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ABSTRACT 

Project Ernestine served a pragmatic as well as a scientific goal: to compare 
the worktimes of telephone company toll and assistance operators on two 
different workstations and to validate a GOMS analysis for predicting and 
explaining real-world performance. Contrary to expectations, GOMS pre- 
dicted and the data confirmed that performance with the proposed worksta- 
tion was slower than with the current one. Pragmatically, this increase in 
performance time translates into a cost of almost $2 million a year to 
NYNEX. Scientifically, the GOMS models predicted performance with 
exceptional accuracy. 
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The empirical data provided us with three interesting results: proof that the 
new workstation was slower than the old one, evidence that this difference was 
not constant but varied with call category, and (in a trial that spanned 4 
months and collected data on 72,450 phone calls) proof that performance on 
the new workstation stabilized after the first month. The GOMS models 
predicted the first two results and explained all three. 

In this article, we discuss the process and results of model building as well 
as the design and outcome of the field trial. We assess the accuracy of GOMS 
predictions and use the mechanisms of the models to explain the empirical 
results. Last, we demonstrate how the GOMS models can be used to guide the - 

design of a new workstation and evaluate design decisions before they are 
implemented. 

1. INTRODUCTION 

"Design is where the action is," argued Newel1 and Card (1985, p. 214); to 
affect the field of human-computer interaction significantly, a theory or 
methodology must apply to design of a system, not merely to after-the-fact 
evaluation. Newel1 and Card argued further that to facilitate their application 
to design, psychological theories must quantitatively predict user performance 
from specifications of the task and of a proposed system, without relying on 
observations of human behavior with a working system or prototype. 

One such theory is GOMS (Card, Moran, & Newewll, 1980a, 1980b, 
1983), which analyzes behavior in terms of the user's Goals; the Operators 
available for accomplishing those goals; frequently used sequences of opera- 
tors and subgoals (Methods); and, if there is more than one method to 
accomplish a goal, Selection rules to choose between them. GOMS is a family 



240 GRAY, JOHN, ATWOOD 

of analysis techniques composed of goals, operators, methods, and selection 
rules; these components, however, are expressed in different ways, such as 
goal hierarchies (Card et al., 1980a, 1983), lists of operators (Card et al., 
1980b), production systems (Bovair, Kieras, & Polson, 1990), working 
memory loads (Lerch, Mantei, & Olson, 1989), and schedule charts (John, 
1988, 1990). The different expressions have different strengths and weak- 
nesses and predict different measures of performance (e.g., operator se- 
quences, performance time, learning, errors). Variants of GOMS have been 
used successfully to predict user behavior with computer systems in the 
laboratory (see Olson & Olson, 1990, for a review). In this study, we go 
outside the laboratory to assess a GOMS model's ability to quantitatively 
predict expert performance on a real-world task, to provide explanations for 
the predictions, and to direct future design activity. 

1.1. Appropriateness of Project Ernestine for the Evaluation of 
W M S  

Project Ernestine was well suited for evaluating GOMS models for four 
reasons: 

1. The important metric for the project is expert performance time, a 
strength of current GOMS modeling. 

2. The task involves procedures easily modeled in GOMS. 
3. A large-scale field study was run concurrently that provided data against 

which to validate the GOMS predictions. 
4. An alternative (noncognitive, nonmodel) basis for prediction existed. 

We explain each of these points in turn. 

Expert Performance Time: A Valuable Red-World Metric 

New England Telephone was considering replacing the workstations 
currently used by toll and assistance operators (TAOs) with new workstations. 
A major factor in making a buylno-buy decision was how quickly the 
expected decrease in average worktime per call would offset the capital cost of 
making the purchase. Given the number of TAOs employed by NYNEX (the 
parent company of New England Telephone) and the number of calls it 
processes each year, a ballpark estimate is that an average decrease of 1 sec in 
worktime per call saves $3 million per year. Thus, differences in expert 
performance time attributable to workstation differences are economically 
important to NYNEX. Project Ernestine was initiated to provide a reliable 
estimate of these differences. 

Predicting experts' time has always been a strength of GOMS modeling. 
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Such predictions are successful when the users are experts performing a 
routine cognitive skill and when they make few errors. These conditions were 
satisfied in Project Ernestine. A TAO handles hundreds of calls each day, and 
many stay at the job for years (even decades). Highly practiced, expert TAOs 
are easy to find. TAOs recognize each call situation and execute well- 
practiced methods, rather than engage in problem solving. Thus, TAOs are 
performing a routine cognitive skill. As for errors, the call-handling system is 
designed to preclude many types of errors (e.g., the workstation will not 
release a call unless all necessary information is entered), and experienced 
TAOs make few errors of any type. 

The Nature of the TAOs' Task and Environment and Their Expression 
in W M S  

Successful GOMS models depend on the task having clearly identifiable 
goals, operators, methods, and (if necessary) selection rules. The task of a 
TAO has these characteristics. 

A TAO is the person you get when you dial 0. A TAO's job is to assist a 
customer in completing calls and to record the correct billing. Among others, 
TAOs handle person-to-person calls, collect calls, calling-card calls, and calls 
billed to a third number. (TAOs do not handle directory assistance calls.) 

TAOs are trained to answer three questions in the course of a call; these 
questions correspond to three goals in a GOMS analysis. For each call, a 
TAO must determine (a) who should pay for the call, (b) what billing rate to 
use, and (c) when the connection is complete enough to terminate interaction 
with the customer. For instance, for a person-to-person collect call, (a) the 
called party should pay for the call, (b) the person-to-person rate should be 
applied, and (c) the connection is not complete until the requested person is 
on the line, has accepted the charges, and the called number is eligible to 
accept collect calls (e.g., coin phones are not eligible). 

To  accomplish these goals, TAOs converse with the customer, key informa- 
tion into a workstation, and read information from the workstation screen. In 
some cases, they also write notes to themselves (primarily to remember callers' 
names). Thus, the GOMS operators for accomplishing the goals include 
listening, talking, reading, keying, writing, and the cognitive activities 
necessary to assimilate information and determine action. An additional 
complexity, beyond the sheer variety of activities, is that TAOs must perform 
many of these tasks simultaneously. Complex interactions among these 
activities dictate the call-completion time. 

Many of these activities had been modeled successfully in GOMS research 
prior to Project Ernestine. Heuristics for modeling the perception of words on 
a display screen and for modeling typing had already been developed (John, 
1988; John & Newell, 1989b; John, Rosenbloom, & Newell, 1985). In 
addition, a method for modeling parallel activities, CPM-GOMS, had been 
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added to the GOMS family of techniques (John, 1988; John & Newell, 
1989b), and we use this variant of GOMS to model the parallel behavior 
displayed by the TAOs. To handle the variety of activities TAOs must 
perform, we made extensions to CPM-GOMS to model auditory perception, 
verbal responses, eye movements to get information from well-known 
positions on a CRT screen, and system response time. These extensions were 
made early in the project (John, 1990), and their derivation and general use 
is discussed in more detail elsewhere (John & Gray, 1992). 

The TAOs accomplish their goals using a dedicated workstation, and that 
workstation influences the CPM-GOMS models. We evaluated two worksta- 
tions, which we called current and proposed. The current workstation uses a 
300-baud, character-oriented display and a keyboard on which keys are color 
coded and grouped by function. Information is presented on the display as it 
becomes available, often as alphanumeric codes, with the same category of 
information always presented at the same screen location (e.g., the calling 
number is always on the third line of the display). In contrast, the proposed 
workstation uses a high-resolution display operating at 1,200 baud, uses icons 
and windows, and in general is a good example of a graphical user interface 
whose designers paid attention to human-computer interaction issues. Similar 
care went into the keyboard, where an effort was made to minimize travel 
distance among the most frequent key sequences. In addition, the proposed 
workstation also reduces keystrokes by replacing common, two-key sequences 
with a single key. 

These differences in the workstations affect the methods used to process a 
call as well as the duration of specific operators within a method (e.g., the 
duration of the horizontal movements to some keys changed between 
workstations). Expressing the differences between workstations in the models 
was a straightforward application of GOMS: No extension to the theory was 
required. 

The Field Study: Data for Comparison to GOMS Predictions 

For the purpose of validating GOMS models, the most important feature 
of Project Ernestine is that NYNEX conducted an empirical trial over a 
prolonged period of time using real TAOs handling live traffic (i.e., real calls 
from real customers). As we observed elsewhere (Atwood, Gray, &John, in 
press): 

Applying analytic modeling efforts to real-world settings is an enterprise 
laden with paradox. If models predict results that designers consider 
"intuitive," then the models are perceived to be of little value. On the 
other hand, if models predict results that are counter-intuitive, why, in 
the absence of empirical data, should they be believed? More impor- 
tantly, why should an expensive empirical trial be conducted to validate 
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a counter-intuitive prediction of an analytic model? Understandably, 
opportunities to demonstrate the value of analytic modeling are rare. 

Telephone companies have long known the value of field trials, especially 
when important economic decisions are to be made. Therefore, NYNEX 
scheduled the field trial independent of any modeling effort. This allowed us 
to do GOMS analyses as if the new workstation did not actually exist but was 
merely a proposed design and, after the analyses, to compare the predictions 
with independently collected empirical data. 

Alternative Basis for Prediction 

Empirical field trials are expensive and complex and are seldom conducted. 
The fact that NYNEX decided to conduct an empirical trial of a proposed 
workstation meant that NYNEX already was largely sold on the advantages 
of the proposed workstation. Such a trial would be expected to confirm 
expectations of worktime savings, as well as hardware and software reliabil- 
ity, while gaining in-house expertise in using and maintaining the new 
system. 

NYNEX was expecting the proposed workstation to reduce average 
worktime because the proposed workstation eliminated one or more key- 
strokes for most calls, and it displayed a screenful of information in less time 
than the current workstation. A simple calculation based on these advantages 
predicted that the proposed workstation would reduce average worktime by 
almost 20 % (see Section 4.3). Seeing that a simple, back-of-the-envelope 
calculation already predicted the difference in performance time, we were 
interested in whether the time and effort involved in building GOMS models 
would be justified by more accurate predictions. 

1.2. The Structure of This Article 

Our top-level goal for this article is to assess the validity of GOMS models 
for predicting and explaining performance on real-world tasks. To do this, we 
first discuss the model-building effort with particular attention to differences 
between using observational data for the current workstation and manu- 
facturer-supplied specifications for the proposed workstation. 

In Section 3, we discuss the field-trial per se and its empirical results. This 
discussion provides data against which to compare the quantitative predic- 
tions of the GOMS analysis and a baseline of information against which to 
argue the usefulness of GOMS. 

In Section 4, we first evaluate the representativeness of the benchmark 
tasks on which we based the model-building effort (Section 4.1). We then 
compare our predictions to the field-trial data to determine the quantitative 
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accuracy of our models (Section 4.2) and see how these predictions stack up 
against an alternative, noncognitive basis for prediction (Section 4.3). We 
then go beyond the data and provide explanations for the results (Section 4.4). 

Finally, in Section 5, we show what the models imply for the design of 
future workstations, demonstrating how such calculational models can be 
"tools for thoughtn (Newell & Card, 1985). 

Before continuing, it is important to emphasize that the two major parts of 
Project Ernestine, the field trial and the GOMS analyses, were done 
separately and during the same time period. It is not the case that the GOMS 
models were built with knowledge of the empirical data. (Also, at the time of 
this writing, we have not observed a single TAO using the new workstation.) 
To better convey the parallelism of the trial and modeling, as well as to 
provide the reader with a spatial index to the various parts of this complex 
field study and modeling effort, we offer Figure 1. 

2. BUILDING CPM-GOMS MODELS 

We begin this section with an analysis of the goal structure of the TAO's 
task. In that CPM-GOMS is a relatively new GOMS technique (John, 1990; 
John & Gray, 1992), we first present classic GOMS analyses of the TAO's 
task (Card et al., 1983) and use them to introduce the CPM-GOMS models 
actually used to predict TAO behavior. In Section 2.2, we discuss the issues 
and process of model building. 

2.1. GOMS and CFM-WMS 

To show the continuity between classic GOMS and CPM-GOMS, we 
present analyses of the TAO's task at four levels: the unit-task level, the 
functional level, the activity level, and the Model Human Processor (MHP) 
level with CPM-GOMS. The unit-task and functional levels are directly 
analogous to the models of the same name in Card et al. (1983). The activity 
level is of finer granularity (somewhere between Card et al.'s argument and 
keystroke levels), and it distinguishes between different types of activities that 
models of text editing do not require. The CPM-GOMS analysis uses the 
critical path method technique explained in detail by John (1990; John & 
Gray, 1992). It uses operators at the level of the MHP's (Card et al., 1983) 
processor cycle times. The point of this comparison is that these analyses have 
the same roots, but they reveal different aspects of the user's performance and 
are useful for different aspects of design or evaluation. 

The unit task for TAOs is the individual call. This corresponds to the 
individual edit discussed in Card et al.'s (1983) analysis of text editing. For 
example, consider the situation in which a person directly dials a number and 



Figure 1. Flowchart of analyses in Project Ernestine (numbers refer to sections 
of the article). 
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has the TAO bill the call to his or her calling card. The dialog is sparse but 
typical: 

Workstation: [Beep] 
TAO: New England Telephone, may I help you? 
Customer: Operator, bill this to 412-555-1212-1234. 
TAO: Thank you. 

The Unit-Task-Level Analysis 

An analysis of the TAO's job, at the unit-task level, is shown in Figure 2. 
The single operator, HANDLE-CALL, has a fixed estimated duration. At this 
level of analysis, the time per unit task is constant and does not vary by call 
category. For the phone company, having an estimate of time per call of, say, 
30 sec is very useful. In fact, such an estimate is combined with historical data 
on call volume to schedule TAOs by 15-min intervals for each day of the week, 
each week of the year. To  predict differences in worktime by call category and 
to guide workstation design, however, we need a more detailed analysis. 

The Functional-Level Analysis 

The functional level provides more detail than the unit-task level. The 
subgoals at this level directly reflect the three questions the TAO must answer 
to handle the call: who pays, at what rate, and is the call complete? A 
functional analysis of our example call is shown in Figure 3. 

In this functional-level analysis, all calls can be analyzed using only four 
operators: RECEIVE-INFORMATION, REQUEST-INFORMATION, ENTER- 
INFORMATION, and RELEASE-CALL. The TAO's task is so constrained that 
there are virtually no situations in which alternative methods arise, so 
selection rules do not play a role in these analyses. 

Time estimates for the call are based on time estimates for each of these 
four operators. It is a simplifying assumption of GOMS models that each 
operator (at any level of analysis) has an estimated duration that may depend 
on inputs to that operator but not on the context of other operators in which 
it occurs. For instance, a typing operator could be defined to take the text to 
be typed as its input and a duration that is (approximately) a linear function 
of the number of characters. The functional-level operators we chose to define 
herein do not have such task-dependent inputs; each operator has just one 
time estimates despite the fact that it covers a variety of task situations. For 
instance, the RECEIVE-INFORMATION operator represents behavior ranging 

F i p r e  2. Unit-task-level GOMS analysis of example call. 

