# Affordances, Metaphors, and Conceptual modeling

Michel Beaudouin-Lafon - mbl@lri.fr Laboratoire de Recherche en Informatique In Situ - http://insitu.lri.fr

#### Outline

"The design of everyday things" - Don Norman

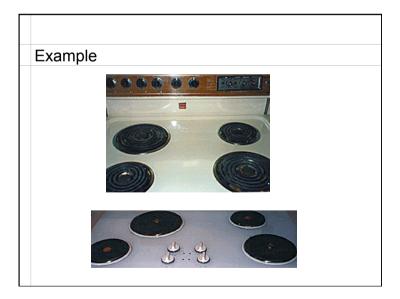
Affordances

Metaphors

Conceptual model

Examples

# The design of everyday things - Norman, 1990


Everyday objects reflect the problems in user interface design

- Door handles
- Washing machines
- Telephones
- etc.

Introduces the notions of affordance, metaphor, and conceptual model

Provides a set of design rules





#### Affordances

Direct perception of the capabilities of an object for action

The shape, size, aspect of an object suggests what it can be used for

Gibson's notion of affordance: no learning (innate)

Norman's notion of affordance (cultural affordances): require learning
but are universal within a culture

A button is meant to be pushed A handle is meant to be turned

Foundation of our knowledge of the world

«Much of our everyday knowledge resides in the world, not in the head» Norman, 1988

#### Mental model

Operational representation of the world in one's head

Example: instructions to get home

Provides a structure to link causes and effects

Supports explanations

What do I see? What does it meand?

What did just happen? Why?

What did I do that created this situation?

Supports predictions

What can I do now?

What happens if I do this?

Different types of mental models: objects-actions, state-transitions

# Metaphor

Figure of speech:

establishes a link between two words, without a comparative (while comparison includes the comparative)

Example: The moon is a golden sickle
Direct metaphor A golden sickle lights the night



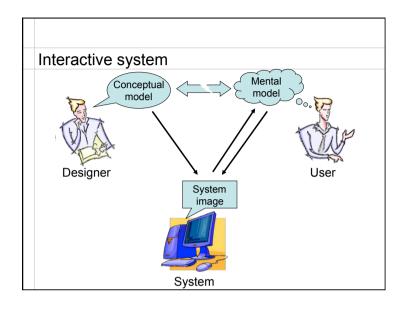
More generally:

Transfers a relationship from one set of objects to another set

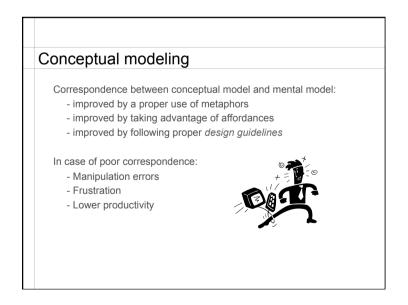
To be efficient, the comparative (or the transfer) must be immediately guessed or understood

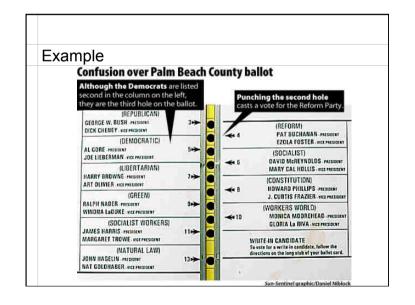
# Example: Desktop metaphor

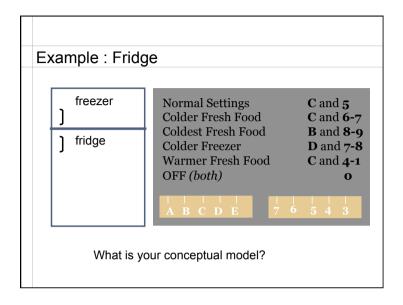
Compares objects of the virtual desk with objects of a real desk

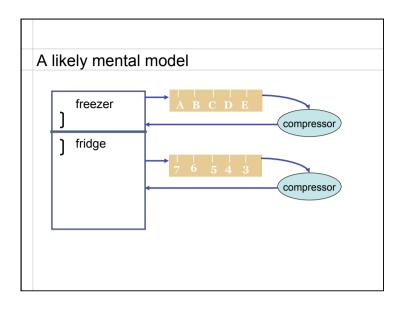

Transfers properties from physical to on-line world: Move, Open, put in trashcan, ...

