
Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 1	

User interface toolkits

Michel Beaudouin-Lafon
Laboratoire de Recherche en Informatique

Université Paris-Sud / CNRS
mbl@lri.fr

http://insitu.lri.fr

Outline

Software layers

Graphical libraries

Window systems

User interface toolkits

Applications frameworks

Interface builders

Software layers

Operating system

Framework

User interface toolkit

Window system

Graphical library

Device drivers

Application

Output devices

Bitmap screens
CRT, LCD, Plasma, …
Spatial resolution: about 100dpi
Color resolution (« color depth ») :

B&W, grey levels, color table, direct color

Temporal resolution: 10 to 100 frames per second
Bandwidth:

 25 img/s * 1000x1000 pixels * 3 bytes/pixel = 75 Mb/s
GPU : Graphics Processing Unit

R G B	

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 2	

Input devices

2D input devices
Mouse, Tablet, Joystick, Trackball, Touch screen
Type of user control

 position, motion, force, … ; linear, circular, …
Mapping of input dimensions

 position, speed, acceleration
 transfer function (gain)

Motor space vs. visual space
 separate or identical

Other input devices
Keyboards, Button boxes, Sliders
3D position and orientation sensors
Simulated devices

Graphical libraries

Drawing model
Direct drawing (painter’s algorithm)
Structured drawing: scene graph

 Edit the data structure

Graphical objects are defined by:
Their geometry
Their graphical attributes

 color, texture, gradient, transparency, lighting

Graphical libraries
Direct drawing: Xlib, Java2D, OpenGL
Structured drawing: Inventor (3D), SVG

Managing input in an interactive system

Query Sampling Events

Blocking Busy waiting Event queue

Event-driven programming

while running do
 wait until event queue not empty // blocking
 ev := first event from queue // extract event
 target := findTarget(ev)
 if target ≠ NIL then target.handleEvent(ev)

end while

Very different from traditional algorithmic approach

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 3	

Window systems

Organize display space in independent areas
 Resource sharing

Window = autonomous area on the screen

 - for display
 - for input (event dispatching)

Window management

 User interface: « window manager »
 Application programming interface

Windowing models

Tiling

Overlapping

Hierarchical

Virtual screens

Window systems

Drawing model
Redraw hidden parts

Input management
Demultiplex event across applications

 Concept of « focus »
New events

 Window system:
 request redraw, create/delete window
 Input devices:
 focus changes, cursor enters/leaves window

Client-server architecture

Client	

Client	

Client	
 Server	

requests	

events	

(network)

multiplexing	
 display	

demultiplexing	
 input	

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 4	

User interface toolkits

Abstraction : the widget
Interactive object, component
Button, menu, scrollbar, dialog box, …

A widget = three facets

Presentation – Behavior – Application interface

Interface = widget tree

Nodes: containers (windows, menu bar, dialog box, …)
Leaves: simple widgets (buttons, scrollbars, …)

Widget layout

General rules
A widget is geometrically enclosed in its parent
The parent controls the layouts of its children

Layout algorithm

Natural size of each child
Final size and positions

imposed by the parent
Constraints :

 Grid, form, etc.

file

OK Cancel

file

OK Cancel
Dynamic layout

Facets of a widget

Presentation
Visual appearance
Configurable (« resources »)

Behavior

Reaction to user actions
Non configurable (or very limited)

Application interface

Notification of state changes

Application interface: callback functions

1.  Registration of callback when widget is created

2.  Callback function is called when widget is activated

Problem: « spaghetti » of callbacks
Sharing state among widgets and callbacks using global variables

DoSave (…) { … }

DoSave (…) { … }

global string filename;
DoSetFile () {filename = …}

DoSave () { SaveTo(filename) }

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 5	

Application interface: active values

Bi-directional link between a state variable of the widget and
a variable of the application

Problems Advantages

Limited to simple data types Multiples views
Back link (widget to app) can be costly

0 i	

26 i	

12 i	

i := 12	

Application interface: message passing

An object is associated to a widget,
its methods are called when a state of the widget changes

Better encapsulation

saveDialog

saveDialog.Clicked(event)

saveDialog { string filename }

saveDialog.EditField(event)

 { this.filename := … }
saveDialog.OK(event)

 { DoSave (this.filename) }

User interface toolkits

Many available toolkits
 Xt, Motif – historical (X Windows)
 Qt, GTK – Linux
 AWT, Swing – Java
 Tck/Tk – multi-plateformes [active values]

Many limitations

 Programming is cumbersome
 Interaction limited to the interior of the widget
 example : no drag-and-drop
 Limited extensibility : adding new widgets types is difficult

Application frameworks

Application skeleton
 Incomplete code: general structure of theapplication
 Includes what is not supported by the toolkit
 Global structure of the application
 Global functions (history, copy-paste, …)
 Non-widget interaction (e.g., drag-and-drop)

Shows the limitations of the programming language

Example : MacApp (Apple, 1986)

 Concept of a document (content of a window)
 Concept of action (that can be done and undone)

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 6	

Interface builders

Description (text or graphics) of part of the interface
Generation of a runnable version

Editor Functional core Run-time module
of interface builder

Interactive
application	

linking

interface
description

load
at run-time

Interface builders

Generating the final application

Compiled interface

Functional core Run-time module
of interface builder

Interactive
application

linking

compile

Interface Builder

NeXT, then Apple

Conclusion

Advantages of these tools
 Reduce development and maintenance costs
 Facilitate compliance with style guides

Limitations of these tools
 Interaction style based on widgets
 Limited extensibility
 Difficult to program non-standard interactions

Research issues
 Beyond the widget model
 Define better languages and environments

