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Abstract 

Aplanar map is a figure formed by a set of  intersecting lines 
and curves. Such an object captures both the geometrical and 
the topological information implicitly defined by the data. 
In the context of  2D drawing, it provides a new interaction 
paradigm, map sketching, for editing graphic shapes. 

To build a planar map, one must compute curve intersec- 
tions and deduce from them the map they define. The com- 
puted topology must be consistent with the underlying geom- 
etry. Robustness of geometric computations is a key issue in 
this process. We present a robust solution to Brzier curve in- 
tersection that uses exact forward differencing and bounded 
rational arithmetic. Then, we describe data structure and al- 
gorithms to support incremental insertion of Brzier curves in 
a planar map. A prototype illustration tool using this method 
is also discussed. 
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1 Introduction 

There is growing interest in the robustness of geometric com- 
putations [10,6,13]. Different graphics algorithms have dif- 
ferent sensitivity to numerical errors. In some cases numeri- 
cal errors are acceptable. In others, one can find ways around 
them. However, exact computation is sometimes mandatory. 
The following examples demonstrate the range of effects. 

When scan-converting 3D polygons, rounding errors on 
face equations will not prevent the z-buffer method from ren- 
dering a scene. The few erroneous pixels may not even be 
visible. This is a case where numerical errors are innocuous. 
A second example is a function performing point location in 
a polygon with a parity test, using floating point arithmetic. 
If the result returned by this function is used for identifica- 
tion of  the polygon and, say, modification of  its color, then it 
is acceptable for the function to return an empty result when 
a reliable answer cannot be computed. Hence, in some 2D 
drawing programs, the user must click well inside a polygon 
to select it (which is better than selecting the wrong polygon). 
As a third example consider a program implementing an al- 
gorithm which presumes infinite precision. The Bentley- 
Ottmann algorithm [3,20] for reporting intersections of  a set 
of  non vertical line segments relies on the fact that two seg- 
ments may intersect iff there exists a position of the vertical 
sweep-line where they are consecutive. If the implementa- 
tion produces an error when inserting a new segment in the 
sweep-line then some intersections may be missed. In this 
case, it is imperative to provide an exact answer. 

Methods involving topological decisions based on geo- 
metric computations are generally difficult to implement. We 
describe a robust solution to an intersection problem which 
arises in the context of a 2D drawing application. A set of  
lines and curves like in Fig. 1 dissects the plane into vertices, 
edges and faces. This type of  geometric object is known in 
graph theory as a map of a planar multigraph [24], hence the 
name planar map we use below, and in computational ge- 
ometry as an arrangement in the plane [7]. Data structures 
describing embeddings of  planar graphs in the plane can be 
traced back to Baumgart 's  winged-edge data structure and 
have been studied by numerous researchers [20,12,9]. It is 
standard practice to distinguish between the geometry, the 
position of  the vertices, geometric definition of the edges 
and the topology, the incidence and adjacency of the vertices, 
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edges, and faces. 
The problem addressed here is building a data structure 

to support incremental insertion of  new curves in a planar 
map, dynamically computing new intersections and updat- 
ing the data structure. In this case, topological information 
has to be deduced from geometrical information. When two 
curves intersect at a new vertex, the ordering of  the four edges 
around the vertex provides topological information used to 
follow the contour of  a face incident to the vertex. If  floating 
point arithmetic is used, it has been shown that the computed 
slopes can give the wrong order [10,18]. This is similar to 
the Bentley-Ottmann algorithm example above. 

Our first implementation [19] used the Bentley-Ottmann 
algorithm and rational arithmetic to compute the planar map 
formed by a set of line segments, [11] is the description of  a 
2D illustration tool based on this first software. The method 
was not incremental and the map had to be recomputed each 
time a new segment was added. In [5], Greene and Yao solve 
the intersection problem for line segments by working di- 
rectly in the discrete plane. In [8], Edelsbrunner et al. study 
arrangements of  Jordan curves in the plane from a theoretical 
point of view. 
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etc.), it is common practice to build shapes by drawing lines 
and curves, erase some pieces thereof, and color or ink the 
areas they delimit (see [1] and Fig. 2). 