GOAL: HANDLE-CALLS 
. GOAL: HANDLE-CALL repeat as calls am've at workstation 



VALIDATING A GOMS ANALYSIS 247 

Figure 3. Functional-level GOMS analysis of example call. 

GOAL: HANDLE-CALLS 
. GOAL: HANDLE-CALL 
. . GOAL: INITIATE-CALL 
. . . RECEIVE-INFORMATION 
. . . REQUEST-INFORMATION 
. . GOAL: ENTER-WHO-PAYS 
. . . REQUEST-INFORMATION 
. . . RECEIVE-INFORMATION 
. . . ENTER-INFORMATION 
. . GOAL: ENTER-BILLING-RATE 
. . . REQUEST-INFORMATION 
. . . RECEIVE-INFORMATION 
. . . ENTER-INFORMATION 
. . GOAL: COMPLETE-CALL 
. . . REQUEST-INFORMATION 
. . . RECEIVE-INFORMATION 
. . . RELEASE-CALL 

refieat as calLs am've at workstation 

i f  additional information needed 

i f  additional information needed 

i f  additional information needed 

from the fraction of a second necessary for the TAO to read the screen to 
determine if a call is from a COIN or NON-COIN phone to the several seconds 
needed to hear the customer say, "Operator, bill this to 412-555-1212-1234." 

Although not all categories would have exactly the same pattern of 
functional-level operators, the variety of patterns will be small, and we are 
likely to end up with two or three different patterns to cover all 15 call 
categories. Indeed, the functional level has little to say about performance 
time differences between call categories or between workstations. To the 
contrary, for the TAO's job, the functional level emphasizes the commonality 
of functions across call categories. This level of analysis speaks to the design 
of workstations only to ensure that some procedure for accomplishing each 
subgoal is indeed provided by the workstation. Thus, this is the level of 
GOMS analysis best suited to guide the early stages of workstation design. 

The Activity-Level Analysis 

At the activity level, we begin to get a sense of the job being done, that 
is, how the TAO interacts with the customer and the workstation to handle 
the call. The operators from the functional level become subgoals composed 
of finer-grained operators. For example, the functional-level operator, 
RECEIVE-INFORMATION, becomes an activity-level goal, which is accom- 
plished with one or more operators specific to the type of information being 
received (LISTEN-FOR-BEEP, READ-INFO-FROM-SCREEN, LISTEN-TO- 
CUSTOMER). 

Figure 4 shows an activity-level analysis of the TAO's task. The 
conditionality on operators starts to be unwieldy at the activity level, so for 
illustrative purposes this figure shows only the sequence of goals and 
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$ Figure 4. Activity-level GOMS analysis of the TAO's task. 

GOMS Model Observed Activities 

GOAL: HANDLE-CALLS 
. GOAL: HANDLE-CALL 
. . GOAL: INITIATE-CALL 
. . . GOAL: RECEIVE-INFORMATION 
. . . . LISTEN-FOR-BEEP 
. . . . READ-SCREEN(2) 
. . . GOAL: REQUEST-INFORMATION 
. . . . GREET-CUSTOMER 
. . GOAL: ENTER-WHO-PAYS 
. . . GOAL: RECEIVE-INFORMATION 
. . . . LISTEN-TO-CUSTOMER 
. . . GOAL: ENTER-INFORMATION 
. . . . ENTER-COMMAND 
. . . . ENTER-CALLING-CARD-NUMBER 
. . GOAL: ENTER-BILLING-RATE 
. . . GOAL: RECEIVE-INFORMATION 
. . . . READ-SCREEN(1) 
. . . GOAL: ENTER-INFORMATION 
. . . . ENTER-COMMAND TAO: Hit F2 key 
. . GOAL: COMPLETE-CALL 
. . . GOAL: REQUEST-INFORMATION 
. . . . ENTER-COMMAND TAO: Hit F3 key 
. . . GOAL: RECEIVE-INFORMATION 
. . . . READ-SCREEN(3) Workstation: Displays credit-card authorization 
. . . GOAL: RELEASE-CALL 
. . . . THANK-CUSTOMER TAO: "Thank you" 
. . . . ENTER-COMMAND TAO: Hit F4 key 

Workstation: Beep 
Workstation: Displays information 

TAO: "New England Telephone, may I help you?" 

Customer: "Operator, bill this to 412-555-1212-1234." 

TAO: Hit F1 key 
TAO: Hit 14 numeric keys 
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operators for the specific credit-card call described before. In addition, the 
observable activities that the TAO engages in to handle this call are shown 

- - 

next to the operators that represent them in the model. 
The activity level may be sufficient to identify the skills that TAOs need to 

have or need to be trained in to do the job (e.g., training in using standard 
greetings). It may also help to guide design questions. For example, the first 
RECEIVE-INFORMATION goal has two operators: LISTEN-FOR-BEEP, which 
alerts the TAO that a call is arriving, and READ-SCREEN, which provides 
information about the source of the call so the TAO can choose the 
appropriate greeting. Can one of these operators be eliminated? Can the beep 
both signal the arrival of a call and indicate the source of the call (e.g., with 
a small number of different-pitched tones)? At the activity level, differences 
between call categories would be mirrored in differences between the patterns 
of goals, subgoals, and operators. 

Despite its uses, the activity level is not appropriate for predicting time 
differences either between workstations or between call categories. For 
workstations, the problem is obvious. At the activity level, the proposed and 
current workstations have exactly the same goal-subgoal-operator structure.' 
Hence, they would be predicted to have exactly the same duration. 

For call categories, the situation is only slightly more subtle. Any operator 
is given the same estimated duration regardless of the variety of circumstances 
that it may encompass. For example, LISTEN-TO-CUSTOMER would have the 
same duration for the "Operator, bill this to 4 12-555- 12 12- 1234" example as 
for "Operator, I want to make this collect to my Grandmother Stewart, who 
has been feeling ill lately, from her grandson Waynen as for "Bill this to 1234." 
Hence, at the activity level, differences in the type and number of operators 
for each call category would tend to be overwhelmed by the range and 
variability of individual operators. 

The activity level also highlights a problem with the sequential nature of the 
original GOMS models. As an illustration, suppose the durations of the 
observable operators (LISTEN-TO-BEEP, GREET-CUSTOMER, ENTER- 
COMMAND, ENTER-CALLING-CARD-NUMBER, and THANK-CUSTOMER) 
and system response time were set from a videotape of this sample call and an 
estimate of READ-SCREEN came from previous work reading short words 
from a CRT screen (John & Newell, 1989a, 198913). Then the sum of these 
operators and system response times predicts that the call would take almost 
17.85 sec (see Figure 5). In reality, this sample call takes 13 sec to complete. 

' Although this statement is true for the two workstations that were compared in Project 
Ernestine, it may not be true in general. For Project Ernestine, the proposed workstation did not 
change the nature of the job being performed. For situations in which a change in workstation 
was also accompanied by a change in the job, say from the use of a drafting table to the use of 
a CADICAM system, then analysis at the activity or functional level may be sufficient to bring 
out critical differences. 
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Figure 5. Activity-level prediction of task performance time (total predicted = 17,850 msec; total observed = 13,000 msec; 
percent error = 37%). Notes: We include observed system response time when it does not overlap with user behavior as per 
Card, Moran, and Newel1 (1983). Operators corresponding to observed behavior with more than one occurrence (only the 
ENTER-COMMAND operator) are assigned a duration equal to the average of all observed occurrences; operators with only one 
occurrence are assigned a duration identical to that occurrence (all other operators set from the videotape). Unobservable 
operators (only the READ-SCREEN operator) are assigned a duration based on prior research, as noted. 

GOMS Model 

GOAL: HANDLE-CALLS 
. GOAL: HANDLE-CALL 
. . GOAL: INITIATE-CALL 
. . . GOAL: RECEIVE-INFORMATION 
. . . . LISTEN-TO-BEEP 

(SYSTEM-RESPONSE-TIME) 
. . . . READ-SCREENQ) 
. . . GOAL: REQUEST-INFORMATION 
. . . . GREET-CUSTOMER 
. . GOAL: ENTER-WHO-PAYS 
. . . GOAL: RECEIVE-INFORMATION 
. . . . LISTEN-TO-CUSTOMER 
. . . GOAL: ENTER-INFORMATION 
. . . . ENTER-COMMAND 
. . . . ENTER-CALLING-CARD-NUMBER 
. . GOAL: ENTER-BILLING-RATE 
. . . GOAL: RECEIVE-INFORMATION 
. . . . READ-SCREEN(1) 
. . . GOAL: ENTER-INFORMATION 
. . . . ENTER-COMMAND 

Duration 
Estimates Operator Source of Estimate 

100 msec 
730 msec 
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Figure 6. Time line of activities in the sample call. Note: The durations of the 
observable operators are the actual durations in the videotape, not the averaged 
durations used in the GOMS analysis in Figure 5. The unobservable operator, 
READ-SCREEN, is shown with the duration estimated from the literature (340 
msec) and is positioned just after the relevant information appears on the TAO's 
screen. 

System RT $j$ii a 
LISTEN-TO-BEEP 

READ-SCREEN 

GREET-CUSTOMER 1-j 

LISTEN-TO-CUSTOMER I='- - ENTER-COMMAND m I 

The reason for this is obvious from a time line of actual events recorded in the 
videotape (Figure 6). The TAO is clearly performing activities concurrently, 
and the GOMS analysis does not capture this dominant feature of the task. 
The assumption of strictly sequenced operators substantially overpredicts 
performance time for this task, even when using measured values for most of 
the operator durations. Therefore, to make quantitative predictions of TAOs' 
performance requires a more powerful representation for parallel activities - 
that of the CPM-GOMS analysis technique. 

THANK-CUSTOMER 

The CPM-GOMS Analysis 

I 
1 1 1 1 1 1 1 1 1 1 1 1 1  

13 

The CPM-GOMS extension to classic GOMS is linked closely to the 
cognitive architecture underlying GOMS: the MHP (Card et al., 1983). The 
MHP has three processors: a cognitive processor, a perceptual processor, and 
a motor processor. In general, these processors work sequentially within 
themselves and in parallel with each other, subject to information-flow 
dependencies. To  display parallel activities and information-flow dependen- 
cies and to calculate total task times, we use the critical path method, a 
common tool used in project management. Thus the CPM-GOMS analysis 
technique gets its name from expressing Cognitive, Perceptual, and Motor 
operators in a GOMS analysis using the Critical Path Method. 

To  model the TAOs' tasks, perceptual operators are divided into two 
categories: visual and auditory operators. Motor operators are divided into 
four categories: right-hand, left-hand, verbal, and eye-movement operators. 
Cognitive operators are not further divided into categories. These operators 

Time of call (seconds) 
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are at a finer grain than the operators of the previously mentioned activity- 
level analysis; that is, the activity-level operators become CPM-level goals, 
with the MHP-level operators combining to accomplish these goals. The 
details of where MHP-level operators come from in general, estimates for 
their duration, and how they combine to accomplish activity-level goals are 
presented elsewhere ('John, 1990; John & Gray, 1992), but we discuss building 
TAO task-specific models in more detail in the next section. 

Other processors exist in this human-computer system (e.g., the call- 
switching processor, the databases of credit card numbers, and the worksta- 
tion itself). The operators of these processors are represented by two 
categories of system response time: workstation display time and other 
systems4 (where rt means response time). Although system-rt is not a true 
GOMS operator, we refer to it as an operator for simplicity of exposition. 

Only one operator in each category can be performed at a time; that 
is,operators are serial within category. However, they can be performed in 
parallel with operators in other categories. 

Schedule Charts: A Notation for Repesenting Parallelism. In CPM- 
GOMS, the parallelism of the TAOs' task is represented in a schedule chart 
(Figure 7). Each MHP-level operator is represented as a box with a name 
centered inside it and an associated duration above the top-right corner (in 
msec). Lines connecting the boxes represent information-flow dependencies; 
that is, when a line joins two operators, the operator to the left produces 
information required by the operator to the right. For visual clarity, we place 
operators of the same category along a horizontal line. 

The goal hierarchy of the classic GOMS analysis is not explicitly repre- 
sented in the schedule chart, but it is implicit in the operators that are 
represented. For example, an activity-level operator READ-SCREEN(1) in 
Figure 4 represents the TAO reading the screen to find information about the 
billing rate (about halfway down the figure). This becomes an activity-level 
goal in the CPM-GOMS model, READ-SCREEN(l), and is accomplished by 
five MHP-level operators explicitly represented in Figure 7 (backed by light 
gray shading): attend-info(l), a cognitive operator that decides to look for this 
information; initiate-eyfj-movement(l), a cognitive operator that initiates an 
eye movement to where that information will appear on the screen; eye- 
rnovement(l), a motor operator that positions the eyes; perceive-complex- 
info(l), a visual perception operator that takes in and comprehends the 
information when it is displayed; and finally verify-info(l), another cognitive 
operator that confirms that the information is as expected (i.e., not something 
unexpected like a workstation failure producing an error message). 

We represent the information-flow dependencies between these operators 
by drawing lines between them. There is a line from attend-info(1) to 
initiate-eye-movement(1) because the TAO must first decide to find this 



Figure 7. Example CPM-GOMS schedule chart. To illustrate the higher level goal structure common to 
classic GOMS but not explicit in CPM-GOMS, for this sample the higher level goals are indicated by 
groups of operators and the background color of the groups (light vs. medium gray). Each group indicates 
a different activity-level goal; each background color indicates a different functional-level goal. 
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information before determining that an eye movement is necessary. There is 
a line from initiate-eye-movement(2) to eye-movement(1) because the eyes 
cannot move until a cognitive operator instructs them to do so. Eye- 
movement(1) is connected to perceive-complex-info(1) because the informa- 
tion cannot be perceived until the eyes are in the right place. Finally, there is 
a line between perceivecomplex-info(1) and verify-info(1) because the infor- 
mation must be perceived and comprehended before a cognitive operator can 
verifi. that it is indeed the information that was expected. The rationale for 
these dependencies is based both on common sense and on the control 
structure of the MHP (Card et al., 1983). 

In addition to the previously described MHP-level operators that represent 
the actions of the TAO, the actions of the workstation also play a part in this 
example. The information that the TAO needs to determine the billing rate 
is not displayed instantaneously at the beginning of the call. Rather, the other 
systems take 400 msec to deliver that information to the workstation, 
represented by system-rt(l), and the workstation itself takes 30 msec to 
display that information, display-info(1). The TAO cannot perceive the 
information until it is displayed on the screen, so there is an additional 
dependency line from display-info(1) to perceive-complex-info(1). 

This pattern of five MHP-level operators, linked to the display of 
information on the screen, implicitly represents that the READ-SCREEN 
activity-level god is being served. 

