illustration tool using this method
is also discussed.

CR Categories and Subject Descriptors: 1.3.5 [Com-
puter Graphics]: Computational Geometry and Object Mod-
eling - Curve, surface, solid, and object representations; Ge-
ometric algorithms, languages, and systems; 1.3.6 [Computer
Graphics]: Methodology and Techniques - Interaction tech-
niques; G. 1.1 [Numerical Analysis/: Interpolation - Spline
and piecewise polynomial interpolation; J.5 [Arts and Hu-
manities]: Arts, fine and performing.

Additional Keywords and Phrases: Brzier curves,
forward differences, curve intersection, planar maps, map
sketching.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01989 ACM-O-89791-312-4]891007/0345 $o0.~

1 Introduction

There is growing interest in the robustness of geometric com-
putations [10,6,13]. Different graphics algorithms have dif-
ferent sensitivity to numerical errors. In some cases numeri-
cal errors are acceptable. In others, one can find ways around
them. However, exact computation is sometimes mandatory.
The following examples demonstrate the range of effects.

When scan-converting 3D polygons, rounding errors on
face equations will not prevent the z-buffer method from ren-
dering a scene. The few erroneous pixels may not even be
visible. This is a case where numerical errors are innocuous.
A second example is a function performing point location in
a polygon with a parity test, using floating point arithmetic.
If the result returned by this function is used for identifica-
tion of the polygon and, say, modification of its color, then it
is acceptable for the function to return an empty result when
a reliable answer cannot be computed. Hence, in some 2D
drawing programs, the user must click well inside a polygon
to select it (which is better than selecting the wrong polygon).
As a third example consider a program implementing an al-
gorithm which presumes infinite precision. The Bentley-
Ottmann algorithm [3,20] for reporting intersections of a set
of non vertical line segments relies on the fact that two seg-
ments may intersect iff there exists a position of the vertical
sweep-line where they are consecutive. If the implementa-
tion produces an error when inserting a new segment in the
sweep-line then some intersections may be missed. In this
case, it is imperative to provide an exact answer.

Methods involving topological decisions based on geo-
metric computations are generally difficult to implement. We
describe a robust solution to an intersection problem which
arises in the context of a 2D drawing application. A set of
lines and curves like in Fig. 1 dissects the plane into vertices,
edges and faces. This type of geometric object is known in
graph theory as a map of a planar multigraph [24], hence the
name planar map we use below, and in computational ge-
ometry as an arrangement in the plane [7]. Data structures
describing embeddings of planar graphs in the plane can be
traced back to Baumgart 's winged-edge data structure and
have been studied by numerous researchers [20,12,9]. It is
standard practice to distinguish between the geometry, the
position of the vertices, geometric definition of the edges
and the topology, the incidence and adjacency of the vertices,

345

••SIGG RAPH

edges, and faces.
The problem addressed here is building a data structure

to support incremental insertion of new curves in a planar
map, dynamically computing new intersections and updat-
ing the data structure. In this case, topological information
has to be deduced from geometrical information. When two
curves intersect at a new vertex, the ordering of the four edges
around the vertex provides topological information used to
follow the contour of a face incident to the vertex. If floating
point arithmetic is used, it has been shown that the computed
slopes can give the wrong order [10,18]. This is similar to
the Bentley-Ottmann algorithm example above.

Our first implementation [19] used the Bentley-Ottmann
algorithm and rational arithmetic to compute the planar map
formed by a set of line segments, [11] is the description of a
2D illustration tool based on this first software. The method
was not incremental and the map had to be recomputed each
time a new segment was added. In [5], Greene and Yao solve
the intersection problem for line segments by working di-
rectly in the discrete plane. In [8], Edelsbrunner et al. study
arrangements of Jordan curves in the plane from a theoretical
point of view.

'89, Boston, 31 July-4 August, 1989

etc.), it is common practice to build shapes by drawing lines
and curves, erase some pieces thereof, and color or ink the
areas they delimit (see [1] and Fig. 2).

Figure 2: Graphic design by space division
(B. Munari in [1]).

The design of logos and monograms, floor plan sketching
by architects, cartoon ceils drawing and inking are examples
where this technique is used. In typical drawing software
there is no way to mimic this method. If Fig. 3a is drawn by
the user of a drawing application as four lines, it is impossible
for him to color the rectangle (as in Fig. 3b) since no such
rectangle exists. If the drawing were computed as a planar
map, this dual interpretation would be possible.