Figure 2: Graphic design by space division 
(B. Munari in [1]). 

The design of  logos and monograms, floor plan sketching 
by architects, cartoon ceils drawing and inking are examples 
where this technique is used. In typical drawing software 
there is no way to mimic this method. If Fig. 3a is drawn by 
the user of  a drawing application as four lines, it is impossible 
for him to color the rectangle (as in Fig. 3b) since no such 
rectangle exists. If  the drawing were computed as a planar 
map, this dual interpretation would be possible. 

Figure 1: A planarmap. 

In the next section, the utility of  planar maps for 2D draw- 
ing is briefly discussed. Section 3 details curve intersection. 
First, Brzier curves are interpolated by polylines using for- 
ward differencing. Then, the intersection between two inter- 
polating polylines is computed with rational arithmetic, we 
show how it is possible to limit the number of  bits in this 
process and how to control the quality of the interpolation. 
Section 4 describes the map data structure and the two main 
algorithms used in the planar map construction process: in- 
cremental insertion of  a curve and point location in a map. 
The map topology is computed from the geometry of  the 
polylines. Since exact arithmetic is used in this process, the 
map topology, although it may be different from the topol- 
ogy defined by the true curves, is always consistent with the 
geometry of the interpolating polylines. 

2 Map Sketching 

Our interest in planar maps is motivated by practical con- 
cerns: with traditional graphic arts media (pencil, eraser, ink, 

b 

Figure 3: Four lines and a rectangle. 

In [2], we have proposed two extensions to the 2D graphics 
drawing paradigm: a) objects are multicolor, multicontour 
shapes (i.e., planar maps), b) they are constructed by itera- 
tion of  three basic steps: drawing, erasing, and coloring. We 
call this technique map sketching and have implemented it in 
prototype illustration software used to draw the figures in this 
paper. Fig. 4 illustrates map sketching. Strokes drawn by the 
user are incrementally added to the map describing the draw- 
ing. Two additional operations are allowed on a map: edge 
erasing and face coloring. These steps can be iterated in any 
order. Map sketching closely parallels the traditional pencil 
and eraser method and is more natural and more efficient for 
constructing certain classes of  drawings. User interface de- 
sign issues in map based illustration software are discussed 
in [2]. 
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Figure 4: Map sketching. 

3 B~zier Curve Interpolation and Intersection 

3.1 Overview 

Curves to be inserted in a map are first converted to Brzier 
form [21,4]. The incremental insertion algorithm (Sec. 4) has 
two requirements. First, intersection points must be ordered 
without error along a curve by their parameter values, in- 
cluding the case of self-intersection. Second, if two or more 
curves intersect at one point, they must be ordered without 
error around the point. To meet these requirements, we use 
the following strategy: 

i. The control points of  the Brzier curves have integer co- 
ordinates on a grid large enough for 2D graphics appli- 
cations. Grid size is discussed in Sec. 3.4. 

2. The curve is replaced with an interpolatingpolyline. We 
compute an exact interpolation of the curve by exact 
forward differencing (FD). It is necessary that enough 
bits are available to perform FD without a loss of preci- 
sion (Sec. 3.2). Rather than storing polylines in the data 
structure, they are computed as needed. 

3. Computing the intersection of  two exact polylines 
causes an explosion in the number of  bits. Thus, we 
round the points of  an exact polyline to the grid. This 
reduces the intersection of two rounded polylines to the 
intersection of line segments whose endpoints have inte- 
ger coordinates. Ordering two intersection points along 
the same line segment and ordering two intersecting line 
segments around their intersection point is done with ra- 
tional arithmetic. Note that the intersection points are 

not rounded since this could modify the map topology. 

4. Finally, it is natural with the map sketching technique 
to use an existing intersection point as a new curve end- 
point. We will show how to achieve this without in- 
creasing the bit length of  the arithmetic (Sec. 3.4). 