Altogether, Figure 7 shows four patterns of MHP-level operators that 
implicitly represent four activity-level goals: LISTEN-FOR-BEEP, READ- 
SCREEN(l), READ-SCREEN(2), and GREET-CUSTOMER. Note that the 
pattern of MHP-level operators that achieves similar goals is not identical. 
For example, in Figure 7, READ-SCREEN(1) requires an eye movement that 
is not needed for READ-SCREEN(2) because the TAO's eyes are already in the 
right place in the course of the task. Likewise, READ-SCREEN(1) has a 
perceive-complex-info MHP-level operator whereas READ-SCREEN(2) has a 
perceive-binary-info MHP-level operator because the information needed for 
billing, display-info(l), is a complex code that must be comprehended 
whereas the information needed to initiate the call, display-inf0(2), is simply 
whether any information is displayed in a particular place on the screen or 
whether it remains blank. 

The patterns of operators in Figure 7 are backed in either light or medium 
gray. The background shading indicates that these operators accomplish 
activity-level goals that are in service of different functional-level goals 
found in Figures 4 and 5. The operators backed in light gray accomplish 
READ-INFO(l), which is in service of RECEIVE-INFORMATION, which is, 
in turn, in service of ENTER-BILLING-RATE. The operators in medium 
gray accomplish LISTEN-FOR-BEEP, READSCREEN(2), and GREET- 
CUSTOMER, which are in service of RECEIVE-INFORMATION and 
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REQUEST-INFORMATION, which serve the functional-level goal of INITI- 
ATE-CALL. Thus, the goal hierarchy of the classic GOMS analyses is impli- 
citly represented in patterns of MHP-level operators in the CPM-GOMS 
schedule chart. 

The Critical Path. An important concept in analyzing the total time for 
tasks involving the complex interaction of parallel activities is the criticul path. 
The critical path is the sequence of operators that, because of their durations 
and dependency relationship to other operators, determines the total time of 
the task. In CPM-GOMS models, the critical path is indicated by a bold 
outline of the operators' boxes and bold dependency lines between them. The 
sum of the durations of the operators on the critical path is the total time for 
the task. 

For example, before deciding on a particular greeting for this customer, the 
TAO perceives the first piece of information displayed on the screen 
(perceive-complex-info(1); see Figure 7) and then the presence or absence of 
the second piece of information (per~eive-binary-info(2)). The perception, 
comprehension, and verification of this information (perceive-complex- 
info(1) and verify-info(1)) plus turning attention to the presence of the second 
piece of information (attend-info(2)) take longer than the system response 
times to deliver and display information (system-rt(2) and disply.info(2)). 
Therefore, the critical path goes through the human activity rather than 
through the system response times, and the path is lined in bold. In this case, 
the systems' response times are said to have slack time, are not on the critical 
path, and are not lined in bold. Human activity that has slack time has also 
been observed in videotapes of TAOs handling calls. For example, TAOs 
move to specific function keys then hover over them while waiting for the 
customer or the workstation to give information that will dictate which key to 
press. 

Comparison of the W M S  and CPM-WMS A d y s e s  

The classic GOMS models of the TAO's task (Figures 2, 3, and 4) and the 
CPM-GOMS model (Figure 7 and Appendix A) look very different. 
Although CPM-GOMS is an extension to classic GOMS, its graphic 
representation of operators and dependencies can obscure the theoretical roots 
common to both analysis techniques as well as the theoretical differences 
between them. 

Both techniques start with a decomposition of the task into a hierarchy of 
goals and subgoals that determines which operators are performed. However, 
because durations are only assigned to operatois, not to the manipulation of 
goals (Card et al., 1983), only operators contribute to the total task duration. 
CPM-GOMS schedule charts are a representation of task duration and thus 
do not include any explicit representation of goals. The fact that goals are 
explicitly represented in the classic GOMS goal-operator lists but only 
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implicitly represented in the CPM-GOMS schedule charts is a superficial 
difference between the two techniques. 

However, there are two important theoretical differences between classic 
GOMS and CPM-GOMS: parallelism of operators and relaxing the hierar- 
chical goal structure. CPM-GOMS does not assume sequential application of 
operators to accomplish a goal as does classic GOMS. The MHP-level 
operators are performed in parallel with those of other categories, subject to 
resource limitations and task-specific information-flow dependencies de- 
scribed before. 

In addition, CPM-GOMS does not enforce the stack discipline of classic 
GOMS, in which only one goal can be active at a time. In CPM-GOMS, 
different goals can exist concurrently. In Figure 7, for example, the TAO 
reads the first two pieces of information that are displayed on the screen at the 
very beginning of the call (perceive-complex-info(1) and perceive-binary- 
info(2), respectively). As it happens, the second piece of information dis- 
played is the information required to choose the appropriate greeting in 
service of the first functional-level goal in the classic GOMS analysis, 
INITIATE-CALL (Figure 3). The first piece of information displayed is part of 
the information required to determine the appropriate rate in service of a later 
functional-level goal, ENTER-BILLING-RATE (Figure 3). The ENTER- 
BILLING-RATE goal cannot be completed until the customer supplies more 
information later in the call, but the TAO assimilates this information 
opportunistically as it appears on the screen. Thus, this CPM-GOMS model 
has two functional-level goals active at the same time: INITIATE-CALL 
(represented by the three operator patterns backed by medium gray in Figure 
7) and ENTER-BILLING-RATE (backed by light gray). 

A second example occurs at a lower level with activity-level goals in Figure 
7.  Concurrent activity-level goals are evident in how the MHP-level operators 
that accomplish the LISTEN-FOR-BEEP activity-level goal (backed by me- 
dium gray) are interleaved with the operators that accomplish the READ- 
SCREEN(1) goal (backed by light gray). These situations would have been 
impossible to represent in classic GOMS, but they more accurately reflect 
observed behavior in the TAO's task. 

The four previously presented analyses are a basis for understanding the 
TAO's task in general and its representation in CPM-GOMS. The next 
section explains the specific model-building procedure we used to model 
TAOs' performance with the current workstation and to predict their 
performance with the proposed workstation. 

2.2. The Benchmark Method 

The benchmark method, which compares two or more systems constructed to 
accomplish the same task, is a well-established technique in engineering 
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disciplines. The method involves choosing a set of benchmarks that typify the 
tasks, running the systems on those benchmarks, and (for each benchmark) 
comparing performance across systems. 

Benchmarks are invariant across the systems to be compared. For example, 
to compare database architectures, Benigni, Yao, and Hevner (1984, 1985) 
held constant the size and content of the test data, the computer's workload, 
and the specific queries put to the database. Similarly, Roberts and Moran 
(1983) developed benchmarks for text editors that held constant the location 
and amount of text to be inserted, deleted, moved, and so on. Likewise, 
Hillelsohn (1984) used the development of 30 frames of a benchmark lesson 
to compare five authoring systems for computer-based training. For Project 
Ernestine, each benchmark represents a different call category. Within a 
benchmark, we keep constant all activities and times except those explicitly 
dictated by changes in workstation design or procedures. For example, we 
hold constant the exact variant of call within the call category, the TAO's 
dialog, customer's dialog, and all system responses external to the workstation 
(e.g., database checks on calling-card numbers). 

Benchmarks are commonly used to compare performance data for existing 
systems. However, they also can be used with simulations of systems when the 
systems do not exist or are costly (or dangerous) to run with the benchmark 
tasks. We chose to use benchmarks with simulations in the form of 
CPM-GOMS models because we wished to test the validity of using 
CPM-GOMS at the specification stage of a design, before a running system 
is built. 

To  perform the CPM-GOMS analysis with the benchmark method, first 
we selected appropriate benchmarks. We then determined the CPM-GOMS 
operators necessary to perform these benchmark tasks on the current 
workstation, dependencies between them, and estimates of their durations. 
Finally, we built CPM-GOMS models for all the benchmark tasks using the 
proposed workstation and made quantitative predictions of performance. 

Twenty call categories were selected because of either their high frequency 
or their particular interest to NYNEX Operator Services. Benchmark tasks 
were developed for each of these 20 call categories. For a variety of reasons, 
which are fully explained in Appendix B, however, five of the call categories 
were dropped from the empirical analysis and are not considered further in 
this article. 

Calls within a category vary considerably (Appendix B, Figure B-3 shows 
that the coefficients of variance for calls in the empirical trial on the current 
workstation ranged from 0.37 to 1.05). This variation is primarily due to 
variations in customer conversation. For instance, in a credit-card call, a 
customer might give her entire 14-digit calling-card number, or, if the call is 
to the customer's home phone, she may give the TAO only her four-digit 
personal identification number. Additionally, some customers leave out 
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information, requiring the TAO to ask them for it. Some customer conver- 
sations require this prompting, some do not, causing much of the variance. 

In the face of such expected variation, we strove to script a single 
benchmark call for each category so that the set of benchmarks would be 
representative of the types of calls TAOs would actually handle. With the help 
of NYNEX Operator Services personnel, we varied the customer conversa- 
tion in the benchmark scripts to reflect major differences in customer 
behavior such as those described before. 

We then used the benchmark scripts to place staged calls to an expert TAO 
using a current workstation. The TAO would put the call through, and, when 
required by the call category, a confederate played the role of the called party 
(using another phone within the trial office). We videotaped eight TAOs 
handling the staged calls for approximately 1 hr each; the TAOs knew the 
calls were staged and that they were being videotaped. For each call category, 
we selected one instance on the videotapes that both followed the script and 
contained all the information we needed (e.g., the complete conversation 
between the TAO and the "customer," a good recording of the display screen, 
and good recording of the TAO's hand movements). These single instances of 
the staged calls became the final benchmarks for workstation comparison. 

2.3. Observation-Based CPM-GOMS Models for the Current 
Workstation 

The next step in constructing CPM-GOMS models to predict TAO 
performance is to build observation-based models of the benchmark tasks 
performed on the current workstation. We used the videotaped behavior on 
the current workstation to determined MHP-level operators necessary to 
perform these tasks, dependencies between them, and estimates of their 
durations. 

First, we transcribed the videotape for the 15 selected benchmark calls. 
Each transcript included the actual start and stop times for each verbal 
communication, for each keystroke, and for each change on the workstation 
display (to the accuracy of a video frame, 32 msec). 

After the transcript was made, we created a CPM-GOMS schedule chart 
reflecting the procedures observed in the videotapes, observable operators, 
and (using the classic GOMS models as a guide) our best guess for both the 
unobservable operators and the dependencies (details can be found in John, 
1990, and John & Gray, 1992). Because we were modeling a single 
benchmark for each call, there was no opportunity for us to observe different 
methods for accomplishing a call or to infer selection rules if different 
methods existed. However, because the TAO's task is so constrained that 
often only a single correct method corresponds to a particular script, this 
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simplification seems reasonable. Note that, in a few of the videotapes we 
analyzed, we observed inefficient keying strategies, typically extra keystrokes. 
NYNEX Operator Services personnel tell us that some of these inefficient 
strategies are holdovers from older, now obsolete, procedures. Others may 
reflect a misunderstanding of procedures on the part of the videotaped TAOs, 
whereas others may simply be slips. We chose to model the inefficiencies as 
observed, rather than model the most efficient procedures possible on the 
current workstations. Because all of the videotaped TAOs were experts with 
at least 2 years of experience, we felt that our observations were representa- 
tive of the actual behavior of expert TAOs on the current workstations. 

We then made estimates of the operator durations. For observed operators, 
we used the actual durations, which we calI benchmark durations. For the 
unobserved operators, we used normative estimates set from the literature. 
Figure 8 contains a list of all the types of operators used to model the TAOs' 
performance of the benchmark tasks on the current workstation, their 
estimated durations, and the source of those estimates. 

Benchmark Durations 

The durations for all pausing and speaking, both by the TAOs and the 
customers, are set by the benchmarks and taken directly from the videotapes. 
These include complex auditory perceptual operators, such as the real-time 
perception and comprehension of the customer's phrase "make this collect," as 
well as the duration for the TAO's motor operator to say "New England 
Telephone, may I help you?" The duration of hand movements for pressing 
keys on the current workstations is also set from the videotapes, as are alI the 
system response times for the current workstations. 

Normative Estimates 

Normative estimates are obtained from the literature and are off-the-shelf 
estimates of how long an average person requires to perform a particular 
operator. We used nine normative operators. The four cognitive operators are 
assumed to be of equal duration, 50 msec Uohn & Newell, 1989a, 1989b). 
The motor operator that makes an eye movement to a known screen location 
is assumed to be 180 msec (this is the Card et al., 1983, estimate of 230 msec 
for an eye movement subdivided into a cognitive operator, 50 msec, to initiate 
the movement and the motor action itself, 180 msec). Binary visual percep- 
tion operators, used when the TAO must detect only the presence or absence 
of a visual signal, are assumed to take 100 msec (minimal perceptual operator 
in the MHP; Card et al., 1983). For example, in Figure 7, the perception of 
info(2) is a binary perception; the TAO need only detect that a code appears 
in that spot on the screen, not what the code actually says (because it always 



Figure 8. Operator types and durations used for CPM-GOMS. CO = cognitive operator; MO = motor operator; PO = 
perceptual operator; SRT = system response time. 

Operator 

CO: attend-visual <info> 
CO: attend-aural <info> 
CO: initiate; < motor response: 

keystroke, speech, eye movement > 
CO: verify-< info> 
MO: <speech> 
MO: horizontal-< to key > 
MO: home- < from lap to keyboard > 
MO: down- < keystroke > 
MO: Up- < keystroke > 
MO: eye-movement 
PO: perceive-auditory c speech > 
PO: perceive-auditory silence 
PO: perceive-BEEP 
PO: perceive-visual-binary <info> 
PO: perceive-visual-complex < info > 
SRT: <all SRTs including workstation 

display time and other system > 
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Benchmark 
Benchmark 
Benchmark 
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As measured 
As measured 
As measured 
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180 msec 
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Benchmark As measured 

Type Duration 

Normative 50 msec 
Normative 50 msec 
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Benchmark 
Predicted 
Benchmark 
Predicted 
Predicted 
Normative 
Benchmark 
Normative 
Normative 
Normative 
Normative 

50 msec 
50 msec 
As measured 
100 msec 
As measured 
90 msec 
100 msec 
180 msec 
As measured 
300 msec 
100 msec 
100 msec 
290 msec 

Predicted Current * Estimated 
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says the same thing).' In contrast, perceiving info(2) in Figure 7 is a complex 
visual perception because the TAO must perceive and comprehend the 
semantics of the code displayed, as well as the presence of the code, to get 
sufficient information to continue with the call. The complex visual percep- 
tions required of the TAO are all of small words, alphanumeric codes, or 
numbers, and they are assumed to take 290 msec because they are of similar 
character to the small-word recognition tasks used to estimate that duration 
(this is the John & Newell, 1989a, 1989b, estimate of 340 msec for the 
perception and encoding of a short word subdivided into a 290-msec 
perceptual operator and a 50-msec cognitive operator to verify expectations). 
Binary auditory perceptual operators, such as detecting the "beep" that signals 
an incoming call, are also set at 100 msec (minimal perceptual operator of the 
MHP; Card et al., 1983). The perception of an auditory silence that signals 
turn taking in conversation is estimated at 300 msec (this is the 400-msec 
mean interspeaker pause found by Norwine & Murphy, 1938, subdivided into 
a 300-msec perceive-silence operator followed by a 50-msec cognitive operator 
to verify the silence and a 50-msec cognitive operator to initiate the spoken 
response). 

