Psychology 101

Action – Perception – Cognition

Michel Beaudouin-Lafon Université Paris-Saclay mbl@lri.fr

Action-perception coupling

« Classical » psychology (cognitivist approach)
Perception <=> Cognition <=> Action

Coupling between action and perception

Action for perception

Move head to perceive depth

Manipulate object to perceive its shape

Perception for action

Adjust arm and hand motion to grasp an object

Ecological theory of perception - J.J. Gibson

Co-evolution between the animal and its environment

Direct perception « Information pick up »

Visual perception Perception of optical flow **Extract invariants**

Example: direction of motion = fixed point in the optical flow

Visual channel: Sight

Visual field is about 180°

Focus of attention
Visual acuity: 0.04mm at 50cm

Peripheral perception

Less sensitive to colors,

More sensitive to motion

Perception of color, motion, depth

Flg. 6. Vertical sagittal section of the adult human eye

Held & Hein (1963) Kitten Carousel

The role of experience in perceptual-motor devlopment

Self-produced movement and concurrent visual feedback are essential for the development of visually guided behavior

Depth illusion: Ames room

The Monkey Business Illusion

Watch this video:

https://www.youtube.com/watch?v=IGQmdoK_ZfY

The Monkey Business Illusion

Daniel J. Simons

Change blindness

We do not always notice changes in visual stimuli, even when the change is dramatic

Attention is selective: notifications can go unnoticed

Change blindness

We do not always notice changes in visual stimuli, even when the change is dramatic

Attention is selective: notifications can go unnoticed

Change blindness

We do not always notice changes in visual stimuli, even when the change is dramatic

Attention is selective: notifications can go unnoticed

Auditory channel: Hearing

Very large sensitivity range

Hearing without listening
« Cocktail-party » effect

Masking effects

Distance between sources

Distance between peak frequences

Localizing a source

Correlation with visual localisation

Auditory illusion: Sheppard-Risset tones

A sound that (seems to) always go down

Audio equivalent to Escher's stairs or fountain

Haptic channel: TPK

Touch: 6 types of receptors

Heat, Cold, Pain

Pressure, Vibration, Texture

Haptic channel: TPK

Touch

Proprioception Configuration of one's body in space, used to perceive, e.g., the shape of an object

Haptic channel: TPK

Touch

Proprioception

Kinesthesia

Tension of one's muscles,

used to assess the weight or resistance of an object

Vestibular sense

Sense of balance: relative orientation in space Located in the inner ear

Multimodal perception: visual, kinesthetic, vestibular Discrepancies cause

Control body movements

Locomotion

Physical action

Gesturing, hand movements

Voice

Control body movements

Kinematic chain: articulated arrangement of the limbs to combine large amplitude and precise movements

Control body movements
Kinematic chain

Bi-manual control (Yves Guiard)

Non dominant hand: sets the context

Dominant hand: acts within that context

Control body movements
Kinematic chain

Bi-manual control (Yves Guiard)

Application to a drawing interface: Toolglasses

Toolglasses and Magic Lenses, Bier et al., SIGGRAPH 1993

Controlling a gesture: target pointing

Fitts' law

 $MT = a + b \log(1 + D/W)$

MT, movement time

D, distance to target

W, width of target

a, b, empirically determined constants

Scale invariant:

pointing a target twice as large at a distance twice as long takes the same time

Functions of the gestural channel (Claude Cadoz)

Epistemic: acquire information

Ergotic: transform through physical action

Semiotic: emit information

Memory and learning

Short-term memory

Working memory

Low capacity (7 ± 2)

Short-lived (10-30s)

Long-term memory

Infinite capacity

Unlimited duration

Associative access

Repetition reinforces memory and learning

Different types of memory

Seven stages of action - Don Norman

Plans and Situated Action (Suchman)

Humans do not always act according to a pre-made plan

Action is situated

The plan is revised / adapted according to the local situation

Example: empty printer

- add paper
- print to another printer
- give up printing

Problem solving

Strategies in case of error

Mental models

Mental representations that help us reason and solve problems

Cognitive Biases

Systematic pattern of deviation from the norm or from rational judgement

Work by Tversky and Kahneman that challenges the "rational choice theory" in social and economic behavior

Example:

Do you prefer 150€ now or 180€ in 1 month?

Do you prefer 150€ in a year or 180€ in 13 months?

Wikipedia has a list of 185 cognitive biases!