The map deduced from the intersection process is the one 
defined by the rounded polylines. No other rounding oc- 
curs. The map topology, although it may be different from 
the topology defined by the true curves, is always consistent 
with the geometry of  the rounded polylines. 

,3.2 Interpolation Method 

Wang [25,23] gives the following result. If  the de Castel- 
jau subdivision algorithm (midpoint case) is applied down to 
depth k to a polynomial Brzier curve of  degree d > 2 with 
control points Vr, where: 

then, all the chords (straight line segments) joining the end- 
points of the 2 k control polygons which are the leaves of  
the subdivision tree are closer to the curve than the thresh- 
old e. In (I), D = ma.xo<,<d-2 IIV~+2 - 2V~+l + Vrll and 

Ilvll = m a x  ( I z ,  I, IVy I) for a vector v. D can be called the 
diagonal of the curve. Since reference [25] is not available 
to us, an independent proof of this result is given in appendix 
A, together with a bound on the chord length. 

Consider the chord endpoints E~, 0 < i < 2 k . They form 
a polyline E. It is faster to use ordinary FD [16] than sub- 
division to compute E. Since a priori subdivision computes 
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the complete tree to depth k, FD with fixed step size 2 - k  
will generate the same polyline, provided that exact compu- 
tations are done in both cases. We now show that the num- 
ber of bits needed to perform exact FD is bounded. Suppose 
that the control points of the curve have coordinates coded 
into b bits. Then, computing the subdivision tree down to 
depth k requires at most b + kd bits for the coordinates of the 
Ei .  In the FD loop, the only values involved in the ith iter- 
ation are the forward differences & J E i ,  0 ~ 3" <_ d. Since 
we know from subdivision that, for all i ,  the computation of  
Ei = £x°Ei requires at most b + kd bits, ~x3Ei requires at 
most b + kd + j bits. Thus, exact FD with step size 2 - k  can 
be performed on the curve if b + {k + 1)d bits are available. 

To limit the total number of bits needed when updating 
a planar map, the intersection algorithm uses rounded poly- 
lines. FD computes the exact coordinates of  the Ei  which are 
then rounded to b bits. 

'89, Boston, 31 July-4 August, 1989 

3 .3  Intersection Algorithm 

B6zier curve intersection is studied by Sederberg and Parry 
[23]. In two of  the algori thms they consider, rejection of 
non-intersecting pieces of  two curves is done by bounding 
box comparison. FD is not convenient for successive mid- 
point evaluations of  a curve. To take advantage of bounding 
boxes, a preprocessing step breaks the rounded polylines into 
monotonic pieces. For such a piece, the box of  any subpiece 
is given by its endpoints coordinates. This method is also 
used by Koparkar and Mudur [14] with another curve evalu- 
ation method. During the planar map construction process, a 
new curve is intersected with a subset of the curves already 
inserted in the map. The preprocessing of the new curve finds 
the monotonic pieces, saving data to be used in later compu- 
tations. The new curve is then immediately inserted in the 
map. 

Preprocess ing .  Let C be the new curve, a) use FD to com- 
pute the exact polyline E and the rounded polyline P 
of  C, b) store P in an array, to be discarded after the 
insertion of C,  c) find the monotonic pieces of P ,  d) at 
the end of a monotonic piece, save the permanent data 
associated with it, that is, its first and last indices (i I , Q), 
its bounding box, its quadrant, and the FD context at i I 
(i.e., ~ J E i l  , for all .7"). All  these steps can be performed 
in one single FD loop. 

Intersection. It is enough to consider the intersection of 
a monotonic piece of  P ,  with indices (if,it),  with a 
monotonic piece of an existing curve G, with indices 
(].t, 3i), whose bounding boxes overlap. First, compute 
Q, the rounded polyline of  G, between 3) and 3} using 
the FD context at 9"// which has been saved when pre- 
processing G, and store the result into an array. Then, 
search the intersecting chords using binary subdivision 
on the respective arrays (the box of  any subset of points 
considered in this subdivision is given by its two end- 
points and the quadrant information). In the map sketch- 

ing application, the existing curve G may be partially 
erased. In this case only the monotonic pieces contain- 
ing a non-erased part of  G are intersected with C. 