Identifying Impossible Times and Computing the Critical Path 

The first CPM-GOMS schedule chart included the actual durations as well 
as the actual start and end times of each observable operator and normative 
durations of the unobservable operators. This often redundant and 
overconstraining information caused the project management software 
(MacProjectn) to highlight inconsistencies in the schedule charts. Such 
impossible times signaled problems with the initial model. Things that could 
be wrong at this point included our understanding of the call-handling 
procedures, our choice of operator grain size, the number of operators, or the 
dependencies between operators. 

Impossible times led us to refine our understanding of the current 
workstation by reanalyzing the videotapes andlor by discussions with man- 
agers in NYNEX Operator Services. We revised the models based on our 
increased understanding of the task. This iterative process continued until 
most impossible times were eliminated. Some impossible times resulted from 
our placement heuristics for unobservable operators and could not reasonably 
be removed; these were on the order of tens of milliseconds and were 
considered a necessary consequence of the approximate nature of engineering 
models. 

Binary visual perceptions are followed by a cognitive operator to verify that the perception 
is what was expected (i.e., that the perception was of a code being displayed on the screen, not 
a sudden glare from someone turning on a nearby tamp or another visual event not related to the 
task) 
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When we were satisfied that the cognitive task analysis in the CPM-GOMS 
models was reasonably correct, we removed all start and end times from the 
schedule charts. The project management software then calculated the critical 
path based only on the durations of the operators and their dependencies, not 
on the observed temporal position of actual behavior. The resulting schedule 
charts show the critical paths in bold and produce predictions of the length of 
each benchmark call. A schedule chart of a full calling-card call is shown in 
Appendix A. 

Comparing Current Models to Videotapes 

We evaluated the predictions of the current models against the times 
observed in the videotapes from which they were built. Because the models 
were based on the videotaped calls, we expected the differences between the 
two to be small. These expectations were supported by the data. 

For each call category, the CPM-GOMS model underpredicted worktime 
by an average of six tenths of a second (3 76). This finding suggests that there 
is some component of the videotaped call that is consistently missing from the 
model. However, we do not interpret this underprediction as bad news. We 
did not expect our models to be perfect. Because decomposition models tend 
to underpredict, we are very pleased that they are close to the videotaped 
worktimes. More important than the 0.6-sec difference is the fact that this 
difference is quite constant across call categories. The models are consistent 
in their underprediction, so that if, for example, they predict that ccOl (where 
cc = call category) will be slower than cc02, this is likely to be the case. This 
conclusion is supported by a significant correlation (r2 = .996; see Figure 9). 

2.4. Specification-Based CPM-GOMS Models of the  Proposed 
Workstation 

In contrast to modeling the current workstation based on videotaped calls, - 

we modeled the proposed workstation without ever observing TAOs using 
that workstation. Our primary goal in this part of Project Ernestine was to 
validate the use of CPM-GOMS as an evaluation tool at the specification 
stage of design, in the absence of a working system. Thus, we treated the 
proposed workstation as if it did not yet exist. 

For each call category, we modeled the proposed workstation as if this 
particular customer (in the videotaped call) called with these particular 
requests and were handled by this particular TAO using the proposed 
workstation. Therefore, things related to the customer-TAO dialog (e.g., 
wording, pauses, and duration of phrases) are the same for the models of the 
proposed workstation as for the models of the current workstation. Likewise, 
things related to individual TAO performance (e.g., typing speed) are the 
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Figure 9. Compares the benchmark twk calls with the times predicted by the 
current CPM-GQMS models. Note that the 45" diagend illatrates where the 
points would fall if the predictions were perfect. 

same for both sets of models. Things specific to the workstation do vary: 
layout of the proposed display, keyboard arrangement, manufacturer- 
specified procedures, and manufacturer-supplied estimates of system re- 
sponse time. 

The inefficiencies observed in the benchmark videotapes and modeled for 
the current workstation were not modeled for the proposed workstation. 
Rather, we followed the manufacturer-supplied procedures, only deviating if 
a New England Telephone practice would have resulted in faster predicted 
worktimes and if the deviation captured a component of the nonworkstation, 
system performance with which our TAOs were already familiar (e.g., taking 
advantage of the speed difference between a database check and call 
outpulsing3). Therefore, for the proposed workstation, our default policy was 
to use the procedures appearing in the manufacturer's manuals. Because we 
expected the specified procedures to be more efficient than the actual 
procedures, this decision should have biased the results (to an unknown 

This keypress strategy is very efficient. The call cannot be outpulsed until after the database 
check is completed. If the calling-card number is invalid, then, regardless of the TAO's keypress, 
the call will not go out and the TAO will have to converse with the customer. Pressing the key 
when the redisplay begins is the most efficient strategy for valid calling-card numbers. For invalid 
numbers, this strategy is neutral; that is, it is no faster or slower than waiting for the results of 
the database check to display 
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degree) toward predicting shorter worktimes for the proposed workstation 
than what might actually be observed. 

Just as in the models of the current workstation, durations of unobservable 
operators were set to normative estimates from the literature. Durations of 
benchmark-related operators (e.g., durations of words, customer pauses, and 
the time to hit numeric keys) were set from the videotapes. In addition, the 
models of performance on the proposed workstations used predicted durations 
for (a) the hand motions to function keys and (b) the system response times. 
Figure 8 shows the operators used in the proposed workstation models and the 
source of their durations. 

The motor component of each keystroke in a CPM-GOMS model is 
composed of a horizontal movement to the key, a downstroke and an 
upstroke. Because the function keys on the proposed workstation had similar 
mechanical characteristics (i.e., size, shape, and feel) as those on the current 
workstation, we used the actual times from the benchmark videotapes for the 
downstroke and upstroke for function keys that had exact counterparts on the 
current workstation. For those proposed keystrokes for which there were no 
current counterparts, we used a predicted estimate of 90 msec for the 
downstroke and 100 msec for the upstroke (these estimates are the average 
downstroke and upstroke times found in the benchmark videotapes). 

The proposed keyboard had a more ergonomic arrangement of function 
keys, with more frequently used keys much closer together, and closer to the 
numeric keypad, than the current keyboard. In the new arrangement, the 
function keys were very similar to the numeric keypad both in size and 
distance between keys. Fitts's law (Fitts, 1954) tells us that size and distance 
are the two determining factors in estimating horizontal movement; there- 
fore, we used the average of the observed time of horizontal movement 
between numeric keypresses on the videotapes, 100 msec, as the estimated 
duration of horizontal movement between function keypresses in the pro- 
posed models. This estimate is substantially less than most of the horizontal 
movements to function keys observed in the videotapes for the current 
workstation. 

The manufacturer supplied us with estimates of the differences in system 
response time between the current and proposed systems due to differences in 
the systems' hardware. We estimated system response time for the proposed 
workstation by adding or subtracting these estimates from the times observed 
in the benchmark videotapes of the current workstation. 

2.5. Summary of CPM-GOMS Model Building 

The modeling process resulted in 30 CPM-GOMS models in schedule 
chart form. Fifteen of these are the CPM-GOMS models for the benchmark 
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tasks as executed on the current workstation, and 15 are the CPM-GOMS 
models for the benchmark tasks as executed on the proposed workstation. 
Each schedule chart gives a prediction of the length of its benchmark call, 
which is an estimate of the length of that type of call as it occurs in the field. 
(NYNEX considers the absolute time in seconds to be proprietary 
knowledge; therefore, we cannot report the detailed quantitative predictions 
of these models. We do, however, report summary statistics in Section 4.) 
These predictions of the length of benchmark calls can be combined with 
information about the frequency of call categories to predict the differences 
in average worktime between the two workstations. We work through the 
quantitative predictions of the models and compare them to empirical field 
data in Section 4. 

3. THE FIELD TRIAL AND DATA 

The field trial was conducted in a working telephone company office, with 
experienced TAOs, with an unobtrusive data-collection technique. The data 
are very rich and can be used to address many issues. In this report, we use 
the data to highlight three issues most important for validating GOMS. First, 
are there reliable differences in TAO worktime between the two workstations? 
This difference also has practical significance, as each second of worktime is 
typically cited as being worth $3 million per year in operating costs. Second, 
if there are differences between workstations, are these due to workstation 
design per se or are they affected by the TAOs' unfamiliarity with a new 
device? That is, do the differences diminish over the 4 months of the trial? 
Third, are these differences constant or do they interact with the type of call? 
If they are constant, then there may exist some basic design or technological 
flaw that could be simply fixed. If they interact with call category, then there 
may be as many fixes required as there are call categories. Understanding 
how to fix any given call category would require an in-depth analysis of the 
human-human and human-computer interactions for that call category. 

3.1. Field-Trial Methodology 

Ovcrvicw of the Trial & s i p .  There were 24 TAOs on each workstation. 
Training for the proposed workstation group was conducted before the trial 
started and followed standard New England Telephone procedures. During 
the 4-month trial, all normal phone company procedures and management 
practices were followed. No new procedures or practices were introduced. 
Except for the new workstation, everything about their work remained the 
same; both groups worked their normal shifts, with their normal days off, 
throughout the trial. Data collection involved tapping into a pre-existing 
database and required no experimenter intervention or on-site presence. 
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Trial Sire. The New England Telephone ofice used in the study employs 
about 100 TAOs and handles traffic in a major metropolitan area. For 
purposes of the study, 12 of approximately 50 current workstations were 
removed and replaced by 12 proposed workstations. 

TAO Selection. All participants had at least 2 years of job experience, 
were scheduled to work continuously for the next 6 months, and had a 
"satisfactory" or "outstanding" job appraisal. The proposed TAOs were 
selected from a list of 54 who had volunteered to use the new workstation. 
Twenty-four were chosen based on performance and schedule matching as 
well as management and union policies (see Atwood et al., in press). Each 
proposed TAO was matched with a control, or current TAO, on average 
worktime per call and schedule (including shift worked and days off). 

The rest of the ofice continued using the current workstation. The 24 
current TAOs matched to the proposed TAOs did not realize that they were 
part of the study and were not treated any differently from the other TAOs 
using the current workstation. (Note that all references to the current TAOs 
refer only to this matched, control group.) 

We matched TAOs on their average worktime based on performance 
measures routinely collected by ofice managers for the 6 months prior to the 
trial. The difference in average worktime for the two groups was 0.09 set,* 
with the proposed group very slightly, but not significantly, slower than the 
current group (F < 1). 

Training on the Proposed Workstation. Training for the TAOs using the 
proposed workstations consisted of a 21/2-day course conducted on-site by New 
England Telephone managers. In accordance with standard New England 
Telephone practice, most training was conducted on the proposed workstation 
with trainees handling increasingly complex types of live traffic. The 
manufacturer reviewed the training materials and found no discrepancy 
between what they felt were the proper training procedures and what New 
England Telephone included. Managers were trained before serving as 
instructors to the TAOs. The number of students in a class varied from two 
to four (typically two). 

Data Collection. Information on every call handled by New England 
Telephone is routinely maintained in a database. New England Telephone 
uses a software product, OSCAS'" (supplied by Bellcore) to produce a variety 
of reports from this database. Accessing this database allowed us to 
unobtrusively extract the data we required. 

* NYNEX considers the absolute time in seconds to be proprietary knowledge. In discussing 
the results, we use the difference in seconds and the percent difference. However, all statistics 
were calculated using actual times. 
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An OSCAS call category is defined by call type (e.g., collect or calling 
card), dial type (e.g., coin or noncoin), and class (station or person). With the 
help of Bellcore OSCAS Software Development, we obtained a monthly 
report for every month of the trial. This report sampled 1 call out of every 10 
and listed its duration in seconds, labeled by its category and the TAO 
handling the call. 

For our purposes, the call and dial-type categories were overly broad, so we 
filtered the data to define the categories more sharply. For example, some 
OSCAS categories included calls that were handled by more than one TAO. 
In this case, we restricted our call set to single-TAO calls. 

Call Catcgmy Bazalim Fmquemy and Sb-. Our study included 20 
call categories selected because of either their high frequency or their 
particular interest to NYNEX Operator Services. Based on a pretrial OSCAS 
report that summarized calls for all of New England Telephone for 1 month, 
these categories accounted for 88% of all completed calls. 

3.2. Field-Trial Results 

In-depth and detailed analyses of the empirical data were conducted. Those 
readers not interested in these details are advised to skip ahead to the 
Summary of Data Analyses section. The analyses reported here are centered 
about two analyses of variance (ANOVAs). The first ANOVA looked at all 
4 months of trial data and, among other things, found a significant Group x 
Month interaction. We were able to isolate this effect as being due to learning 
by the proposed group in the first month of the trial. For purposes of the field 
trial, per se, this first ANOVA yielded all the information NYNEX needed to 
know. For modeling purposes, however, we wanted to compare all of our 
model predictions against expert performance, that is, against the empirical 
estimates of worktimes derived from the data once learning had occurred and 
performance had reached its asymptote. Hence, as a conservative procedure, 
we redid the ANOVA using just the data against which we planned to 
compare our CPM-GOMS predictions. 

ANOVA of the Trial Data 

Over the 4 months of the trial, we collected data on 78,240 calls from 20 call 
categories performed by 48 TAOs. For a variety of reasons, which are fully 
explained in Appendix B, the following analyses are based on 72,390 calls 
from 15 call categories with 23 TAOs per group. 

A mixed-design ANOVA was conducted with Groups (Current vs. Pro- 
posed) as an independent factor and Call Categories (15), Months (4), and 
TAOs (23) as repeated factors. The ANOVA summary table is shown in 
Figure 10. 
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Figure 10. Analysis of variance: Group x Call Category x Month. 

Sum of Mean 
Source df Squares Square F P 

Group 1 1,131.25 1,131.25 6.11 .0174 
Subject (Group) 44 8,152.75 185.29 
Call Category 14 198,412.66 14,172.33 441.48 .0001 
Call Category x Group 14 617.02 44.07 1.37 ,1608 
Call Category x Subject (Group) 616 19,774.93 32.10 
Month 3 578.81 192.94 10.52 .0001 
Month x Group 3 145.14 48.38 2.64 .0523 
Month x Subject (Group) 132 2,421.46 18.34 
Call Category x Month 42 1,645.21 39.17 2.59 .0001 
Call Category x Month x 

Group 42 663.43 15.80 1.05 .3935 
Call Category x Month x 

Subject (Group) 1848 27,938.37 15.12 

For all 15 call categories and 4 months of the trial, the median worktime for 
the proposed group was 106.0% that of the current group; that is, for the 
average call on the average month, the proposed workstation required 6% 
(1.3 sec) more time than did the current workstation. 

This counterintuitive result, new technology being slower than old technol- 
ogy, is both practically and statistically significant (see Figure lo), F(1, 44) = 
6.11 .5 It indicates that switching to the proposed workstation would increase 
worktimes and, as a result, incur higher annual operating costs than the 
current workstation. (Note, too, that these yearly operating costs are in 
addition to such one-time transition expenses as initial equipment, installa- 

- - 

tion, and initial training.) 
The effect of call category is also significant, F(14, 644) = 441.48, 

confirming what has always been obvious to New England Telephone; some 
call categories are longer or shorter than others. A bit more surprising6 is that 
the effect of call category did not interact with group, F(14, 616) = 1.37, p 
= .16. This absence of an interaction suggests that the disadvantage of the 
proposed workstation is relatively constant across call categories. 