Cognitive bias

Social

Financial

Failure to estimate

Short-termism

When it comes to assessing risk, humans often fail to make rational decisions because our brains take mental shortcuts that prevent us making the correct choice. Since the 1960s behavioural scientists and upsychologists have been held Beaudious as a feet besided the basis researching these failings, and have identified and labelled dozens of them. Here are some that can cause havoc when it comes to assessing risks in business

ORIGIN

The notion of cognitive biases was first introduced by psychologists Amos Tversky and Daniel Kahneman in the early-1970s. Their research paper. of almost all current theories of decision-making and heuristics. Professor Kahneman was awarded a Nobel Prize in 2002 after further developing the ideas and applying them to economics

ANCHORING EFFECT

Relying too much on the initial piece of information offered when making decisions

"The first test seemed OK. Do we need to look any more?"

AVAILABILITY HEURISTIC

Overestimating the importance and likelihood of events given the greater availability of information

"I saw something very similar to this on LinkedIn. We need to take it seriously"

BANDWAGON EFFECT

Uptake of beliefs and ideas increases the more that they have already been edopted by others

"The whole department knows there's no problem here"

BELIEF BIAS

Basing the strength of an argument on the believability or plausibility of the conclusion

"I didn't quite follow your argument but the conclusion seems about right"

BLIND SPOT BIAS

Viewing oneself as less biased than others

"Let's ignore Sarah's views on this one. She's biased"

CLUSTERING ILLUSION

Erroneously overestimating the importance of small clusters or patterns in large data

"This is the second week in a row that this has happened. There must be a problem"

CONFIRMATION BIAS

Focusing on information that only confirms existing preconceptions

"We did loads of simulations. Most of them showed there's no problem"

COURTESY BIAS

viewed as more socially acceptable so as to avoid causing offence/controversy

"The last time we discussed this the meeting lasted for hours. Let's move on"

ENDOWMENT EFFECT

The tendency for people to ascribe more value to things merely because they already own/have them

"I know it will cost a fortune to fix but it cost us £15,000. We can't just throw it away."

"The conveyor belt broke three times last month. It's pretty

unlikely it'll happen again."

Believing that future probabilities are altered by past events, when in fact they are unchanged

GAMBLER'S FALLACY

"Let's just get the deal done ASAP"

HYPERBOLIC DISCOUNTING

Preferring a smaller, sooner payoff over a larger, later reward

"This worked fine in the factory in the Korea, it should work fine here"

"Looks like we've run out of time to discuss this"

data appears to tell a coherent "story"

ILLUSION OF VALIDITY

Overestimating our ability to make

accurate predictions, especially when

OSTRICH EFFECT Avoiding negative financial information by pretending it doesn't exist

"We made a good call on that one"

"Our competitors are only doing well because their products are cheap"

"Now we've got the new equipment we can cut the time spent on maintenance"

REACTIVE DEVALUATION

Devaluing an idea because it originated

POST-PURCHASE

RATIONALISATION

Tendency to retroactively ascribe positive

attributes to an option one has selected

RISK COMPENSATION

Taking bigger risks when perceived safety increases; being more careful when perceived risks increases

STATUS QUO BIAS

Preferring the current state of affairs over change

"Dave from tech is worried

"If it ain't broke - don't fix it"

but frankly the tech team are always pessimists"

STEREOTYPING

because they are a member of a group

Cognitive Biases

Problems that biases help us address:

Too much information: we need to filter it Examples: Confirmation bias, Anchoring

Not enough meaning: we like to fill in missing pieces Examples: Anecdotal fallacy, Halo effect

Not enough time: we need to act fast Examples: Egocentric bias, IKEA effect

Too many things to remember:
we need to compress / omit information

Examples: Primacy / recency effects, Implicit stereotype

COGNITIVE BIAS CODEX, 2016

Cognitive Biases and HCI

Cognitive biases affect the design process

Confirmation bias: choose designs that support existing beliefs

Framing bias: presentation of results affect choice

"4 out of 20 users could not find the search function" VS.

"16 out 20 users found the search function"

Should a search function be redesigned based on usability testing findings?

- "4 out of 20 users did not find the search function"
- "16 out of 20 users found the search function"

Cognitive Biases and HCI

Cognitive biases affect users' behavior

Confirmation bias: users focus on online reviews that support their pre-existing opinion of the product

Anchoring: decision depends on initial piece of information