Two special cases must be handled: rounded chords with 
a null length, and partially overlapping polylines (i.e., non 
transverse intersections). After preprocessing, a new curve 
is intersected with itself to detect multiple points and self- 
overlapping. Naturally, line segments are not subdivided 
since they are ready for intersection. It is worthwhile to cache 
partially or totally generated curves. Two cases are frequent: 
a) the same monotonic piece of G intersects different pieces 
of  C, b) successive new curves intersect the same existing 
c u r v e .  

3.4 Topology Consistency 

This section describes how a consistent topology is obtained 
from the geometrical data given by the intersection process. 
For illustration software, the input can be rounded to an in- 
teger grid if the grid size is large enough and if the scaling 
factors are limited accordingly. A typical case is to output 
the results on a 24" × 24" page at 300 dpi. Then, input con- 
trol points may be defined on twice as large an area, to permit 
clipped curves. We must also choose a maximum zoom fac- 
tor: a reasonable value is 8. Since the rounded chords must 
have even coordinates (see below), the input is scaled up by a 
factor of two. 'The control points coordinates are thus coded 
on b = 18 bits. Setting e = 1 in equation (1) gives k = 10 for 
a degree 4 curve with the maximum diagonal, which is twice 
the grid size. Thus, 62 bits are needed for the exact FD of this 
curve, this goes up to 102 bits for a degree 7 curve with the 
same diagonal. The much more usual case of  a cubic with a 
4" diagonal is 45 bits. 

If chord intersection is performed on the exact polylines 
the number of  bits grows very rapidly. When two chords A B  
and CD intersect at I ,  the coordinates of I and the values 
of  the two parameters u and v such that A1 = u A B  and 
C I  = vCD must be computed exactly. All of these can be 
expressed as rational numbers; for example, u = (AC × 
CD) + ( A B  × CD) where × is the cross product. With 
endpoints coded on b + kd bits, this is 2(b + kd) + 3 bits for 
the numerator and the denominator of the rationals. Since 
different intersections along the same chord are ordered by 
comparing their rational parameter values, the final number 
of  bits is 4(b + kd} + 6. For the first curve in the example 
above, this is 238 bits. The situation is worse if we want to 
use an existing intersection as the endpoint of  a new curve. 
Setting b = 238 in the above computations gives 1118 bits. 
As noted by Forrest and Newell [10], the major drawback in 
the rational arithmetic approach is the b low-up  in the number 
of  bits. 

To limit this number, the chord endpoints of  the exact 
polylines are rounded to even integer values. Chord intersec- 
tion is done on the rounded chords and the intersection points 
are exactly represented as rational numbers. To use an exist- 
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Figure 5: Vertex (rn, n) and chord ordering. 

ing intersection point as the endpoint of  a new curve without 
increasing the bit length, we consider the semi-open rectan- 
gles Rm,,~ = [rn - 1, m + 1) x [n - 1, n + 1), where rn and 
n are even. Since the vertical and horizontal lines limiting the 
rectangles have odd coordinates, there are no rounded chords 
collinear with these lines. So, it is always possible, if two or 
more chords intersect inside R~,,~, to order them along the 
boundary of Rrn,n by using either the coordinates of their in- 
tersections with the lines limiting the rectangle or their slopes 
if they leave Rm,r~ at exactly the same point (Fig. 5a). We 
define the center of  t~m, n a s  the vertex of the intersection 
points lying inside R~,,~. This associates intersection points 
with vertices but does not round their coordinates. To use a 
chord intersection point as the endpoint of  a new curve, we do 
not use the point itself but the coordinates of the associated 
vertex (Fig. 5b). Therefore, small faces lying inside a single 
rectangle will not be represented in the map data structure 
(Fig. 5c). 