Figure 1: A planarmap.

In the next section, the utility of planar maps for 2D draw-
ing is briefly discussed. Section 3 details curve intersection.
First, Brzier curves are interpolated by polylines using for-
ward differencing. Then, the intersection between two inter-
polating polylines is computed with rational arithmetic, we
show how it is possible to limit the number of bits in this
process and how to control the quality of the interpolation.
Section 4 describes the map data structure and the two main
algorithms used in the planar map construction process: in-
cremental insertion of a curve and point location in a map.
The map topology is computed from the geometry of the
polylines. Since exact arithmetic is used in this process, the
map topology, although it may be different from the topol-
ogy defined by the true curves, is always consistent with the
geometry of the interpolating polylines.

2 Map Sketching

Our interest in planar maps is motivated by practical con-
cerns: with traditional graphic arts media (pencil, eraser, ink,

b

Figure 3: Four lines and a rectangle.

In [2], we have proposed two extensions to the 2D graphics
drawing paradigm: a) objects are multicolor, multicontour
shapes (i.e., planar maps), b) they are constructed by itera-
tion of three basic steps: drawing, erasing, and coloring. We
call this technique map sketching and have implemented it in
prototype illustration software used to draw the figures in this
paper. Fig. 4 illustrates map sketching. Strokes drawn by the
user are incrementally added to the map describing the draw-
ing. Two additional operations are allowed on a map: edge
erasing and face coloring. These steps can be iterated in any
order. Map sketching closely parallels the traditional pencil
and eraser method and is more natural and more efficient for
constructing certain classes of drawings. User interface de-
sign issues in map based illustration software are discussed
in [2].

346

~ Computer Graphics, Volume 23, Number 3, July 1989

l

Figure 4: Map sketching.

3 B~zier Curve Interpolation and Intersection

3.1 Overview

Curves to be inserted in a map are first converted to Brzier
form [21,4]. The incremental insertion algorithm (Sec. 4) has
two requirements. First, intersection points must be ordered
without error along a curve by their parameter values, in-
cluding the case of self-intersection. Second, if two or more
curves intersect at one point, they must be ordered without
error around the point. To meet these requirements, we use
the following strategy:

i. The control points of the Brzier curves have integer co-
ordinates on a grid large enough for 2D graphics appli-
cations. Grid size is discussed in Sec. 3.4.

2. The curve is replaced with an interpolatingpolyline. We
compute an exact interpolation of the curve by exact
forward differencing (FD). It is necessary that enough
bits are available to perform FD without a loss of preci-
sion (Sec. 3.2). Rather than storing polylines in the data
structure, they are computed as needed.

3. Computing the intersection of two exact polylines
causes an explosion in the number of bits. Thus, we
round the points of an exact polyline to the grid. This
reduces the intersection of two rounded polylines to the
intersection of line segments whose endpoints have inte-
ger coordinates. Ordering two intersection points along
the same line segment and ordering two intersecting line
segments around their intersection point is done with ra-
tional arithmetic. Note that the intersection points are

not rounded since this could modify the map topology.

4. Finally, it is natural with the map sketching technique
to use an existing intersection point as a new curve end-
point. We will show how to achieve this without in-
creasing the bit length of the arithmetic (Sec. 3.4).

The map deduced from the intersection process is the one
defined by the rounded polylines. No other rounding oc-
curs. The map topology, although it may be different from
the topology defined by the true curves, is always consistent
with the geometry of the rounded polylines.

,3.2 Interpolation Method

Wang [25,23] gives the following result. If the de Castel-
jau subdivision algorithm (midpoint case) is applied down to
depth k to a polynomial Brzier curve of degree d > 2 with
control points Vr, where:

then, all the chords (straight line segments) joining the end-
points of the 2 k control polygons which are the leaves of
the subdivision tree are closer to the curve than the thresh-
old e. In (I), D = ma.xo<,<d-2 IIV~+2 - 2V~+l + Vrll and

Ilvll = m a x (I z , I, IVy I) for a vector v. D can be called the
diagonal of the curve. Since reference [25] is not available
to us, an independent proof of this result is given in appendix
A, together with a bound on the chord length.