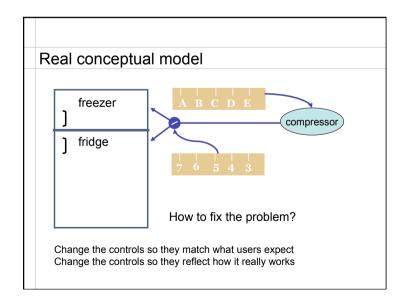
The goal is not to simulate a real desk but to take advantage of our knowledge of a real desk

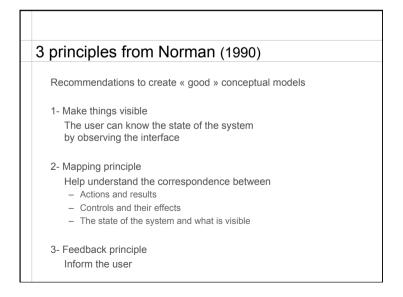

Goal: Save learning


Capitalize on external knowledge


Takes advantages of affordances in the real world





# Conceptual modeling Conceptual model How the designer wants the user to see the system Must hide technical aspects Must refer to what the user will use the system for System image What the user sees of the system (including its documentation) Used by users to create their mental model User mental model Created based on the users' understanding of the system image, their use of the system, what others have told them about the system, etc.

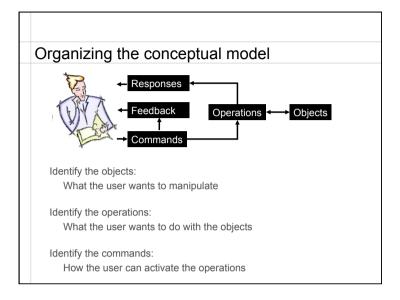











# 8 design rules from Shneiderman (1998)

- 1. Consistency
- 2. Short-cuts for expert users
- 3. Informative feedback
- 4. Design dialogues with closures
- 5. Prevent errors and help repair them
- 6. Provide reversible operations
- 7. Give control to the user
- 8. Reduce short-term cognitive load

There are dozens of recommendations and hundreds of rules...

For every rule, there are exceptions...



### Interaction tables

Organize the conceptual model into two tables:

| Objects | Representations                            | Properties                   | Operations           |
|---------|--------------------------------------------|------------------------------|----------------------|
| File    | Icon (according<br>to file type) +<br>name | Path<br>Type, name,<br>size, | Delete<br>Rename<br> |

| Operations    | Commands                                    | Feedback                                 | Responses                                                    |
|---------------|---------------------------------------------|------------------------------------------|--------------------------------------------------------------|
| Delete a file | Drag-and-drop<br>the icon into the<br>trash | The ghost of the icon follows the cursor | The icon<br>disappears and<br>the trash can<br>gets bigger   |
|               | Select file and hit<br>the Delete key       | Selected icon<br>gets highlighted        | The icon moves<br>towards the trash<br>can and<br>disappears |

# Case studies

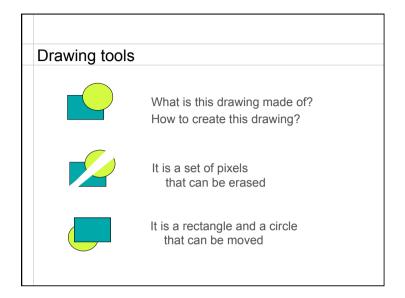
Conceptual models of different graphical editors

Pixel-based images (Photoshop)

Vector-based images (Illustrator)

Other case studies (not covered here)

Editor for images described as planar maps


Web browser

File browser

Text editor

Mail reader

...



| Two broad categories                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Editing bitmaps – images made out of pixels Basic objects: set of pixels (areas) Basic operations: Define an area Apply an operation to the pixels in an area                                                   |
| Editing vectors – images made out of geometrical shapes Basic objects: a stack of vector-based objects Basic operations:  Modify the geometry (shape) of an object Modify the graphical attributes of an object |

Change the stacking order (2D1/2)

|                         | aps                        |                         |                                                                                    |
|-------------------------|----------------------------|-------------------------|------------------------------------------------------------------------------------|
| Operations              | Commands                   | Feedback                | Responses                                                                          |
| Select an area          | Select rectangle tool +    | Cursor change           | Area surrounded<br>by "marching<br>ants"  Area surrounded<br>by "marching<br>ants" |
|                         | Click-and-drag a rectangle | Display ghost rectangle |                                                                                    |
|                         | Select lasso<br>tool +     | Cusor change            |                                                                                    |
|                         | Outline the area           | Display ghost outline   |                                                                                    |
| Paint the selected area | Select brush<br>tool +     | Cursor change           | Apply current color to the path of the brush                                       |
|                         | Click-and-drag to paint    | Display ink             |                                                                                    |
|                         | Select paint bucket tool + | Cursor change           | Selected area is filled with the                                                   |
|                         | Click the area             |                         | current color                                                                      |