On a curve, an intersection point is represented as a pa- 
rameter value p = (i, u) where i is the chord index on the 
polyline and u a rational number giving the exact position of 
the point on the chord. Since all chords have now rounded 
endpoints, ordering two intersection points along one curve 
requires at most 4b + 6 bits. We need also to order the inter- 
sections of the chords with the lines limiting the rectangles 
Rra,n. These are Brzier  curves of  degree 1, thus the stated 
bound is valid. In the common case where only one intersec- 
tion point is associated with a vertex, the slopes are used to 
order the chords, requiring at most 2b+3 bits. In addition, the 
method must support the erasing of  curve pieces limited by 
intersection points. It is therefore necessary to keep the initial 
data defining the curve and to mark as erased or non-erased 
the corresponding pieces. As noted above, the intersection 
algorithm uses this information to return only actual inter- 
sections. A curve is removed from the map data structure iff 
it has been totally erased. 

The method has two limitations. First, intersection is per- 
formed on the rounded polylines. Thus, there are situations 

(e.g., tangencies) where intersections between the true curves 
are ignored. Likewise, polylines may intersect even if true 
curves do not (e.g., two concentric circles with very close 
radii interpolated by regular polygons whose sides intersect 
pairwise). Second, the topology of a map computed in this 
way is not invariant under general affine transforms. Thus, 
the map has to be recomputed from the original data when- 
ever it is rotated or scaled. The first limitation is inherent in 
any linear interpolation process. However, for 2D graphics 
applications, it is always possible to prevent any visible ef- 
fects by choosing an appropriate grid size. The second limita- 
tion can only be solved by using exact arithmetic on real num- 
bers or symbolic computation on algebraic curves, which are 
currently too slow for interactive applications. Without re- 
computing the map, it is possible to perform integer transla- 
tion (i.e., dragging) and scaling by a power of 2 (i.e., zoom- 
ing), if we remain inside the grid. 

In this section, we have shown that a robust method for the 
computation of planar maps with linearly interpolated BEzier 
curves requires at most b + (k + 1)d bits for the FD step and 
4b + 6 bits for the intersection and sorting steps. Our imple- 
mentation uses a variable length integer arithmetic package 
coded in assembly language. In practice, the average size of 
the numbers involved in the process is much smaller than the 
above bounds. The only operation we must perform on ratio- 
nal numbers is comparison, which is two integer multiplica- 
tions and a test. The value of b is a parameter of the program, 
allowing the grid size to be adapted to the resolution of the 
display. 

4 Data Structure and Algorithms 

After describing the planar map data structure, we detail be- 
low the two main algorithms. Curve insertion uses point lo- 
cation in a map to find the face containing the first endpoint 
of a curve. However, since point location is equivalent to the 
insertion of a dummy line segment, curve insertion will come 
first. 
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Figure 6: Map topology. 

4.1 Planar Map Description 

A map contains two different sets of data. The first one de- 
scribes the geometry of the curves and their intersections, and 
the second contains the topological data. In what follows, the 
word curve should be understood as the rounded polyline as- 
sociated with the curve. 

Geometry. When inserted, a curve is cut into arcs by the 
other curves. An arc is described by its endpoints on 
the curve. Each point (i.e., an intersection or a curve 
endpoint) is known by its parameter value p = (i, u) 
on the curve, as in Sec. 3.4. An intersection yields two 
points, one on each curve. As parameters are totally or- 
dered along a curve, an arc is noted below as a parame- 
ter interval [101, p2 ]. Arcs are marked as either erased or 
non-erased. 

Topology. The mapping defined in Sec. 3.4 associates with 
each point a unique vertex. To support arc overlap, we 
attach to an arc an edge connecting its vertices. Arcs 
lying entirely in one rectangle R,~,~ are not considered. 
Overlapping arcs share the same edge. The geometry of 
an edge is the geometry of one of the arcs it supports. 
Different edges can connect the same pair of vertices. 
The ordering of the edges around a vertex is the chord 
ordering defined by the rectangles Rmn. 