Consider the chord endpoints E~, 0 < i < 2 k . They form
a polyline E. It is faster to use ordinary FD [16] than sub-
division to compute E. Since a priori subdivision computes

347

~t~~SIGGRAPH

the complete tree to depth k, FD with fixed step size 2 - k
will generate the same polyline, provided that exact compu-
tations are done in both cases. We now show that the num-
ber of bits needed to perform exact FD is bounded. Suppose
that the control points of the curve have coordinates coded
into b bits. Then, computing the subdivision tree down to
depth k requires at most b + kd bits for the coordinates of the
Ei . In the FD loop, the only values involved in the ith iter-
ation are the forward differences & J E i , 0 ~ 3" <_ d. Since
we know from subdivision that, for all i , the computation of
Ei = £x°Ei requires at most b + kd bits, ~x3Ei requires at
most b + kd + j bits. Thus, exact FD with step size 2 - k can
be performed on the curve if b + {k + 1)d bits are available.

To limit the total number of bits needed when updating
a planar map, the intersection algorithm uses rounded poly-
lines. FD computes the exact coordinates of the Ei which are
then rounded to b bits.

'89, Boston, 31 July-4 August, 1989

3 .3 Intersection Algorithm

B6zier curve intersection is studied by Sederberg and Parry
[23]. In two of the algori thms they consider, rejection of
non-intersecting pieces of two curves is done by bounding
box comparison. FD is not convenient for successive mid-
point evaluations of a curve. To take advantage of bounding
boxes, a preprocessing step breaks the rounded polylines into
monotonic pieces. For such a piece, the box of any subpiece
is given by its endpoints coordinates. This method is also
used by Koparkar and Mudur [14] with another curve evalu-
ation method. During the planar map construction process, a
new curve is intersected with a subset of the curves already
inserted in the map. The preprocessing of the new curve finds
the monotonic pieces, saving data to be used in later compu-
tations. The new curve is then immediately inserted in the
map.

Preprocess ing . Let C be the new curve, a) use FD to com-
pute the exact polyline E and the rounded polyline P
of C, b) store P in an array, to be discarded after the
insertion of C, c) find the monotonic pieces of P , d) at
the end of a monotonic piece, save the permanent data
associated with it, that is, its first and last indices (i I , Q),
its bounding box, its quadrant, and the FD context at i I
(i.e., ~ J E i l , for all .7"). All these steps can be performed
in one single FD loop.

Intersection. It is enough to consider the intersection of
a monotonic piece of P , with indices (if,it), with a
monotonic piece of an existing curve G, with indices
(].t, 3i), whose bounding boxes overlap. First, compute
Q, the rounded polyline of G, between 3) and 3} using
the FD context at 9"// which has been saved when pre-
processing G, and store the result into an array. Then,
search the intersecting chords using binary subdivision
on the respective arrays (the box of any subset of points
considered in this subdivision is given by its two end-
points and the quadrant information). In the map sketch-

ing application, the existing curve G may be partially
erased. In this case only the monotonic pieces contain-
ing a non-erased part of G are intersected with C.

Two special cases must be handled: rounded chords with
a null length, and partially overlapping polylines (i.e., non
transverse intersections). After preprocessing, a new curve
is intersected with itself to detect multiple points and self-
overlapping. Naturally, line segments are not subdivided
since they are ready for intersection. It is worthwhile to cache
partially or totally generated curves. Two cases are frequent:
a) the same monotonic piece of G intersects different pieces
of C, b) successive new curves intersect the same existing
c u r v e .

3.4 Topology Consistency

This section describes how a consistent topology is obtained
from the geometrical data given by the intersection process.
For illustration software, the input can be rounded to an in-
teger grid if the grid size is large enough and if the scaling
factors are limited accordingly. A typical case is to output
the results on a 24" × 24" page at 300 dpi. Then, input con-
trol points may be defined on twice as large an area, to permit
clipped curves. We must also choose a maximum zoom fac-
tor: a reasonable value is 8. Since the rounded chords must
have even coordinates (see below), the input is scaled up by a
factor of two. 'The control points coordinates are thus coded
on b = 18 bits. Setting e = 1 in equation (1) gives k = 10 for
a degree 4 curve with the maximum diagonal, which is twice
the grid size. Thus, 62 bits are needed for the exact FD of this
curve, this goes up to 102 bits for a degree 7 curve with the
same diagonal. The much more usual case of a cubic with a
4" diagonal is 45 bits.