The main effect of month is also significant, F(3, 132) = 10.52. This is 
another confirmation of something New England Telephone has always 
known. Seasonal differences in the call mix cause monthly fluctuations in 

Note that, unless stated otherwise, P < .05 is the significance level used throughout this 
study. 

We reported such a significant interaction in our CHI '92 paper (Gray, John, & Atwood, 
1992). Those preliminary analyses were based on a less conservative procedure for identifying 
outliers (see Appendix B) and on a two-factor ANOVA (Group x Call Category) rather than the 
three-factor ANOVA (Group x Call Category x Month) used here. 
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Figure 11. Percent by which the proposed is slower than the current workuta- 
tion by month: [(Current x Proposed)/Current] x - 100. 

average worktime. Of more importance for us is the nearly significant Month 
x Group interaction, F(3, 132) = 2.64, P = .0523. As can be seen in Figure 
1 1 ,  this is an ordinal interaction; that is, the relative rankings of the two 
groups do not change with respect to month. The proposed group is always 
slower. Although a significant interaction is usually seen as invalidating 
conclusions regarding the main effect, in the case of ordinal interactions this 
does not hold (Keppel, 1973, p. 204). Hence, although the Month x Group 
interaction is an important phenomena in its own right, it does not invalidate 
the conclusion that the proposed group is significantly slower than the current 
group. 

Although we are confident that the proposed group was slower than the 
current group throughout the trial, the marginally significant Month x 
Group interaction raises the possibility that the proposed group was getting 
faster and, if the trial had continued long enough, would have been faster 
than the current group. This important possibility is discussed and further 
analyzed next. 

Figure 10 also shows that the effect of call category interacts with month, 
F(42, 1848) = 2.59. This interaction most likely reflects seasonal variations in 
the types of calls and callers and as such is not relevant to the discussion of 
workstation differences.' The Call Category x Month x Group interaction 
is not significant, q 4 2 ,  1848) = 1 .O5. 
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For example, the phone company believes that business callers are more efficient and faster 
than callen in general. To the extent that the ratio of business callers to, say, vacationers varies 
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Is Learning Occurring? Comparisons by Month 

The difference between groups varies from 8.83% in April to 4.53% in 
May to 6.35 % in June to 3.56% in July. The marginal interaction suggests 
that some learning was occurring during the trial. Was learning localized to 
the first month of the trial, or was it continuous throughout? If the latter is 
true, then if the trial had continued long enough eventually the proposed 
group might have become faster than the current one. 

To answer this question, we partitioned the sum of squares for the 
interaction (Keppel, 1973). As shown in Figure 10, the interaction reflects a 
sum of squares of 145.14 divided by 3 df: Following Keppel, the 3 dfpermit 
us to partition this sum of squares into 3 independent, single degree-of- 
freedom, comparisons of the interaction. 

We looked first at the Group x Month interaction for April versus the rest 
of the trial. With a sum of squares of 110.25, 1 dJ; and a mean square of 
110.25, the comparison was significant, F(1, 132) = 6.01, p = .016. The 
current versus proposed difference for April was significantly larger than the 
difference for the rest of the months. 

Technically, we could partition the Group x Month interaction into two 
more independent comparisons. However, because the previous comparison 
used up 110.25 out of 145.14 of the available sum of squares, the remaining 
sum of squares (145.14 - 110.25 = 34.89) would not be significant even in 
the unlikely event that it all was located in one of the two comparisons. That 
comparison would yield the following, F(1, 132) = 1.90, p = .17. We 
conclude that the proposed group shows learning during April but that the 
worktimes from May onward represent stable differences between the two 
workstations. 

This conclusion introduces a new complication. Our CPM-GOMS models 
are models of expert performance. We do not expect them to predict novice 
performance or changes in performance with increasing expertise. We do 
expect them to predict the stable expert performance that we find in the May, 
June, and July data. Hence, in comparing the CPM-GOMS predictions with 
the empirical data, we look at worktimes based on the stable 3 months of 
performance. April's data were dropped completely. However, before dis- 
cussing the models' predictions, as a conservative procedure, we present a 
second ANOVA identical to the previous one but based on the stable 3 
months of empirical data. 

Reanalysis of the Trial Using Data From May, June, and July 

Figure 12 shows the results from the second ANOVA. Except for Months, 
which now has three levels (May, June, and July) rather than four, all other 
factors and data are identical to those used in the first ANOVA, and the 
results are almost identical as well. 
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Figure 12. Analysis of variance: Group x Call Category x Month, where 
Month is May, June, and July only (April was dropped). 

Source 
Sum of Mean 

d f  Squares Square F P  

Group 1 570.11 
Subject (Group) 44 6040.00 
Call Category 14 142,970.45 
Call Category x Group 14 320.56 
Call Category x Subject (Group) 616 14,853.34 
Month 2 161.34 
Month x Group 2 34.85 
Month x Subject (Group) 88 1,266.02 
Call Category x Month 28 877.63 
Call Category x Month x 

Group 28 333.42 
Call Category x Month x 

Subject (Group) 1232 16,078.58 

As Figure 12 shows, except for the Month x Group interaction, all 
comparisons that were significant in the first ANOVA remained significant. 
All comparisons that were not significant remained insignificant. Most 
important, the main effect of group was significant, showing that the 
proposed workstation is significantly slower than the current one. 

This analysis shows that, after asymptotic performance is reached, 
worktime for the proposed workstation is 104.8% that of the current 
workstation. Thus, for the average call on the average month, the proposed 
workstation required 4.8% (1.05 sec) more time than does the current 
workstation. 

The only comparison whose significance changed was that of the Month x 
Group interaction. Although this comparison aroused considerable concern in 
the first ANOVA, it is not significant here, F(2,  88) = 1.21, p = .3028. We 
conclude that at asymptotic performance the proposed workstation is slower 
than the current one. 

The Call Category x Group interaction did not reach significance. 
However, as shown in Figure 13, for some of the call categories the worktime 
difference between workstations was small (for cc04, the proposed worksta- 
tion was 0.1 % faster!) whereas for others it was quite large (cc06 was 13.5 % 
slower). Indeed, failure to find a significant Call Category x Group 
interaction may be a case where the overall ANOVA is obscuring a 
pragmatically important finding. The ANOVA weights each call category 
equally. In fact, the call categories vary dramatically in their frequency of 
occurrence. As Figure B-1 shows (see Appendix B) for the most frequent call 
category, ccOl, we recorded data on 17,817 calls whereas for the least 



VALIDATING A GOMS ANALYSIS 

Figure 13. Percent difference in Workstations x Call Category for the 3-month 
data (*  indicates a significant difference between current and proposed worksta- 
tions; + indicates a marginally significant difference). 

Cal l  Category 

frequent call category, cc18, we recorded data on 1,251 calls. This 14:l ratio 
in the trial data reflects the relative occurrence of these call categories in the 
NYNEX world. For NYNEX, the importance (or lack thereof) of workstation 
differences by individual call category depends greatly on the frequency of 
occurrence of the individual call category. 

Hence, the absence of a significant interaction cannot be interpreted as 
implying that the disadvantage of the proposed workstation is constant across 
all call categories. Because of the practical significance of this issue to 
NYNEX, we proceeded with our planned comparisons of current versus 
proposed groups by individual call category. A series of unpaired, two-tailed 
t tests yielded significant differences for cc06, t(44) = 2.00; cclO, 444) = 
2.06; and cc16, 444) = 1.99. A marginally significant effect was found for 
cc09, t(44) = 2.0, p = .06. In all cases, the current group was faster than the 
proposed one. 

Weighting Call Categories by Their Frequency of Occurrence 

Earlier we stated that the proposed workstation was 4.8% (1.05 sec) slower 
than the current workstation. In that analysis, we weighted each call category 
equally, regardless of frequency of occurrence. However, because some call 
categories are much more frequent than others, estimates of operating costs 
must consider these differences. When worktime differences are weighted by 
call category frequency, the proposed workstation is 3.4 % (0.65 sec) slower 
than the current one. At $3 million per second, these calculations represent a 
difference in annual cost of almost $2 million. 

Summary of Data Analyses 

These analyses of the empirical data have yielded three conclusions. First, 
performance with the proposed workstation is slower than with the current 
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workstation. Second, this difference is due to the workstation rather than to 
learning to use a new machine. Although performance on the proposed 
workstation improves during the first month of the trial, it remains slower 
than the current workstation, and this difference does not diminish over the 
last 3 months. Third, whatever causes the difference in worktime is not a 
simple constant. That is, for some call categories there is a slight advantage 
(0.1 % for cc04) whereas for others the worktime disadvantage is quite large 
(13.5% for cc06). 

The following discussion compares these findings with the predictions of 
the models built in Section 2. 

4. COMPARING THE CPM-GOMS MODELS TO THE 
DATA 

The CPM-GOMS models of the 15 benchmark tasks provide both quan- 
titative and qualitative predictions about real-world performance on the cur- 
rent and proposed workstations. In this section, after evaluating the repre- 
sentativeness of our selected benchmarks (Section 4. I), we examine the 
quantitative predictions of the models and compare them to the data in the field 
trial (Section 4.2). In Section 4.3, we compare the CPM-GOMS predictions 
with those derived from a "reasonable alternativen calculation. We then look 
for qualitative explanations for the quantitative results (Section 4.4). 

4.1. Evaluating Benchmark Tasks 

An important step in using the benchmark method for comparing systems 
is to confirm that the benchmarks are indeed representative of the tasks for 
which the systems will be used. This is particularly important for our 
benchmarks because we used only a single script, performed by a single TAO, 
for each call category, and we did not deliberately design the scripts to 
approximate the median-duration call of each call type. For each call 
category, if this single instance was far from an average duration for that 
category, it would produce an abnormally long or short call duration for both 
workstations, with unknown effects on the predicted relative efficiency of the 
two workstations. Therefore, we compared performance time on the scripted 
calls to calls handled by TAOs on the current workstation during the trial. 
(Recall that NYNEX routinely collects average worktime by call category, so 
the ability to compare the benchmark times to real times was not dependent 
on the performance of a field trial.) 

In terms of absolute worktime predictions, the average percent difference 
(see Figure 14) between trial times and videotape times over all call categories 
was 8.24%, with the benchmarks averaging slightly faster times than the real 
calls. When we weight the benchmark calls by the observed call frequencies, 
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Figure 14. Percent difference between the 3-month current workstation trial 
data and the benchmark calls: (Current - Benchmark)/Current. 

CaU Category Percent Differences 

Mean  difference 8.24% 

the prediction of worktime is even better: 2.08% less than the observed 
worktime. Simple linear regression shows that the correlation of call category 
times between the videotapes and trial data on the current workstation is 
significant (3 = .70; see Figure 15). 

We also computed the standard score (z score) for each call category. The 
standard score expresses the difference between the videotape and trial means 
as a function of the variability of the trial data (differencel~~),' so that a z 
score between + 1 .OO and - 1 .OO indicates that the benchmark is within 1 SD 
of the mean of the trial calls. The standard scores showed that the benchmarks 
for 14 of the 15 call categories are within 1 SD.' These analyses support the 
conclusion that the set of benchmarks are representative of the calls TAOs 
handle in the real world. 

Although in the aggregate, the set of benchmarks is representative of the set 

Because we were dealing with such a large amount of data (78,240 calls), we typically left the 
individual call data on the mainframe and downloaded the summary data that we used in our 
statistics. For part of the last month of the trial, however, we did download data on every call for 
every TAO for every call category. This database resulted in 16,059 calls: 8,125 for the current 
workstation and 7,934 for the proposed. Calls per call category ranged from 154 to 1,795. We use 
this database to supply estimates of worktirne variability within call category. 

The benchmark used for cclO had the customer giving much more information than the 
TAO needed to complete the call. The TAO politely waited until the customer had finished 
talking before answering her and completing the call. This procedure satisfied the constraint of 
serving the customer politely, but it produced a call time almost twice what was found in the trial 
in which, presumably, the average customer was less verbose. 
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Figure 15. Cornparer the times of the benchmark take calla with current trial 
data. Note that the 45' di0gm-d a e r r t e s  where the points would foll if the 
benchmarks predicted the trial data perfectly. 

of real calls a TAO handles, the individual benchmarks varied widely in how 
well they matched their respective call types. The percent differences between 
times for the individual benchmarks and the trial data ranged from - 74.79 % 
to +49.46%, and 6 of the 15 call categories differed from the trial data by 
more than 20%. In retrospect, it might have been better to collect baseline 
performance data on the current workstation prior to modeling and use it to 
help design benchmark scripts. Depending on the observed distribution of a 
call category, a single benchmark could be designed to be. close to the median, 
or several benchmarks could be designed to reflect a nornormal distribution 
(e.g., a bimodal distribution resulting from some major difference like the 
14-digit vs. four-digit calling-card scenarios described in Section 2.2). 

4.2. Predicting Duration: Quantitative Validity 

The CPM-GOMS models predicted durations for each of the benchmark 
calls for each of the workstations. Here we examine these predictions and 
compare them to the data from the field trial. First, we look at the relative 
difference between workstations. Does CPM-GOMS predict the 0.65-sec 
difference between current and proposed workstations when weighted by call 
frequency? Second, we look at the absolute worktimes for each workstation. 
How well do the models predict the absolute time for each of the two 
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workstations? Third, for each workstation we look at the absolute difference 
between prediction and field data for each of the 15 call categories. Finally, 
for each call category, we look at the relative difference between workstations. 

Predicting the Difference Between the Two Workstations 

When each model is weighted by the frequency of occurrence of its call 
category, CPM-GOMS predicts that the proposed workstation will be 0.63 
sec slower than the current workstation. For comparison, when the empirical 
data are weighted by the frequency of call occurrence, the proposed work- 
station is 0.65 seconds slower than the current. 

This overall prediction is the one that is most important to NYNEX. 
Pragmatically, at $3 million in operating costs per second of average 
worktime per year, the ability to predict performance on the mixture of calls 
that NYNEX TAOs handle is the most prized prediction. An analytic model 
of a proposed workstation, which was built without direct observation and 
based only on knowledge of the task and specifications obtained from the 
manufacturer, predicted, a priori, performance on that workstation in a 
real-world setting. Contrary to everyones expectation that the new technology 
would be significantly faster than the old technology, the models predicted a 
small difference favoring the old technology. This small difference in 
worktime meant that the proposed workstation would cost NYNEX an 
estimated $2 million per year more than the current workstation in operating 
costs. The CPM-GOMS models predicted the overall outcome of the trial 
with remarkable accuracy. 

Predicting the Absolute Worktime for Each Workstation 

For the current workstation, the CPM-GOMS models, when weighted by 
call category frequency, underpredict the trial data by an average of 4.35%. 
This underprediction is continued by the models of the proposed workstation, 
with these models predicting a weighted worktime 4.31 % faster than the trial 
data. These weighted predictions are well within the 20% error limit that 
previous work (John & Newell, 1989a) has argued is the useful range of an 
engineering model. 