To access the faces of a planar map, it is convenient 
to consider an edge as two directed edges, called sides. 
If an edge e is a loop incident to the vertex v, then 
the clockwise (cw) and counterclockwise (ccw) orien- 
tations along e define the two sides associated with e 
(Fig. 6a). Two mappings are defined on the sides of a 
map: o~(8) is the side next to 8 in the ccw order around 
the vertex incident to 8, and o~ (~) is the other side of the 
edge [17]. We note the ordering of the sides around a 
vertex, c~-order. To follow the boundary containing a 
side s, the compound mapping c~o~ is applied repeatedly 
until back in a (Fig. 6b). The result is a face boundary 

called a contour. Contours with a ccw orientation are 
outer contours, others are inner contours. Adding a vir- 
tual inner contour located at infinity, there is exactly one 
inner contour for each face of a map. 

The edges may form several connected components 
which are partially ordered by inclusion in the plane. 
This partial ordering is described by an inclusion tree 
whose nodes are the contours. The root is the virtual in- 
ner contour at infinity. The leaves are either inner con- 
tours with no connected component included or outer 
contours with an empty interior. This tree is stored in 
the data structure and used by the curve insertion and 
point location algorithms. 

4.2 Curve Insertion 

We say that an arc is visible in a face if this arc is supported 
by an edge of which at least one side is in a contour bounding 
the face. Curve insertion uses the method described in Sec. 3 
to compute the intersections between a new curve C and all 
the arcs visible in the faces where C is lying (Fig. 7). Along 
C, p is the current parameter value and ne:et (p) the parameter 
value of the next intersection point, p < next(p}. 

Figure 7: Curve insertion (first iteration). 

Step 1. Using point location (Sec. 4.3), find the face F con- 
taining the first point of C. Set parameter p to 0. 
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Step 2. I f  F has already been processed, jump to step 3. 
Otherwise, compute the intersections between arc [p, 1] 
and all the arcs visible in F .  Cut the arc [p, 1] and the 
intersected arcs of  F at each intersection point and cre- 
ate the corresponding vertices and sides. At the end of  
this step, there are no more intersections between p and 
next{p), and the a-order  around the vertices along C 
has been updated. 

Step 3. If there is no overlapping, create an edge between 
the vertices associated with p and next(p), link it with 
the arc [p, next(p)] in the data structure, and update the 
inclusion tree accordingly (see appendix B). Otherwise, 
the edge already exists, link it with the arc [p, next(p)]. 

Step 4. If next(p) = 1 then stop. Otherwise, let 8 be 
the side of  arc [next(p), next(next(p))] associated with 
next(p). Since the a-order  around the two correspond- 
ing points is known, 8 is known. Set F to the face inci- 
dent to a ( s ) ,  and p to next(p). Repeat step 2. 

An arc is visible in at most two faces but an existing curve 
G can be visited several times. However,  the intersection 
between the arc [p, 1] of (7 and G is done only once: the first 
time an arc of  G becomes visible in the current face F .  The 
intersection points located outside F are stored for further 
u s e .  

4.3 Point Location 

Given a query point with integer coordinates, the point loca- 
tion algorithm returns either a face, an edge, or a vertex. In 
map sketching, all selections are done through this algorithm 
(e.g., coloring a face or selecting an existing intersection as 
the endpoint of  a new curve). A first method is to intersect 
a line segment S with all curves. S is defined by the query 
point M ,  with parameter 0, and a point outside the bounding 
box of the map, with parameter 1. If  no intersection is found, 
M is inside the infinite face. Else, retain the curve G whose 
intersection is closest to M.  This intersection is known by 
its parameter values p on S and q on G. The parameter q 
gives the arc of  G containing the intersection. I f p  = 0, then 
M is exactly on the edge supporting this arc. Otherwise, M 
is inside one of the two faces incident to the edge. The side 
which sees M to its right gives the answer (a side defines a 
unique orientation on a curve). 