If chord intersection is performed on the exact polylines
the number of bits grows very rapidly. When two chords A B
and CD intersect at I , the coordinates of I and the values
of the two parameters u and v such that A1 = u A B and
C I = vCD must be computed exactly. All of these can be
expressed as rational numbers; for example, u = (AC ×
CD) + (A B × CD) where × is the cross product. With
endpoints coded on b + kd bits, this is 2(b + kd) + 3 bits for
the numerator and the denominator of the rationals. Since
different intersections along the same chord are ordered by
comparing their rational parameter values, the final number
of bits is 4(b + kd} + 6. For the first curve in the example
above, this is 238 bits. The situation is worse if we want to
use an existing intersection as the endpoint of a new curve.
Setting b = 238 in the above computations gives 1118 bits.
As noted by Forrest and Newell [10], the major drawback in
the rational arithmetic approach is the b low-up in the number
of bits.

To limit this number, the chord endpoints of the exact
polylines are rounded to even integer values. Chord intersec-
tion is done on the rounded chords and the intersection points
are exactly represented as rational numbers. To use an exist-

348

~ Computer Graphics, Volume 23, Number 3, July 1989

3 ' '

4

a b c

Figure 5: Vertex (rn, n) and chord ordering.

ing intersection point as the endpoint of a new curve without
increasing the bit length, we consider the semi-open rectan-
gles Rm,,~ = [rn - 1, m + 1) x [n - 1, n + 1), where rn and
n are even. Since the vertical and horizontal lines limiting the
rectangles have odd coordinates, there are no rounded chords
collinear with these lines. So, it is always possible, if two or
more chords intersect inside R~,,~, to order them along the
boundary of Rrn,n by using either the coordinates of their in-
tersections with the lines limiting the rectangle or their slopes
if they leave Rm,r~ at exactly the same point (Fig. 5a). We
define the center of t~m, n a s the vertex of the intersection
points lying inside R~,,~. This associates intersection points
with vertices but does not round their coordinates. To use a
chord intersection point as the endpoint of a new curve, we do
not use the point itself but the coordinates of the associated
vertex (Fig. 5b). Therefore, small faces lying inside a single
rectangle will not be represented in the map data structure
(Fig. 5c).

On a curve, an intersection point is represented as a pa-
rameter value p = (i, u) where i is the chord index on the
polyline and u a rational number giving the exact position of
the point on the chord. Since all chords have now rounded
endpoints, ordering two intersection points along one curve
requires at most 4b + 6 bits. We need also to order the inter-
sections of the chords with the lines limiting the rectangles
Rra,n. These are Brzier curves of degree 1, thus the stated
bound is valid. In the common case where only one intersec-
tion point is associated with a vertex, the slopes are used to
order the chords, requiring at most 2b+3 bits. In addition, the
method must support the erasing of curve pieces limited by
intersection points. It is therefore necessary to keep the initial
data defining the curve and to mark as erased or non-erased
the corresponding pieces. As noted above, the intersection
algorithm uses this information to return only actual inter-
sections. A curve is removed from the map data structure iff
it has been totally erased.

The method has two limitations. First, intersection is per-
formed on the rounded polylines. Thus, there are situations

(e.g., tangencies) where intersections between the true curves
are ignored. Likewise, polylines may intersect even if true
curves do not (e.g., two concentric circles with very close
radii interpolated by regular polygons whose sides intersect
pairwise). Second, the topology of a map computed in this
way is not invariant under general affine transforms. Thus,
the map has to be recomputed from the original data when-
ever it is rotated or scaled. The first limitation is inherent in
any linear interpolation process. However, for 2D graphics
applications, it is always possible to prevent any visible ef-
fects by choosing an appropriate grid size. The second limita-
tion can only be solved by using exact arithmetic on real num-
bers or symbolic computation on algebraic curves, which are
currently too slow for interactive applications. Without re-
computing the map, it is possible to perform integer transla-
tion (i.e., dragging) and scaling by a power of 2 (i.e., zoom-
ing), if we remain inside the grid.

In this section, we have shown that a robust method for the
computation of planar maps with linearly interpolated BEzier
curves requires at most b + (k + 1)d bits for the FD step and
4b + 6 bits for the intersection and sorting steps. Our imple-
mentation uses a variable length integer arithmetic package
coded in assembly language. In practice, the average size of
the numbers involved in the process is much smaller than the
above bounds. The only operation we must perform on ratio-
nal numbers is comparison, which is two integer multiplica-
tions and a test. The value of b is a parameter of the program,
allowing the grid size to be adapted to the resolution of the
display.