Because these underpredictions are very consistent at about 476, the 
relative prediction of the two sets of CPM-GOMS models (0.63 sec predicted 
vs. 0.65 sec found in the empirical data) is more accurate than the absolute 
predictions themselves. It is possible that this underprediction represents 
factors that are consistently missed by CPM-GOMS modeling. If further 
research also shows this consistent underprediction, then future analysts 
might consider adding a 4% adjustment to make more accurate absolute 
predictions of performance time. 
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Figure 16. Regression scatterplots for call categories in seconl. (A) For the 
current workstation, comparison of CPM-W&M$ predictions with the trial data. 
(B) Comparison for the pnlpored workststtion. Nde that the 45' diagonal 
illustrates where the points would fall if the predictions were perfect. 
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Predicting Absolute Worktime by Call Category 

Across call categories, the average percent difference between the 
CPM-GOMS models and the observed calls was 11.30% for the current 
workstation and 11.87% for the proposed workstation. The regression 
scatterplots of predicted versus actual times (Figure 16) show that the 
correlation between the CPM-GOMS predictions and the trial data was 
significant for the current workstation (r2 = .71) and for the proposed 
workstation (r2 = .69). For each workstation and call category, the standard 
z scores show that for 14 of the 15 call categories the CPM-GOMS prediction 
is within 1 SD of the trial mean for both current and proposed. These data 
support the conclusion that the CPM-GOMS models predict the trial data in 
the aggregate. 

As with the benchmark tasks, the individual predictions of worktime per 
call category were less accurate. The percent difference per call category for 
the current workstation ranged from - 63% to + 49%, with eight call 
categories more than 20% away from their observed times (see Figure 17). 
Likewise, the percent difference for the proposed workstation ranged from 
- 54% to + 49%, with the same eight call categories being more than 20 % 
away from the observed times. 

The scatterplots in Figure 16 are extremely similar to the scatterplot of the 
measured times for the benchmark tasks versus trial data shown in Figure 15. 
This is not at all surprising for the current workstation because, in that the 
models predicted the benchmarks very well, their prediction of the trial data 
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Figure 17. For the current and proposed workstations, the percent difference 
between CPM-GOMS predictions and the 3-month trial data: (Trial - 
G0MS)lTrial. 
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should be similar to the benchmarks' representativeness. Likewise, because 
there is much more variability between call categories than between worksta- 
tions, the scatterplot for the proposed workstation (Figure 16B) also looks 
similar to that of the benchmarks (Figure 15). 

These general results, that overall prediction of worktime (both weighted 
by call frequency and unweighted) is very good whereas the individual 
predictions of call category is not as good, is a statistical fact of life. If the 
individual predictions vary more or less randomly around the actual call 
times, some being too short and some being too long, aggregate measures will 
involve some canceling out of these predictions. Because the aggregate 
measures are of primary importance to NYNEX, this fluctuation at the level 
of individual call types is interesting to examine but not too important to the 
results of the modeling effort. 

Predicting the Workstation Difference by Call Category 

As can be seen in Figure 18, CPM-GOMS predicted the direction of the 
difference for all but three call categories (cc04, cc05, and cc13). We view the 
predictions as somewhat akin to EPA mileage ratings. Few drivers get the 
exact mileage predicted by EPA. However, the ratings are meaningful in that 
they tend to predict the direction of the differences between cars and the 
general size of those differences. 
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Figure 18. Predicted percent difference in Workstations x Call Category. 
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Summary: Quantitative Validity of CPM-GOMS Models 

The CPM-GOMS models of benchmark calls predicted that the proposed 
workstation would be 0.63 sec slower than the current whereas the field trial 
found a real difference of 0.65 sec. For each workstation, the 15 
CPM-GOMS models predicted worktimes that correlated highly with the 
empirical data (r2 = .71 for current and .69 for proposed). Additionally, for 
12 of the 15 call categories, the models predicted the direction of the current 
versus proposed difference. 

In the next section, we compare the quantitative validity of the CPM- 
GOMS predictions with those derived from a reasonable alternative calcu- 
lation. In Section 4.4, we use the CPM-GOMS models to do something that 
the data do not do (viz., provide a qualitative explanation of the differences 
between the current and proposed workstations). 

4.3. Value Added of CPM-GOMS Models 

As mentioned in the introduction, a simple, seemingly reasonable calcula- 
tion can be done to predict worktime differences between the current and 
proposed workstations without cognitive modeling. Such a calculation was 
made before Project Ernestine, which raised NYNEX's initial expectations of 
improved performance with the proposed workstation and justified the 
expense of the field trial. Here we work through such a calculation and 
compare its accuracy to the CPM-GOMS predictions to evaluate the value 
added of cognitive modeling in the form of CPM-GOMS. 

The benchmark tests can be used to make seemingly reasonable predictions 
of worktime differences between the current and proposed workstations . . 

without cognitive modeling. The proposed workstations displays a screenful 
of information faster than the current workstation and changes the keying 



VALIDATING A GOMS ANALYSIS 

procedure to eliminate keystrokes for several call categories. For each call 
category, we work through these changes to predict overall differences in 
worktime. 

From Card et al. (1983, Figure 9.1, p. 264) we get an estimate of 280 msec 
per keystroke for an average, 40 wordslminute, nonsecretary typist. For each 
call category, this time was substracted for each keystroke that the manufac- 
turer's procedures eliminated. Four keystrokes were eliminated from one 
benchmark call; two keystrokes from two calls; one keystroke from each of 
seven calls; zero keystrokes from four calls; and one keystroke was added to 
one call. 

The manufacturer estimated that the proposed workstation would be 880 
msec faster than the current workstation to display a screenful of information. 
We subtracted this estimate from every benchmark call. 

By this benchmark-based, noncognitive procedure, we would predict an 
average advantage for the proposed workstation of 5.2 % . When call catego- 
ries are weighted by their frequency of occurrence, the predicted advantage 
becomes 18.6% (4.1 sec), for an estimated savings in annual operating costs 
of $12.2 million. 

In contrast, the CPM-GOMS models predicted, and the field trial 
confirmed, that the proposed workstation would actually be about 3 % slower 
than the current workstation. Thus, the seemingly reasonable calculation 
based on the benchmarks and the manufacturer's procedures and response- 
time estimates is wrong in both magnitude and sign. It is important to 
remember that the noncognitive prediction is more than just a straw man. 
Large-scale empirical trials such as Project Ernestine are expensive to 
conduct. Expectations based on such a calculation led NYNEX to commit to 
the time and expense required to conduct an empirical trial. 

Why were the CPM-GOMS predictions so much more accurate than the 
noncognitive predictions? Two reasons are apparent: (a) Building 
CPM-GOMS models requires that the analyst understand the details of 
information flow between the workstation and the TAO, which were 
overlooked by the noncognitive predictions, and (b) CPM-GOMS models 
incorporate the complex effects of parallel activities. 

For example, the noncognitive model assumed that each time a screenful of 
information was displayed, the proposed workstation's faster system response 
time would reduce the time of the call. However, the more detailed analysis 
required to build CPM-GOMS models revealed that the TAO does not have 
to see the entire screen to initiate the greeting (i.e., just the first line is 
needed). Hence, comparisons of how fast the two workstations display an 
entire screen of information are largely irrelevant. Likewise, the noncognitive 
model assumes that every keystroke contributes to the length of the call. 
However, CPM-GOMS shows that removing a keystroke only speeds the 
task if that keystroke is on the critical path. 

Thus, CPM-GOMS disciplines the analyst to incorporate the right level of 
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detail to evaluate such tasks and correctly calculates the effects of parallel 
activities to produce accurate quantitative predictions. A noncognitive ap- 
proach based on benchmarks and design changes alone does not work as well. 
In addition to producing more accurate quantitative predictions, 
CPM-GOMS models can provide qualitative explanations for the quantita- 
tive results (see next section) and can also be used as a tool in workstation 
design (Section 5). Clearly, CPM-GOMS adds value over noncognitive 
predictions. 

4.4 Explaining Differences: Qualitative Validity 

Beyond predicting performance time, the CPM-GOMS models provide 
explanations for their predictions and, thus, explanations for the empirical 
data. Here, we inspect the models to find what causes their differences in 
worktime and why these difference are not constant but vary with call 
category. We also pursue the intriguing absence of evidence for learning over 
the 4-month trial. The CPM-GUMS models take this simple null finding 
and, like Sherlock Holmes with "the dog that had not barked" (Doyle, 
189211986, p. 475), find much importance in the absence of an expected 
event. 

Why Do the Workstations Differ? 

Despite its improved technology and ergonomically superior design, per- 
formance with the proposed workstation was slower than with the current 
workstation. A high-order look at the critical paths shows the task to be 
dominated by conversation and system response time. Seldom is the TAO's 
interaction with the workstation on the critical path. This pattern is so strong 
that it was found in our initial model of just one call category (Gray, John, 
Lawrence, Stuart, & Atwood, 1989) and so consistent that we declared it 
confirmed (Gray, John, Stuart, Lawrence, & Atwood, 1990) after modeling 
five call categories. Thus, the top-order prediction of the CPM-GOMS 
analyses is that the design of the workstation should have little, if any, effect 
on the length of calls. 

We can look at the details of the models to understand why the proposed 
workstation is actually slower than the current workstation. The workstations 
differ in their keyboard layout, screen layout, keying procedures, and system 
response time, each of which may affect call duration. 

Kcytnnwd Layout. Compared to the current workstation, the keys neces- 
sary for the TAO's task are more closely grouped on the proposed worksta- 
tion, with the most common keys clustered around the numeric keypad. 
Although this arrangement tends to reduce keying time, most keystrokes are 
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not on the critical path, so this advantage disappears into slack time for most 
of the calls. 

Opposing this advantage, the new arrangement of keys introduces proce- 
dural changes that increase the length of many calls. For example, for the 
current workstation, the key pressed when a call is complete (POS-RLS) is on 
the far left of the keyboard and is typically pressed with the left index finger. 
Because most other keys are pressed with the right index finger, the TAO can 
move to the POS-RLS key with the left hand while other keys are being 
pressed with the right hand. The proposed workstation locates the POS-RLS 
key near the numeric keypad, with the other function keys, on the right side 
of the keyboard. Because of the POL-RLS key's proximity to the right hand, 
when we modeled this keystroke we assumed that, rather than making an 
awkward cross-body movement with the left hand, the TAO would press this 
key with the right index finger. This means that the horizontal movement to 
the POS-RLS key can no longer be done in the slack time while other keys are 
being pressed but must wait until the last function keypress is finished. This 
procedural change puts the movement to the POS-RLS key onto the critical 
path of several call types, increasing the overall length of those calls. 

Screen Layout. Getting information from the screen involves moving the 
eyes to the correct location, waiting for information to appear if it is not 
already present, and perceiving and understanding the information. The need 
to wait for information to appear is a property of the system response time 
and is discussed later. The CPM-GOMS models assume that the TAOs are 
experts at finding the information they need from the screen; they can move 
their eyes to the next correct location in anticipation of getting the necessary 
information. Therefore, eye movements never appear on the critical path for 
either workstation. Likewise, the assumption of expertise means that the time 
to perceive and comprehend the information on both workstations can be 
estimated with either a complex visual-perception operator of approximately 
290 msec or a binary visual-perception operator of approximately 100 msec 
(John, 1990). Although these operators are often on the critical path of both 
sets of models, because they are the same for both workstations, they do not 
produce a difference in the call-length predictions. 

Keying Procedures. For several calls, the keying procedures for the 
proposed workstation eliminated keystrokes. In some of these calls, this 
decrease in keystrokes was an advantage for the proposed workstation. 
However, because of the complex interaction of parallel activities in the 
TAO's task, merely eliminating keystrokes is not necessarily an advantage. 
For example, Figures 19 and 20 show the first and last segments of a 
CPM-GOMS analysis for a calling-card call in which new procedures 
eliminated two keystrokes from the beginning of the call and added one 
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Figure 19. Section of CPM-GOMS analysis from near the beginning of the call. 
Notice that the proposed workstation (bottom) has removed two keystrokes 
(which required seven motor and three cognitive operators) from this part of the 
call. However, none of the 10 operators removed was along the critical path 
(shown in bold). 

K-hand 
I -hand 

Motor 
O@eratloos 

Verbal 

Proposed Workstation 

keystroke to the end of the call, for a net decrease of one keystroke. For each 
figure, the top chart represents the call using the current workstation and the 
bottom shows the CPM-GOMS analysis for the same call using the proposed 
workstation. 

Figure 19 has two striking features. First, the model for the proposed 
workstation has 10 fewer boxes than the model for the current workstation, 
representing two fewer keystrokes. Second, none of the deleted boxes is on the 
critical path; all are performed in slack time. At this point in the task, the 
critical path is determined by the TAO greeting and getting information from 
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Figure 20. Section of CPM-GOMS analysis from the end of the call. Notice that 
the proposed workstation (bottom) has added one keystroke to this part of the 
call, which results in four operators (three motor and one cognitive) being added 
to the critical path (shown in bold). 

Sy\lctn 
( ) p ~ l i l ~ l l r l l \  Proposed Workstation 

Vlllldl 

I'crcupl,l.,l 

the customer. The CPM-GOMS model predicts that removing keystrokes 
from this part of the call will not affect the TAO's worktime. Worktime is 
controlled by the conversation, not by the keystrokes, and not by the 
ergonomics of the keyboard. 

The middle of the model, not shown (the activities between those shown in 
Figures 19 and 20), is identical for both workstations and essentially shows the 
critical path being driven by how fast the customer says the 14-digit number 
to which the call should be billed. TAOs are taught to "key along" with the 
customer. Although a rapidly speaking customer could force the critical path 
to be determined by the TAO's keying speed, both workstations use the 
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standard numeric keypad, so the critical path (and resulting speed of keying 
in numbers) would be the same for both workstations. 

If the proposed keying procedures simply eliminated the two keystrokes 
required by the current workstation in the beginning of the call, then 
CPM-GOMS would predict equivalent performance. For the proposed 
workstation, however, the procedure was changed so that one of the 
keystrokes eliminated at the beginning of the call would occur later in the call 
(see the four extra boxes in the bottom of Figure 20). In this model, this 
keystroke goes from being performed during slack time to being performed on 
the critical path. The cognitive and motor time required for this keystroke 
now adds to the time required to process this call. Thus, the net elimination 
of one keystroke actually increases call time because of the complex interac- 
tion between parallel activities shown in the critical-path analysis. 

System Response Time. Time to display information to the screen as well 
as time to output keystrokes vary between workstations and generally 
contribute to the slowness of the proposed workstation. For example, the 
proposed workstation is slower than the current workstation in displaying the 
first line of information but faster to display an entire screenful of informa- 
tion. In some call types, the information displayed at the bottom of the screen 
is on the critical path, and this speed-up in display time provides an advantage 
for the proposed workstation. However, the very first line of information is 
necessary for the TAO to decide which greeting to use to initiate the call, and 
waiting for this information to be displayed is on the critical path of every call. 
The manufacturer's estimate of the latency to display that first line of 
information is 0.57 sec longer for the proposed than for the current 
workstation. This half second is added to the duration of every benchmark 
call. 