This method does not take advantage of the partition of the 
plane defined by the faces of  the map. To reduce the average 
number of  visited curves, the following algorithm uses face 
adjacency (Fig. 8). This algorithm is similar to the curve in- 
sertion algorithm, but it uses curve intersection instead of arc 
intersection. We say that a curve is visible in a face if  one of  
its arcs is visible in the face. 

Step 1. Set F to the infinite face and S to [02 1]. S is the 
line segment defined above. 

G 

FF 

Figure 8: Point location. 

Step 2. If F has no outer contours then return F .  Oth- 
erwise, intersect S with the curves visible in the outer 
contours of F (if two or more curves are overlapping, 
it is enough to consider one of  them). If there is no in- 
tersection, return F .  Otherwise, let e be the edge which 
gives the smallest parameter p on S,  and 8 the side of e 
which sees M to its r ight .  If s is part of an outer con- 
tour, return F .  Otherwise, set ,_q to [0, p] and set F to 
the face incident to s. 

Step 3. Intersect S with the curves visible in the inner con- 
tour of F .  If there is no intersection, call recursively step 
2. Otherwise, let e be the edge which gives the smallest 
parameter p on S,  and s the side of  e which sees M to its 
right, s is necessarily part of  an inner contour. Set F to 
the face incident to this contour and ,9 to [0, Pl. Repeat 
step 3. 

As curve insertion does, point location may visit a curve 
several times, but only one intersection with S is performed. 
The geometric tests are performed on rational numbers, they 
are thus exact. Indications on the complexity of both algo- 
rithms are given by the horizon theorem for Jordan curves 
included in [8]. However, this last result cannot be applied 
in a straightforward way as the number of  intersections be- 
tween two polylines may be greater than the number of  in- 
tersections between the true curves, and the polylines may be 
partially overlapping. 

5 Conclusion 

A method has been presented which allows for incremen- 
tal construction of  planar maps. Robustness of  the compu- 
tation and consistency between geometry and topology are 
achieved through linear interpolation of  B~zier curves and 
exact intersection of  the rounded resulting polylines. Our 
main goal was to produce fast and reliable code to be used 
in the context of  2D drawing. 

Though it has some limitations, the method described in 
this paper gives a powerful tool for constructing illustrations. 
The planar map data structure allows also for automated com- 
pound operations, such as the ones described by Fig. 9 and 
10. Fig. 11 and 12 show illustrations produced with the map 
sketching technique. 
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Figure 9: Cleaning a face removes its dangling edges. 

Figure 10: Cookie-cutter. 

Figure 11 : Wickerwork. 

Figure 12 :CHI '88  logo. 
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A A priori Subdivision 

A polynomial B6zier curve of  degree d is defined by: 

d 

V(t} = EV,.B~a(t}, 0 < t < 1, 
r ~ O  

where the Vr are the d +  I control points that form the control 

p°lyg°n°fV(t}'and B~a(t) = ( d ) tr(1-t)a-r isthe 
Bemstein polynomial of  degree d [21,4]. 

If v is a vector in the Euclidean plane, we note I[vll the 
quantity max (Ix~ I, lYv I)" For d > 2, the diagonal D and 
the length L of the control polygon of V(t} are defined as: 

D = m a x  Jrvr+= - 2Vr+l + Vr]l, 
O<r<d--2 

L = m a x  II. 
O < r < d - - 1  

D is considered by Wang [25,23] as a subdivision criterion. 
Computing the first and second derivatives of  V (t) and 

using the properties of  the Bemstein polynomials gives, for 
all t in [0, 1]: 

lIv(~) (t) I[ < d(d-  1} D ,  (2) 

I I V " ) ( t ) l l  _< d L. (3) 
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To find the number of subdivisions, we use a chord in- 
terpolation theorem [22] which states that: if f(t) is a real 
valued function of class C ~ on [a, b], then, for all t in [a, b] : 

i f ( t  ) _ c(t) I < ( b -  a) 2 max ff(2)(t) , (4) 
- -  8 a < t < b  

where c(t) is the chord (straight line segment) between 
(a, ](a)) and (b, f(b)). This result is used by Lane [15] in 
the context of curve rendering. 