4 Data Structure and Algorithms

After describing the planar map data structure, we detail be-
low the two main algorithms. Curve insertion uses point lo-
cation in a map to find the face containing the first endpoint
of a curve. However, since point location is equivalent to the
insertion of a dummy line segment, curve insertion will come
first.

349

 , S,GGRAPH '89, Boston, 31 July-4 August, 1989

e

aws(s)

8

Figure 6: Map topology.

4.1 Planar Map Description

A map contains two different sets of data. The first one de-
scribes the geometry of the curves and their intersections, and
the second contains the topological data. In what follows, the
word curve should be understood as the rounded polyline as-
sociated with the curve.

Geometry. When inserted, a curve is cut into arcs by the
other curves. An arc is described by its endpoints on
the curve. Each point (i.e., an intersection or a curve
endpoint) is known by its parameter value p = (i, u)
on the curve, as in Sec. 3.4. An intersection yields two
points, one on each curve. As parameters are totally or-
dered along a curve, an arc is noted below as a parame-
ter interval [101, p2]. Arcs are marked as either erased or
non-erased.

Topology. The mapping defined in Sec. 3.4 associates with
each point a unique vertex. To support arc overlap, we
attach to an arc an edge connecting its vertices. Arcs
lying entirely in one rectangle R,~,~ are not considered.
Overlapping arcs share the same edge. The geometry of
an edge is the geometry of one of the arcs it supports.
Different edges can connect the same pair of vertices.
The ordering of the edges around a vertex is the chord
ordering defined by the rectangles Rmn.

To access the faces of a planar map, it is convenient
to consider an edge as two directed edges, called sides.
If an edge e is a loop incident to the vertex v, then
the clockwise (cw) and counterclockwise (ccw) orien-
tations along e define the two sides associated with e
(Fig. 6a). Two mappings are defined on the sides of a
map: o~(8) is the side next to 8 in the ccw order around
the vertex incident to 8, and o~ (~) is the other side of the
edge [17]. We note the ordering of the sides around a
vertex, c~-order. To follow the boundary containing a
side s, the compound mapping c~o~ is applied repeatedly
until back in a (Fig. 6b). The result is a face boundary

called a contour. Contours with a ccw orientation are
outer contours, others are inner contours. Adding a vir-
tual inner contour located at infinity, there is exactly one
inner contour for each face of a map.

The edges may form several connected components
which are partially ordered by inclusion in the plane.
This partial ordering is described by an inclusion tree
whose nodes are the contours. The root is the virtual in-
ner contour at infinity. The leaves are either inner con-
tours with no connected component included or outer
contours with an empty interior. This tree is stored in
the data structure and used by the curve insertion and
point location algorithms.

4.2 Curve Insertion

We say that an arc is visible in a face if this arc is supported
by an edge of which at least one side is in a contour bounding
the face. Curve insertion uses the method described in Sec. 3
to compute the intersections between a new curve C and all
the arcs visible in the faces where C is lying (Fig. 7). Along
C, p is the current parameter value and ne:et (p) the parameter
value of the next intersection point, p < next(p}.

Figure 7: Curve insertion (first iteration).

Step 1. Using point location (Sec. 4.3), find the face F con-
taining the first point of C. Set parameter p to 0.

350

~ Computer Graphics, Volume 23, Number 3, July 1989

Step 2. I f F has already been processed, jump to step 3.
Otherwise, compute the intersections between arc [p, 1]
and all the arcs visible in F . Cut the arc [p, 1] and the
intersected arcs of F at each intersection point and cre-
ate the corresponding vertices and sides. At the end of
this step, there are no more intersections between p and
next{p), and the a-order around the vertices along C
has been updated.

Step 3. If there is no overlapping, create an edge between
the vertices associated with p and next(p), link it with
the arc [p, next(p)] in the data structure, and update the
inclusion tree accordingly (see appendix B). Otherwise,
the edge already exists, link it with the arc [p, next(p)].

Step 4. If next(p) = 1 then stop. Otherwise, let 8 be
the side of arc [next(p), next(next(p))] associated with
next(p). Since the a-order around the two correspond-
ing points is known, 8 is known. Set F to the face inci-
dent to a (s) , and p to next(p). Repeat step 2.