A less straightforward factor is the outpulsing of keystrokes. The proposed 
workstation is faster in outpulsing large numbers of keystrokes (e.g., a 
14-digit calling-card number) but slower to outpulse single function keys. 
Whether this factor, number of keystrokes, favors, hurts, or is neutral to the 
worktime of the proposed compared to the current workstation depends only 
partly on how many keystrokes are being outpulsed. More important than 
number is what else is going on in the call while the numbers are being 
outpulsed. If the outpulsing is on the critical path, then number is an 
important factor; if it is not on the critical path, then number of outpulsed 
keystrokes does not matter. 

Summary: E&t of Design Changes. The complex interactions among all 
these changes produced critical paths that were longer for the proposed than 
for the current workstation. The predominant reason was an increase in 
initial system response time, but time to outpulse single function keys, keying 
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procedures, and keyboard changes also contributed to the performance 
deficit. 

Looking for a Learning Curve 

"Is there any point to which you would wish to draw my attention?" 
"To the curious incident of the dog in the night-time." 
"The dog did nothing in the night-time." 
"That was the curious incident," remarked Sherlock Holmes. 

(Doyle, 189211986, p. 472) 

As discussed before (Section 3.2), worktimes on the proposed workstations 
reached asymptote during the first month of the trial. Performance during 
Months 2 through 4 was stable, with no evidence of improvement. This early 
asymptote surprised us. To try to explain this curious incident, we turn to the 
CPM-GOMS models with two questions. First, the worktime differences 
between workstations fluctuated during Months 2, 3, and 4. Did CPM- 
GOMS models predict this fluctuation? Second, because it is well known that 
skilled learning follows the power law of practice (Newel1 & Rosenbloom, 
1981), do the CPM-GOMS models explain why the expected increased 
proficiency with the proposed workstation's keyboard and displays does not 
translate into the expected decrease in worktime? 

Predicting tire Fluctuation. During the trial, the monthly fluctuation in 
the proposed versus the current workstation difference (7.1 % , 2.4 % , 5.2 % , 
and 2.5%) led some to argue that if the trial had continued long enough, 
eventually the proposed TAOs would be faster than the current ones. 
Although we believe that the explanations given before effectively show why 
the proposed has to be slower, we are interested here in whether the 
CPM-GOMS models could have predicted some of this monthly fluctuation. 

For each month, Figure 21 shows the percentage by which the proposed 
workstation was slower than the current workstation. To obtain the trial data, 
for each month we collapsed over TAOs to find the median worktime for each 
call category and weighted these by the number of occurrences of that call 
category. 

For the CPM-GOMS plot, we weighted the CPM-GOMS worktime 
prediction for each call category by the number of occurrences of that call 
category for that month. Because the CPM-GOMS models assume peak 
expert performance with no by-month variations in their worktime predic- 
tions, our by-category CPM-GOMS worktime estimates were constant for 
each month. 

The actual monthly difference in workstation time, labeled "Trial" in 
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Figun 21. Predicted versus actual monthly fluctuations in worktime differences 
between current and proposed work~tations. 

A Trial 
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Figure 21, varies: 7.1 %, 2.4%, 5.2%, and 2.5%. These fluctuations in the 
empirical data are suggested by the CPM-GOMS predictions (4.2 %, 3.2%, 
4.2%, and 3.1%). 

Other than the first month, the CPM-GOMS models predict a fluctuation 
in monthly performance with the same overall pattern as the by-month 
empirical analysis. This result demonstrates that, because the workstation 
difference is not constant but varies with call category, monthly performance 
fluctuations can arise from changes in the call-category mix. This is consistent 
with our conjecture that the proposed group reached asymptotic performance 
within the first month. 

WouCd Learning Have BQGn Noticed? An examination of the critical path 
of the proposed models suggests that we wodd not have noticed learning even 
if it had occurred. Before the trial, all of our TAOs were expert in handling 
calls. For the proposed workstation, all they had to do was learn the new 
keyboard and display layouts and some differences in keying procedures. 

Assume that the cognitive operations that recall the procedures, and the 
primarily motor operations that search for newly positioned screen informa- 
tion and function keys, take substantially longer than their counterparts at 
asymptote. A workstation novice (but expert call handler) would show a 
different critical path and longer worktimes than the CPM-GOMS models 
used here. However, these operations would speed up with practice, and 
many of them would eventually crossover from being on the critical path to 
being in the slack time. For example, the first eye movement in the expert 
model might be a longer visual search for a workstation novice. However, that 
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visual search would cross over slack time as soon as it dropped below 750 
msec. Likewise, as soon as the search for the new function key to release the 
call in the example credit-card call dropped below 2 sec, this keystroke would 
disappear into the slack time. Thus, our data and the power law of practice 
can be reconciled. The TAOs probably did get faster at using the new 
keyboard and reading from the new displays, but after an initial period, when 
the new operations were on the critical path, any additional learning would 
disappear into the slack time. CPM-GOMS alone cannot predict when that 
crossover would happen, but it can predict that, when it does, further practice 
effects would not be observed. 

5. IMPLICATIONS FOR DESIGN 

The CPM-GOMS models for the proposed workstation were specification 
based; that is, we built the models as if the proposed workstation did not exist 
other than as a list of engineering and ergonomic specifications. The 
previously presented data and models allow us to conclude that the 
CPM-GOMS models very accurately predicted the results of a large-scale 
empirical trial and that the specification-based models for the proposed 
workstation were as accurate as the observation-based models of the current 
workstations. We believe this result has implications for the design of future 
systems. We concur with Newel1 and Card (1985, p. 214) that "design is where 
the action is" and that the biggest gain from CPM-GOMS models will come 
from using them not just to evaluate completed designs but as tools in the 
design process. We envision an iterative process in which the designer first 
uses models qualitatively to focus design effort by suggesting areas in which 
performance could be improved. As ideas emerge, models would be used 
quantitatively to predict worktime differences among alternative designs. The 
designer could then confer with various other specialists to determine if the 
potential worktime savings justify the cost of implementing the design 
alternatives. Several examples follow. 

5.1. Focusing the Design Effort 

Every computer programmer lives by the maxim "profile before optimiz- 
ing." That is, before expending the programming effort to optimize a section 
of code, determine how much runtime is associated with that code. With this 
information, trade-offs between expected effort and expected benefits can be 
made. The CPM-GOMS models provide a way to profile the component 
activities in a complex interaction between humans and machines. For 
example, Figure 22 shows such a profile for the percent of worktime 
consumed by waiting for the system response time, talking to the customer 
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Figure 22. Percent time that various activities are on the critical path for the 
current workstation. 

System 
Call Category Response Time Talking Keying Reading RingKoins 

cc0 1 25 % 40 % 1 % 3% 31 % 
cc02 3% 93 % 4% O6 

6% 
0% 

cc03 20 % 71 % 2 %  0% 
cc04 25 % 31 % 6% 4% 35 % 
cc05 19% 44 % 3 % 2% 22 % 
cc06 12% 79 % 6% 0% 
cc07 30 % 57 % 0% 
cc08 26 % 41 % 23 % 0 % 
cc09 13% 65 % 15% 7 % 0% 
ccl0 9% 83 % 2 % 6 % 0% 
ccl l  26 % 63 % 4% 3% 3% 
cc12 11% 75 % 6 % 8% 0% 
cc13 7 % 89 % 4% 0% 
cc16 15% 55 % 25% 
cc18 1 %  75 % 12% 0% 

Average 16% 64 % 6% 5% 8% 

(Talking), keying in numbers or function keys (Keying), reading information 
from the screen (Reading), and waiting while the called number rings or the 
customer deposits coins (RingICoins). The numbers here are not the actual 
time spent in each one of these activities but rather the percentage of time 
these activities are on the critical path for the benchmarks on the current 
workstation. 

One implication of Figure 22 is that, with the current workstation as a 
baseline, there is little potential worktime savings from redesigning either the 
keyboard or the display. As a boundary condition, if the duration of 
keystrokes was reduced to zero, the most savings that could be expected would 
be 6% or, likewise, 5% for reading information from the screen. (Actually, 
the CPM-GOMS models would predict even less savings than these, because 
reducing the durations of the keying or reading operators to zero would 
change the critical path so that other activities would add time to the length of 
the call.) More substantial savings could come from reductions in system 
response times (up to an average of 16% at the boundary). 

The most striking feature of Figure 22 is that conversation with the 
customer is the dominant activity on the critical path in almost every 
benchmark call (except cc04, in which ringing dominates slightly). It is 
illuminating to reflect on the data in Figure 22 in view of the way that 
laboratory evaluations and field experiments are typically conducted. In 
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typical laboratory studies, the focus is on designing the computer-human 
interaction, and the factors of greatest interest are the physical design of 
keyboards (and similar components) as well as the format and content of the 
displays. As our data show, focus on these factors will have extremely small 
impact on the system in use, although the impact in the laboratory may be 
statistically significant. In typical laboratory experiments, the focus is on 
proper experimental control. Because, in the case of TAOs, conversations 
with customers can neither be measured as a dependent variable nor 
controlled as an independent variable, this aspect is factored out of the 
experimental design. As a result, such experiments overlook the most 
important aspects and have little real-world validity. We conjecture that the 
proposed workstation was designed and evaluated in these traditional ways, 
and, although the workstation did well by traditional measures, the process 
missed the significance of the human-human interaction. Further, we 
conjecture that the use of traditional design and evaluation methods, which 
overlook practically significant factors, is far too common in the design of 
computer-based systems. 

An interesting design philosophy would be to focus not on the hardware or 
software of the telephone system but on the conversation (Lawrence & Dews, 
1992). When the task is viewed from this angle, the telephone company might 
introduce customer-education programs to inform customers how to provide 
information that will shorten call handling. For instance, on a collect call, 
during the slack time incurred while waiting for the called party to answer, the 
TAO could say a phrase such as, "In the future, if you provide your name first 
when making a collect call, it will speed your call" (the phrase takes 
approximately 3 sec to say whereas even two rings of the called phone take 
more than 5 sec to complete). 

5.2. Quantitative Evaluation of Design Ideas 

As new systems are proposed, routine tasks performed on these systems can 
be modeled. As in this study, modeling could be limited to a small number of 
benchmark tasks selected to represent high-volume activities, possibly low- 
frequency emergency procedures or low-frequencylhigh-profit (or high cost) 
tasks. 

As an example of quantitative evaluation, consider using CPM-GOMS to 
evaluate the possible time savings from adding a personal response system 
(PRS) to the TAUS workstation. A PRS is a recording of the TAO's voice 
that automatically greets the customer with the proper phrase, for example, 
"New England Telephone, may I help you?" Currently (see Appendix A and 
Figure 23A), the TAO cannot initiate the greeting until INFO(2) is displayed, 
perceived, and verified. 



Figure 23. Portion of the CPM-GOMS that includes the TAO's greeting to the 
customer, "New England Telephone, may I help you?" (A) The current situation 
in which the TAO indicates the greeting after perceiving and verifying INFO(2). 
(B) The CPM-GOMS chart for a personal response system (PRS) that cues off of 
the system-rt that displays INFO(2). (C) A PRS that cues off of the call-arrival 
tone. 

Other systems 
System KI 

Workstatton 
d~splay tlmc 

Visual 
Percephlal 
Operatmns 

Aural 

Co@mve 
Operations 

R-hand 
Motor I.-hand 
(*eratmns Verbal 

1:yeMovrrnenl 

Other systems 
System R1 

Workstation 
d q l a y  tune 

V,s"al 
Perceptual 
Operations 

Aural 

Cogitive 
Operations 

R-hand 
Motor L-hand 
Operations Verbal 

EyeMavement 
Y PRS cues off s-rt(2) 

Other systems 
System RT 

Workstation 
display time 

Visual 
Perceptual 
Operations 

Aural 

Cognitive 
Operations 

R-had 
Motor L-hand 
Operations Verbal 

EyeMovement PRS cues off call-arrival-tone 



VALIDATING A GOMS ANALYSIS 293 

Assume that the PRS greeting would take the same amount of time as the 
TAO's own voice. If the PRS started when the workstation displayed the same 
information that the TAO presently uses to choose a greeting (Figure 23B), 
then the CPM-GOMS n-odels would predict a time savings of one complex 
visual-perception operator and two cognitive operators for approximately 390 
msec. This translates into a potential cost savings of $1.2 million a year. If the 
PRS cued off of something earlier in the call processing, such as the 
information that cues the current call-arrival tone (Figure 23C), then an 
additional 500 to 1,000 msec could be saved (depending on the load of calls on 
the network) for an additional potential savings to NYNEX of $1.5 to $3 
million per year. The estimated potential savings could be used to decide 
whether to invest in the development of a PRS. 

5.3. Sensitivity Analysis of System Response Time 

Sensitivity analysis can be used to help designers weigh the sensitivity of 
total time to changes in the duration of one operator or of one class of 
operators (Card et al., 1983). For example, at the very beginning of the call, 
the system response time, system-rt(1) (Figure 7 and Appendix A), of the 
proposed workstation is 570 msecs slower than that of the current worksta- 
tion. This first system response time displays information that the TAO 
requires to initiate the proper greeting10 and is on the critical path. 

The engineering costs of reducing system-rt(1) must be weighed against the 
expected benefits. As an example, we have taken the CPM-GOMS model for 
cc07 of the proposed workstation and plotted predicted changes in proposed 
deficit against changes in duration of system-rt(1) (see Figure 24). 

The predicted system-rt(1) for this call is 870 msec. This estimate is 570 
msec above the 300 msec observed for the current workstation in the 
videotaped benchmark for this call and is based on estimates supplied by the 
manufacturer (see Figure 8). The total predicted deficit for the proposed 
versus the current workstation on this call is 4.3% (this deficit is a 
combination of the slower initial system-rt(1) as well as factors that occur later 
in the call). 

As system-rt(1) is reduced, the deficit is reduced (Figure 24). At 300 msec 
(the system-rt(1) for the current workstation), a 1.4% deficit still exists 
because of other changes to the workstation (keyboard, procedures, other 
system response time changes, etc.). If system-rt(1) could be reduced to 0 
(i.e., eliminated completely), the proposed deficit would transform into a 
0.1 % advantage. 

10 We assume for this example that the time to display this first piece of information is 
independent of any other system response time so that any engineering change that increases or 
decreases SyStem-rt(l) would be neutral with respect to all other system response times. 



294 GRAY, JOHN, ATWOOD 

F&tc 24. For cc07, the percent dtficit, [(Proposed - Cumnt)/Cufient] x 
100, of the proposed worlwtption for different durations of -): 0, 100, 
200, 300, 585, and 870 msec. 