| Operations                  | Commands                                       | Feedback                                 | Responses                                     |
|-----------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------|
| Modify the selected area    | Command<br>"Invert" in the<br>"Selection" menu |                                          | Exchanges the selected and non-selected areas |
|                             | Command<br>"Extend" in the<br>"Selection" menu |                                          | Extends the selection by one pixel            |
| Transform the selected area | Select an item in the "Filters" menu           | Dialog box with parameters of the filter | Apply the filter to the selected area         |
|                             | etc.                                           |                                          |                                               |

| iting bitmaps |                                    |                                   |                          |  |  |
|---------------|------------------------------------|-----------------------------------|--------------------------|--|--|
|               |                                    |                                   |                          |  |  |
| Objects       | Representations                    | Properties                        | Operations               |  |  |
| Area          | "Marching ants" (blinking outline) | The set of pixels inside the area | Define<br>Modify<br>Fill |  |  |
| Brush         | Cursor shape                       | Shape<br>Transparency<br>Color    | Paint                    |  |  |
| Tool palette  | Floating window                    | List of tools<br>Selected tools   | Select tool              |  |  |
| etc.          |                                    |                                   |                          |  |  |

| Operations                | Commands                                                          | Feedback                                                            | Responses                                                                        |
|---------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Create an object          | Select an object<br>type in the<br>palette +<br>Click-and-drag    | Cursor change Rubber-band the object shape                          | Creates new shape with current attributes on top of all other                    |
|                           | Select the pencil<br>+<br>Click-and-drag<br>each control<br>point | Cursor change  Each click-and- drag defines a point and its tangent | Creates new<br>shape with<br>current attributes<br>on top of all other<br>shapes |
| Select one or more object | Click an object                                                   |                                                                     | Adds handles to the selected object                                              |
|                           | Click on the background+ drag                                     | Ghost of the selection rectangle                                    | Adds handles to the selected objects                                             |

| Operations                         | Commands                                                                  | Feedback                                                               | Responses                                        |
|------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|
| Modify the geometry of an object   | Select object + click-and-drag the handles                                | Ghost of the reshaped object                                           | Changes the shape of the object                  |
| Modify the attributes of an object | Click object +<br>Use the<br>attributes<br>inspector                      | Values of the attributes are displayed in inspector                    | Applies new values to the object                 |
| Change the stacking order          | Click object +<br>select command<br>"bring to front" or<br>"send to back" |                                                                        | Puts the object<br>on top or below<br>all others |
|                                    | Click object +<br>select command<br>"Order" + slider                      | The stacking of<br>the object<br>changes<br>according to the<br>slider | Changes the stacking order of the object         |

| ector-based editing |                 |                                                                   |                                       |  |  |
|---------------------|-----------------|-------------------------------------------------------------------|---------------------------------------|--|--|
|                     |                 |                                                                   |                                       |  |  |
| Objects             | Representations | Properties                                                        | Operations                            |  |  |
| Vector-based shapes | Graphical shape | Geometry<br>Graphical<br>attributes                               | Create<br>Modify<br>Change attributes |  |  |
| Attribute inspector | Floating window | Background color<br>Foreground color<br>Thickness<br>Transparency | Change attribute value                |  |  |
| Tool palette        | Floating window | List of tools<br>Selected tool                                    | Select                                |  |  |
| etc.                |                 |                                                                   |                                       |  |  |

#### Some rules

Group commands by category
Manage the workspace
Global editing (layout of objects, ...)
Local editing (individual object)
etc.

Verify completeness
Same operations in both tables
Each property should be visible and editable

Verify consistency
Similar interactions have similar effects

# Evaluating a conceptual model

Using *scenarios* and *storyboards*Describe realistic sequences of interaction

Verify that they are covered by the model

Using walkthroughs

Verify (and have others verify) the criteria described in the previous slides

Using prototypes

Implement some of the techniques to test and refine them

#### Some rules

Apply design principles

Reification

Identify new objects ex : Tool palette = object

Polymorphism

Create commands that apply to different objects

ex : Which existing commands apply to the palette itself?

Reuse

Output reuse: favor commands that reuse existing objects

#### Conclusion

The conceptual model is at the heart of an interactive system

Conceptual modeling is a creative activity

One cannot simply apply rules

User-centered design

Analyse interaction from the point of view of the user

Participatory design

Involve users along the design process to understand their needs, validate design choices, and take advantage of their ideas and suggestions