An arc is visible in at most two faces but an existing curve
G can be visited several times. However, the intersection
between the arc [p, 1] of (7 and G is done only once: the first
time an arc of G becomes visible in the current face F . The
intersection points located outside F are stored for further
u s e .

4.3 Point Location

Given a query point with integer coordinates, the point loca-
tion algorithm returns either a face, an edge, or a vertex. In
map sketching, all selections are done through this algorithm
(e.g., coloring a face or selecting an existing intersection as
the endpoint of a new curve). A first method is to intersect
a line segment S with all curves. S is defined by the query
point M , with parameter 0, and a point outside the bounding
box of the map, with parameter 1. If no intersection is found,
M is inside the infinite face. Else, retain the curve G whose
intersection is closest to M. This intersection is known by
its parameter values p on S and q on G. The parameter q
gives the arc of G containing the intersection. I f p = 0, then
M is exactly on the edge supporting this arc. Otherwise, M
is inside one of the two faces incident to the edge. The side
which sees M to its right gives the answer (a side defines a
unique orientation on a curve).

This method does not take advantage of the partition of the
plane defined by the faces of the map. To reduce the average
number of visited curves, the following algorithm uses face
adjacency (Fig. 8). This algorithm is similar to the curve in-
sertion algorithm, but it uses curve intersection instead of arc
intersection. We say that a curve is visible in a face if one of
its arcs is visible in the face.

Step 1. Set F to the infinite face and S to [02 1]. S is the
line segment defined above.

G

FF

Figure 8: Point location.

Step 2. If F has no outer contours then return F . Oth-
erwise, intersect S with the curves visible in the outer
contours of F (if two or more curves are overlapping,
it is enough to consider one of them). If there is no in-
tersection, return F . Otherwise, let e be the edge which
gives the smallest parameter p on S, and 8 the side of e
which sees M to its r ight . If s is part of an outer con-
tour, return F . Otherwise, set ,_q to [0, p] and set F to
the face incident to s.

Step 3. Intersect S with the curves visible in the inner con-
tour of F . If there is no intersection, call recursively step
2. Otherwise, let e be the edge which gives the smallest
parameter p on S, and s the side of e which sees M to its
right, s is necessarily part of an inner contour. Set F to
the face incident to this contour and ,9 to [0, Pl. Repeat
step 3.

As curve insertion does, point location may visit a curve
several times, but only one intersection with S is performed.
The geometric tests are performed on rational numbers, they
are thus exact. Indications on the complexity of both algo-
rithms are given by the horizon theorem for Jordan curves
included in [8]. However, this last result cannot be applied
in a straightforward way as the number of intersections be-
tween two polylines may be greater than the number of in-
tersections between the true curves, and the polylines may be
partially overlapping.

5 Conclusion

A method has been presented which allows for incremen-
tal construction of planar maps. Robustness of the compu-
tation and consistency between geometry and topology are
achieved through linear interpolation of B~zier curves and
exact intersection of the rounded resulting polylines. Our
main goal was to produce fast and reliable code to be used
in the context of 2D drawing.

Though it has some limitations, the method described in
this paper gives a powerful tool for constructing illustrations.
The planar map data structure allows also for automated com-
pound operations, such as the ones described by Fig. 9 and
10. Fig. 11 and 12 show illustrations produced with the map
sketching technique.

351

:+,~11~ SIGGRAPH '89, Boston, 31 July-4 August, 1989

Figure 9: Cleaning a face removes its dangling edges.

Figure 10: Cookie-cutter.

Figure 11 : Wickerwork.

Figure 12 :CHI '88 logo.

Acknowledgements

We would like to thank Dominique Michelucci for his con-
tribution to the initial work on planar maps done at Ecole
des Mines de Saint-Etienne. We thank Leo Guibas and Lyle
Ramshaw for helpful discussions. We are grateful to Patrick
Baudelaire for his encouragement during the project.

A A priori Subdivision

A polynomial B6zier curve of degree d is defined by:

d

V(t} = EV,.B~a(t}, 0 < t < 1,
r ~ O

where the Vr are the d + I control points that form the control

p°lyg°n°fV(t}'and B~a(t) = (d) tr(1-t)a-r isthe
Bemstein polynomial of degree d [21,4].