100 0 100 200 300 400 500 600 700 800 900 

system-rt(1) in msecs 

Engineers looking at such a chart would have to weigh the relative costs of 
each incremental decrease in system-tt(1) against the obtained benefits. 
Alternatively, designers and engineers might decide that the greatest cost 
effectiveness would come from leaving Syst9m-ft(l) alone and concentrating 
their efforts on other changes (e.g., installing a PRS that cues off of the 
begin-call information; see Figure 23). 

6 .  CONCLUSIONS 

This study validates the use of CPM-GOMS in predicting performance 
time for routine cognitive tasks accomplished through complex interaction 
among a user, a workstation and associated computer systems, and another 
human. In addition to quantitatively predicting the outcome of the field trial, 
the CPM-GOMS models provided explanations for the results. Indeed, the 
CPM-GOMS models saved the field trial from a potential disaster. Faster 
display times and the elimination of keystrokes from most calls were expected 
to result in faster worktimes. The data from the trial were so counterintuitive 
that, in the absence of a compelling explanation as to why the proposed 
workstation was slower than the current one, the tendency was to blame the 
trial instead of the workstation (Atwood et al., in press). On the basis of these 
analyses, NYNEX decided not to buy the proposed workstation. 

The accurate prediction of workstation performance challenges the efficacy 
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of conducting large, empirical field trials. In many cases, the time and 
expense required for empirical trials might be eliminated and replaced by the 
much shorter and less disruptive time required for model building. In other 
cases, the models can be used to sort among competing devices and 
procedures. For example, if there were five workstations to be evaluated, 
CPM-GOMS might predict that two of these were better than the others, 
with small differences between the two best. An empirical trial could then be 
conducted to evaluate factors such as hardware quality and maintenance. In 
this way, CPM-GOMS would allow us to thoroughly consider more work- 
stations in less time than is currently possible. 

The explanations provided by the CPM-GOMS models far surpass any 
information given by empirical trials alone. These explanations led to an 
understanding of why old technology can outperform new technology, why 
this difference was not constant but varied with call category, and why 
learning over the course of the trial did not affect worktime. The 
CPM-GOMS models allow us to see the forest for the trees, evaluating all 
components of the task as an integrated whole with complex interactions. This 
holistic approach, dictated by the CPM-GOMS analysis methodology, is of 
value in understanding the complex effects of any design decision. 

We believe that the biggest benefit will be to use the explanatory and 
predictive powers of CPM-GOMS in the design process to focus design effort 
and to provide a quantitative test-bed for design ideas. Such an approach is 
currently being used at NYNEX (Stuart & Gabrys, 1993), and it represents 
the early fruits of the decade-long struggle to "harden the science" of 
human-computer interaction (Newell & Card, 1985, p. 237). 
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APPENDIX A. SAMPLE CPM-GOMS ANALYSES 

A sample CPM-GOMS schedule chart for a calling-card call on the current 
workstation is presented here. Each Model Human Processor-level operator is 
represented as a box with a name centered inside it and an associated duration 
(see Figure 8) above the top-right corner (in msec). Lines connecting the 
boxes represent information-flow dependencies; that is, when a line joins two 
operators, the operator to the left produces information required by the 
operator to the right. For visual clarity, we place operators of the same 
category along a horizontal line (see Section 2.1, The CPM-GOMS Analy- 
sis). 

The critical path is the sequence of operators that, because of their 
durations and dependency relationship to other operators, determines the 
total time of the task (see Section 2.1, The Critical Path). In the sample 
schedule chart, the critical path is indicated by the bold outline of the 
operators' boxes and bold dependency lines between them. The sum of the 
durations of the operators on the critical path is the total time for the task (see 
Figure A-1). 



Figure A-IA. Sample CPM-OMS analysis, from beginning of call. 
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Figure A-IC. Sample CPM-GOMS analysis (continued). 'Keying along with the customer." Note that the critical path is 
determined by how fast the customer speaks, not by the TAO's keying rate. 
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APPENDIX B. MISSING SUBJECTS, MISSING DATA, 
DBOPPE9 CALL CATE-IES, AND VARIABILITY 
BETWEEN CALL CATEGOWES 

The 78,240 calls collected by the database software were unevenly distrib- 
uted over the 3,840 cells of the field trial: 2 Groups x 24 Toll and Assistance 
Operators (TAOs) x 20 Call Categories x 4 Months. The unevenness of the 
distribution raised the concern that the worktime estimates derived from the 
empirical data for a given group for a given month for a given call category 
might not be a reliable estimate of the true worktime for that cell. We must 
stress that our concern here is not with the use of the empirical data in the 
statistical analyses but rather with the use of the empirical data to test the 
predictions of the CPM-GOMS models. Indeed, the major statistical test we 
use for analyzing the empirical data, the analysis of variance (ANOVA), is 
very robust and insensitive to just those violations of its assumptions that 
might occur from an uneven distribution of calls to conditions. Unlike 
comparisons among groups using empirical data, however, there are no 
accepted standards for judging the adequacy of a model's prediction of 
task-completion time as compared to empirical estimates of task time. With 
the exception of measures taken to compensate for missing subjects, the steps 
discussed shortly were taken with the aim of ensuring that the worktimes 
obtained from the empirical data were reliable and valid estimates against 
which to compare predictions of the CPM-GOMS models. After discussing 
these steps, we present a measure of relative variability, the coefficient of 
variation (CV), by which the reader may compare the differences in 
variability by group and by call category. 

B1. Use of Median Worktimes 

The use of the median score is a standard practice in reaction-time studies. 
Such studies are characterized by a positively skewed distribution that results 
from inherent limits on how fast a response can be made but no limits on how 
slow. The use of the median score is an important factor in reducing the 
variability when Time is the dependent factor, and it was used in this study. 
For example, for the current group, TAO 110, in April, for ccOl (where cc = 
call category), the database recorded 69 calls for which the median call was 24 
sec. The median of the 69 calls is taken as the value of this cell. The median 
worktimes were computed for each of the 3,840 cells that contained data. 
These times were used to calculate means and standard deviations for all the 
analyses of the empirical data. 
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B2. Missing Subjects 

During the last month of the trial, one of the TAOs was transferred to 
another job. To keep the design balanced, we dropped him and his matched 
control TAO from the analysis. Hence, all analyses reported are based on 23 
subjects per condition. 

B3. Missing Data and Call Categories 

For purposes of this article and the validation of GOMS, we were interested 
in obtaining reliable and valid empirical data with which to compare the 
predictions of the CPM-GOMS models. To this end, we adopted a conser- 
vative procedure to identify and eliminate outliers as well as multiple and 
converging criteria to identify and eliminate call categories for which the 
empirical data may not have provided reliable and valid worktime estimates. 

Step 0: Prescreening of Call Categories 

Whereas most of the call categories were selected because of their frequency 
of occurrence, several low-frequency call categories were included because of 
their special interest to New England Telephone. For two of these categories, 
cc15 and cc20, the number of calls recorded was very low (40 and 1, 
respectively, see Figure B-1). Because each call category represents 184 cells 
(2 Conditions x 23 TAOs x 4 Months), most of the cells for these call 
categories were empty. cc15 and cc20 were dropped from the analysis. 

cc19 posed a different problem. This call category was not well scripted so 
that the call that was staged and recorded on videotape (see Section 2) did not 
adequately represent the call category. To further confound matters, shortly 
after the trial, parts of the handling of this call were automated, and the 
TAOs' procedures for this call were completely changed. Because we had no 
basis on which to model this call (see Section 2.3), CPM-GOMS models 
could not be constructed for this call category, and it was dropped from 
further consideration. 

Step 1: Identify Outliers 

As discussed before, each call category had 184 cells (2 Conditions x 23 
TAOs x 4 Months). For each call category, we calculated the mean and 
standard deviation and used these to identify scores that were both 3 SD above 
or below the call category mean and separated from the other scores by 1 SD. 
Scores meeting this dual criteria were dropped. 

For example, for cc06, M = 23.79, SD = 7.40, - 3 SD = 1.60, + 3  SD = 
45.98. The five slowest scores for cc06 are 44, 44, 47, 51, and 61. The scores 
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Figure B-1. Call category occurrence frequency during the field trial. Note that 
the categories not used in the analysis are indicated by italice (see text for an 
explanation). 

- -- 
Call Category Current Proposed Total 

cc0 1 9,238 8,579 17,817 
cc02 7,758 7,385 15,143 
cc03 2,385 2,364 4,749 
cc04 1,720 1,740 3,460 
cc05 2,468 2,432 4,900 
cc06 1,845 1,804 3,649 
cc07 2,345 2,328 4,673 
C C O ~  1,383 1,339 2,722 
cc09 1,949 2,054 4,003 
ccl0 2,313 2,111 4,424 
ccl l  1,596 1,421 3,017 
cc12 984 1,015 1,999 
cc13 1,056 1,088 2,144 
ccl4 5 72 534 1,106 
cc15 23 17 40 
cc16 741 706 1,447 
GGI 7 354 387 741 
C C I ~  650 60 1 1,251 
cc19 4 78 4 76 954 
cc20 I 0 I 

Totals 39,859 38,381 78,240 

47, 51, and 61 are more than 3 SD above the mean. However, 47 is less than 
1 SD from its closest neighbor, 44, and was therefore retained. Likewise, 51 
is less than 1 SD from 47 and was retained. However, 61 is more than 1 SD 
away from 5 1 and was dropped. 

The criterion of 1: 3 SD to identify an outlier was taken from Stevens (1986, 
p. 14). However, if the calls in some categories were nonnormally distributed 
(there is a limit to how fast a call can be successfully completed but apparently 
no limit to how slow), we did not want to use a procedure to identify outliers 
as a means to "normalize" a call category. This concern led to the adoption of 
the second criterion, that the call had to be separated from other scores by 1 
SD. 

This conservative procedure for identifying outliers resulted in 13 cells 
being dropped out of 3,128 cells representing 2 Conditions x 23 TAOs x 17 
Call Categories x 4 Months. 

Step 2: Identify Suspicious Call Categories 

With the 13 scores identified in Step 1 dropped, the mean and standard 
deviation for each call category were recalculated, and our attention turned to 
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Figure B-2. Distribution of standard deviation ratios for the 17 call categories. 

Ratio of the Mean of the UpperlLower 10% in Standard 
Deviation Units 

identifying and eliminating suspicious call categories. Following Judd and 
McClelland (1989), we avoided formal tests of normality, which these authors 
pronounced as having "serious disadvantages and problemsn (p. 499). Rather, 
we used a procedure suggested by Houtz (personal communication, July 3, 
1992) that had a simple and intuitive appeal and whose critical values emerged 
from applying the procedure to all the call categories and comparing the 
results. (We believe that this approach is within the spirit of that advocated by 
Judd & McClelland, 1989.) 

For each category, the means for the upper 10% and lower 10% of the 
scores were determined. For example, for ccOl, the 19 scores in the upper 
10 % had a mean of 25.42 whereas the 19 scores in the lower 10 % had a mean 
of 20.92. These scores were then expressed as z scores, and their ratio was 
calculated. Continuing the example, for ccOl, the mean (for all 184 scores) 
was 23.0 with a standard deviation of 1.34. The z score for the mean of the 
upper 10% was 1.80 ([25.42 - 23.00]11.34), whereas the z score for the mean 
of the lower 10% was 1.55 ([23 - 20.91111.34). The ratio of upper to lower 
in standard deviation units was 1.16. 

For data that are perfectly, normally distributed, the ratio of maximum to 
minimum in standard deviation units will be 1 (hence, the scores for ccOl are 
very close to the normal distribution). The distribution of this ratio from our 
17 call categories is shown in Figure B-2. 

As Figure B-2 shows, our adjusted (outliers removed, see Step 1) call 
categories show a fairly continuous range of ratios up until 1.6 SD units. After 
1.6, there is a break, and then there are two call categories with ratios of 
around 2.2 SD units. These odd datapoints represent cc17 and cc14, 
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respectively. Additionally, an inspection of Figure B-1 shows that of the 17 
call categories still under consideration these two have the fewest calls (741 for 
cc17 and 1,106 for cc14). 

We view the break in the distribution of ratios as the "critical value" emerging 
from the data themselves. The fact that the two categories above this break also 
have the fewest calls adds to our suspicions that the empirical data may not be 
producing reliable and valid estimates of the worktimes for these categories. 
Accordingly, cc14 and cc17 were dropped from further analysis. 

Step 3: Replacing Missing Data 

With 15 call categories remaining, there are 2,760 cells in our analysis (15 
Call Categories x 23 TAOs x 2 Groups x 4 Months). Of these cells, 12 
were dropped in Step 1 (the 13th cell was in a call category, cc14, that was 
dropped in Step 2), and for nine cells there were no data. A total of 21 cells 
are missing (less than 1 '36 of the 2,760). 

For the Groups x Call Category x Months analysis, there are 120 (2 x 
15 x 4) classes with 23 TAOs per class (120 x 23 = 2,760). The 21 missing 
observations are fairly evenly distributed among these 120 classes, with 2 
classes missing data from two TAOs and 17 classes missing data from one. 
Each of the 21 missing observations was replaced by the mean of its class. 

B4. Summary for Drapped Call Categories aod Beglacement of 
Missing Data or Outliers 

The resulting 2,760 cells were used in the overall ANOVA reported in 
Section 3.2. Data based on these cells were used in Section 4.0 for comparison 
with the CPM-GOMS predictions. 

Of the five call categories dropped, two were dropped for lack of data (cc15 
and cc20), one for lack of an adequate benchmark script (cclg), and two for 
suspicion of nonnormality (cc14 and cc17). Fortunately, as Figure B-1 shows, 
these five call categories are the ones with the least data. The five call 
categories plus the 12 cells dropped reduce our number of calls from 78,240 
to 72,390. Despite this reduction, more than 92% of the data are accounted 
for. 

The important point is that although all 20 call categories may be of 
importance to NYNEX they are important here only to the extent that data 
collected for them, by group and by month, provide reliable and valid 
estimates of their median worktime under real-world conditions. The pre- 
ceding procedure has left us with 15 call categories whose worktime estimates 
we trust. It remains to be seen whether the predictions derived from the 
CPM-GOMS models in Section 2 can be used in Section 4 to predict the 
variations in the empirical data that we describe in Section 3. 
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Figure B-3. Coefficient of variation. 

Call Category Current Proposed 

cco 1 
cc02 
cc03 
cc04 
cc05 
cc06 
cc07 
cc08 
cc09 
ccl0 
ccl 1 
cc12 
cc13 
cc16 
cc18 

B5. Variability Between Call Categories 

Figure B-3 lists the coefficient of variance (CV) for each call category for 
both groups. The CV is calculated by dividing a group's standard deviationB-' 
by its mean. The CV provides a measure of variation that is relatively 
uninfluenced by differences in the size of the means (Snedecor & Cochran, 
1967). Additionally, because it "is the ratio of two averages having the same 
unit of measurement it is itself independent of the unit employed" (p. 64). We 
provide the CVs for those readers who wish to compare the variability among 
our categories or between our data and those reported by others (e.g., Card 
et al., 1983, pp. 159-160 and Figure 5.8). 

B-l Note that estimates of standard deviation were derived from the same data we used for 
computing z scores (see footnote 8 for more details). 