Let a, 0 < 0. < 1, be a step size on the interval [0, 1] 
and n the integer such that na = 1. This defines n in- 
tervals h = [i0., (i + 1)a], and n chords Ci(t)  with end- 
points Ei = V(icr) and E¢+i = V((i + 1)~r). Let e be a 
given threshold measuring the maximum allowed deviation 
between the curve and the chords Ci. We want to ensure that: 

I Iv( t )  - c~(t) l l  _<,  (5) 

holds for all i, 0 < i < n, and all t in/h.  
Applying (4) to the coordinates of V (t} on the interval Ii 

and using the bound (2), it is straightforward to see that any 
a _< 1 such that: 

8e o < 0 .2 < ( 6 )  
- d ( d -  1)D 

will satisfy (5). 
Let k be the smallest integer such that ~r = 2 -k  satisfies 

(6), then: 

Equation (7) is cited in [23] as a result derived by Wang. 
We can now bound the length of the chords given by apri- 

ori subdivision of depth k. The mean value theorem applied 
to V(t) on interval Ii gives: 

lIE,+1 - E ,  II _< 0. max IIV(1)(t)l I. 
t r I~  

The maximum of liE(l)(t)ll over h is less than or equal to 
its maximum over [0, 1]. Using (3), one gets: 

IIE~+i - E~[I _< adL.  

The bound on o" from (6) gives for all i, 0 < i < 2 ~: 

[iEi+l_ E~ll < ~/  8d n v/~. 
- v d -  v r 5  

B Updating the Inclusion Tree 

The degree d of a vertex v is the number of sides incident 
to v, v is a dangling vertex if d(v) = 1. If both sides of an 
edge are in the same contour, it is a dangling edge, otherwise 
it is a border edge. A dangling edge is connecting if it has 
no dangling vertex, terminal if it has exactly one dangling 
vertex, and isolated if it has two dangling vertices. A loop 
incident to a vertex v with d(v) = 2 is an isolated border 
e d g e .  

An edge falls into one of the following types: 

1. a terminal edge with both sides in an inner contour, 

2. a connecting edge with both sides in an inner contour, 

3. a border edge with both sides in two distinct inner con- 
tours, 

4. a border edge with one side in an inner contour and the 
other side in an outer contour, 

5. an isolated edge, 

6. a terminal edge with both sides in an outer contour, 

7. a connecting edge with both sides in an outer contour, 

8. an isolated border edge. 

When inserting a curve, new edges may be added to the 
map. Adding an edge implies creating its sides, vertices, and 
updating the c~-order around the latter. The updated contours 
are thus available through the mapping ~w. The inclusion 
tree is updated after each new edge addition, it is therefore 
possible to find the type of a new edge by counting its dan- 
gling vertices and checking the updated contours. The inclu- 
sion tree is then updated by performing the following actions, 
indexed by edge type: 

2. merge: inner & outer ~ inner 

3. split: inner ~ inner & inner 

4. split: outer ~ outer & inner 

5. create: outer 

7. merge: outer & outer ---~ outer 

8. create: outer & inner 

For example, if an edge of type 2 is added to a map, one inner 
contour and one outer contour are merged to give a single 
inner contour. 

When erasing a curve or an arc, old edges may be removed 
from the map. The inclusion tree is updated before each old 
edge removal, using the same tests as above. When the type 
of the edge has been found, the inclusion tree is updated by 
performing the following actions, indexed by edge type: 

2. split: inner ~ inner & outer 

3. merge: inner & inner ~ inner 

4. merge: outer & inner ---+ outer 

5. delete: outer 

7. split: outer ~ outer & outer 

8. delete: outer & inner 

Adding or removing an edge of type 1 or 6 (i.e., terminal 
edges) does not modify the inclusion tree. 
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