If v is a vector in the Euclidean plane, we note I[vll the
quantity max (Ix~ I, lYv I)" For d > 2, the diagonal D and
the length L of the control polygon of V(t} are defined as:

D = m a x Jrvr+= - 2Vr+l + Vr]l,
O<r<d--2

L = m a x II.
O < r < d - - 1

D is considered by Wang [25,23] as a subdivision criterion.
Computing the first and second derivatives of V (t) and

using the properties of the Bemstein polynomials gives, for
all t in [0, 1]:

lIv(~) (t) I[< d(d- 1} D , (2)

I I V ") (t) l l _< d L. (3)

352

@ ~ Computer Graphics, Volume 23, Number 3, July 1989

To find the number of subdivisions, we use a chord in-
terpolation theorem [22] which states that: if f(t) is a real
valued function of class C ~ on [a, b], then, for all t in [a, b] :

i f (t) _ c(t) I < (b - a) 2 max ff(2)(t) , (4)
- - 8 a < t < b

where c(t) is the chord (straight line segment) between
(a,](a)) and (b, f(b)). This result is used by Lane [15] in
the context of curve rendering.

Let a, 0 < 0. < 1, be a step size on the interval [0, 1]
and n the integer such that na = 1. This defines n in-
tervals h = [i0., (i + 1)a], and n chords Ci(t) with end-
points Ei = V(icr) and E¢+i = V((i + 1)~r). Let e be a
given threshold measuring the maximum allowed deviation
between the curve and the chords Ci. We want to ensure that:

I Iv(t) - c~(t) l l _<, (5)

holds for all i, 0 < i < n, and all t in/h.
Applying (4) to the coordinates of V (t} on the interval Ii

and using the bound (2), it is straightforward to see that any
a _< 1 such that:

8e o < 0 .2 < (6)
- d (d - 1)D

will satisfy (5).
Let k be the smallest integer such that ~r = 2 -k satisfies

(6), then:

Equation (7) is cited in [23] as a result derived by Wang.
We can now bound the length of the chords given by apri-

ori subdivision of depth k. The mean value theorem applied
to V(t) on interval Ii gives:

lIE,+1 - E , II _< 0. max IIV(1)(t)l I.
t r I~

The maximum of liE(l)(t)ll over h is less than or equal to
its maximum over [0, 1]. Using (3), one gets:

IIE~+i - E~[I _< adL.

The bound on o" from (6) gives for all i, 0 < i < 2 ~:

[iEi+l_ E~ll < ~/ 8d n v/~.
- v d - v r 5

B Updating the Inclusion Tree

The degree d of a vertex v is the number of sides incident
to v, v is a dangling vertex if d(v) = 1. If both sides of an
edge are in the same contour, it is a dangling edge, otherwise
it is a border edge. A dangling edge is connecting if it has
no dangling vertex, terminal if it has exactly one dangling
vertex, and isolated if it has two dangling vertices. A loop
incident to a vertex v with d(v) = 2 is an isolated border
e d g e .

An edge falls into one of the following types:

1. a terminal edge with both sides in an inner contour,

2. a connecting edge with both sides in an inner contour,

3. a border edge with both sides in two distinct inner con-
tours,

4. a border edge with one side in an inner contour and the
other side in an outer contour,

5. an isolated edge,

6. a terminal edge with both sides in an outer contour,

7. a connecting edge with both sides in an outer contour,

8. an isolated border edge.

When inserting a curve, new edges may be added to the
map. Adding an edge implies creating its sides, vertices, and
updating the c~-order around the latter. The updated contours
are thus available through the mapping ~w. The inclusion
tree is updated after each new edge addition, it is therefore
possible to find the type of a new edge by counting its dan-
gling vertices and checking the updated contours. The inclu-
sion tree is then updated by performing the following actions,
indexed by edge type:

2. merge: inner & outer ~ inner

3. split: inner ~ inner & inner

4. split: outer ~ outer & inner

5. create: outer

7. merge: outer & outer ---~ outer

8. create: outer & inner

For example, if an edge of type 2 is added to a map, one inner
contour and one outer contour are merged to give a single
inner contour.

When erasing a curve or an arc, old edges may be removed
from the map. The inclusion tree is updated before each old
edge removal, using the same tests as above. When the type
of the edge has been found, the inclusion tree is updated by
performing the following actions, indexed by edge type:

2. split: inner ~ inner & outer

3. merge: inner & inner ~ inner

4. merge: outer & inner ---+ outer

5. delete: outer

7. split: outer ~ outer & outer

8. delete: outer & inner

Adding or removing an edge of type 1 or 6 (i.e., terminal
edges) does not modify the inclusion tree.

