

The importance of pointing

- The most frequent action in Graphical User Interfaces (together with entering text)
- Many targets, some very small e.g., pointing between the two 'l' in the word "small" above
- Screens are becoming larger
- Pointing performance is limited by human capabilities, not by the computer If the computer knew where I want to point, it could do it for me...

Several versions of Fitts' law	
Logversion	
Log version Fitts (1954)	<i>MT</i> = <i>a</i> + b log ₂ (2 <i>D/W</i>)
(/ /	- <u>-</u> ·
Mackenzie (1992)	<i>MT</i> = <i>a</i> + b log ₂ (<i>D</i> / <i>W</i> + 1)
Linear version	
Schmidt et al. (1979)	MT = a * D/W
Power version	
Meyer et al. (1988)	$MT = a (D/W)^{1/2}$
In all cases. MT varies wi	th the relative amplitude D/W
ID = f(D W) $MT =$	
· · · · ·	a scale-invariance law

Validity of Fitts' law

Fitts' law is only valid within fairly small limits

Absolute amplitude less than about one meter otherwise, there is a speed plateau Width larger than a fraction of a millimeter otherwise motor control is not precise enough

Performance beyond those limits degrades quickly

D/W is therefore bounded by about 2000, and so the ID (in the log formulation) is less than about 12

Can we "beat" Fitts' law?

The index of performance IP = 1/b is about 10 bits/s in Fitts' original experiment

Pointing using a device (mouse, joystick, touchscreen...) has been shown to generally have a lower IP

Research question:

Can we use the computer to help us point faster?

Other research question:

Can we expand the limits of validity of Fitts' law?

Conc	lusion
Basic	interactions such as pointing are still far from optimal
Fitts'	law is a surprisingly robust law
Inform	nation is key:
Inf	ormation available in the display
Inf	ormation perceived by the user
Inf	ormation produced by the motor system
Inf	ormation captured by the system