353

: ~~SIGGRAPH

References

'89, Boston, 31 July-4 August, 1989

[1] D. Baroni. Art Graphique Design. Editions du Chine,
Paris, 1987.

[2]

[3]

[4]

[5]

[61

P. Baudelaire and M. Gangnet. Planar Maps." an Inter-
action Paradigm for Graphic Design. In CH1'89 Pro-
ceedings, Addison-Wesley, 1989.

J.L. Bentley and T.A. Ottmann. Algorithms for Re-
porting and Counting Geometric Intersections. IEEE
Trans. on Comput., 28(9), 1979.

T.D. DeRose and B.A. Barsky. Geometric Continu-
ity for Catmull-Rom Splines. ACM Transactions on
Graphics, 7(1), 1988.

D.H. Greene and F.F. Yao. Finite-Resolution Com-
putational Geometry. In Proc. 27th 1EEE Symp. on
Found. Comp. Sci., Toronto, 1986.

D. Dobkin and D. Silver. Recipes for Geometry and
Numerical Analysis. In Proceedings of the Fourth An-
nual ACM Symposium on Computational Geometry,
ACM Press, New York, 1988.

[7]

[8]

[9]

H. Edelsbrunner. Algorithms in Combinatorial Geom-
etry. Springer-Verlag, New York, 1987.

H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Sei-
del, and M. Sharir. Calculating Arrangements of Seg-
ments, Circles, or Other Curves in the Plane. 1988.
Submitted for publication.

H. Edelsbrunner and L.J. Guibas. Topologically
Sweeping an Arrangement. Research Report #9, Dig-
ital Equipment Systems Research Center, Palo Alto,
1986.

[lO] A. R. Forrest. Geometric Computing Environments:
Some Tentative Thoughts. In Theoretical Foundations
of Computer Graphics and CAD, Springer-Verlag,
1988.

[tl] M. Gangnet and J.C. Hervr. D2: un 6diteur graphique
interactif. In Actes des Journ~es SM90, Eyrolles, Paris,
1985.

[12]

[13]

L. Guibas and J. Stolfi. Primitives for the Manipula-
tion of General Subdivisions and the Computation of
Voronoi Diagrams. ACM Transactions on Graphics,
4(2), 1985.

C.M. Hoffmann, J.E. Hopcroft, and M.S. Karasick. To-
wards Implementing Robust Geometric Computations.
In Proceedings of the Fourth Annual ACM Symposium
on Computational Geometry, ACM Press, New York,
1988.

[14] P.A. Koparkar and S.P. Mudur. A new class of
algorithms for the processing of parametric curves.
Computer-Aided Design, Vol. 15, 1983.

[15] J.F. Lane. Curve and Surface Display Techniques. Tu-
torial, ACM SIGGRAPH'81, 1981.

[16] S.L. Lien, M. Shantz, and V. Pratt. Adaptive Forward
Differencing for Rendering Curves and Surfaces. ACM
Computer Graphics, Vol. 21(4):111-118, 1987.

[17] P. Lienhardt. Extensions of the Notion of Map and Sub-
division of a Three-Dimensional Space. In STACS'88,
Lecture Notes in Computer Science 294, 1988.

[18] D. Michelucci. ThEse. Ecole Nationale Suprrieure des
Mines de Saint-Etienne, Saint-Etienne, 1987.

[19] D. Michelucci and M. Gangnet. Saisie de plans ~t partir
de tracrs h main-levre. In Actes de MICAD 84, Hermes,
Paris, 1984.

[20] F.P. Preparata and M.I. Shamos. Computational Ge-
ometry: an Introduction. Springer-Verlag, New York,
1985.

[21] L. Ramshaw. Blossoming: A Connect-the-Dots Ap-
proach to Splines. Research Report #19, Digital Equip-
ment Systems Research Center, Palo Alto, 1987.

[22] M. H. Schultz. Spline Analysis. Prentice Hall, 1973.

[23] T.W. Sederberg and S.R. Parry. Comparison of three
curve intersection algorithms. Computer-Aided De-
sign, Vol. 18, t986.

[24] W.T. Tutte. Graph Theory. Addison-Wesley, 1984.

[25] G. Wang. The Subdivision Method for Finding the In-
tersection between two Brzier Curves or Surfaces. Zhe-
jiang University Journal, 1984. Cited in reference [23].

354

