
ACM Reference Format
Asente, P., Schuster, M., Pettit, T. 2007. Dynamic Planar Map Illustration. ACM Trans. Graph. 26, 3, Article 30
(July 2007), 10 pages. DOI = 10.1145/1239451.1239481 http://doi.acm.org/10.1145/1239451.1239481.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2007 ACM 0730-0301/2007/03-ART30 $5.00 DOI 10.1145/1239451.1239481
http://doi.acm.org/10.1145/1239451.1239481

Dynamic Planar Map Illustration

Paul Asente Mike Schuster Teri Pettit
 Adobe Systems, Inc. Adobe Systems, Inc. Adobe Systems, Inc.

Abstract

There are many types of illustrations that are easier to create in
planar-map-based illustration systems than in the more common
stacking-based systems. One weakness shared by all existing pla-
nar-map-based systems is that the editability of the drawing is
severely hampered once coloring has begun. The paths that define
the areas to be filled become divided wherever they intersect, mak-
ing it difficult or impossible to edit them as a whole.

Live Paint is a new metaphor that allows planar-map-based color-
ing while maintaining all the original paths unchanged. When a
user makes a change, the regions and edges defined by the new
paths take on fill and stroke attributes from the previous regions
and edges. This results in greater editing flexibility and ease of use.
Live Paint uses a set of heuristics to match each region and edge in
a changed illustration with a region or edge in the previous ver-
sion, a task that is more difficult than it at first appears. It then
transfers fill and stroke attributes accordingly.

CR Categories:

I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics editors; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Geometric algorithms; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
techniques;

Keywords:

Vector illustration, Graphics editor, Planar map,
Gap detection, Dynamic, Recoloring

1 Introduction

Vector illustration systems fall into two classes: stacking (some-
times called 2 1/2-D) and planar map. In a system that uses the
stacking metaphor, an illustration consists of a set of paths with fill
and stroke attributes. These paths have a stacking order, and a path
higher in the stacking order obscures the paths that are below it
where they overlap. In a system that uses the planar map metaphor,
paths have no fill or stroke attributes, and they are treated as being
in a single plane with no stacking order. Fills apply to regions
bounded by the paths and strokes apply to edges along paths
between intersections.

The vast majority of systems use the stacking metaphor. It is com-
mon in everything from dedicated illustration programs like Adobe
Illustrator [Adobe 2005] to drawing subsystems embedded in other
programs like Microsoft Office [Young and Halvorson 2003].

Stacked illustration is easy to implement, and since the paths do
not interact other than to obscure each other, each path can be
edited independently from the others. There are, however, many
kinds of illustrations that are difficult to create in the stacking met-
aphor. These include illustrations where the elements interact in a
non-stacked way, such as weaves, knotwork, or linked rings, illus-
trations that do not have any underlying structure, like hand-drawn
cartoons, and illustrations where the regions to be filled are
bounded by several unrelated paths. Examples of such illustrations
can be found throughout this paper.

Planar map illustration is much rarer. The first system to use it was
MapSketch [Baudelaire and Gangnet 1989], followed by TicTac-
Toon [Fekete et al. 1995], which was specifically dedicated to ani-
mation. Adobe Illustrator incorporated limited planar facility with
its Pathfinder functionality, and Adobe Flash [Macromedia 2005]
built its entire editing system around it. Planar map illustration has
opposite strengths and weaknesses from stacking illustration. It is
easy to draw elements that interact in non-stacked way, and easy to
draw illustrations without structure. However, the systems are
more difficult to implement because the algorithms to construct the
regions and edges from a set of paths are complex. More impor-
tantly, while the illustrations are easy to color, they are difficult to
edit. Paths become broken up at intersections and are no longer
editable as a whole.

Figure 1 shows various results one gets in different planar systems
in response to selecting the center bar of the illustration and pull-
ing it down. Different systems give different results, sometimes
depending upon how the bar was selected. All previous systems
either break up the paths at the intersections, or, like TicTacToon,
do not permit paths to be edited at all. Our system, Live Paint, is
able to maintain the paths without breaking them up, leading to the
final picture.

A user colors a Live Paint illustration using the planar map meta-
phor, applying fills to areas defined by paths and strokes to edges
along paths. However, Live Paint does not break the paths up at
intersections; the paths continue to exist in their original forms,

Figure 1: Various results of editing. (a) Original illustration
(b) MapSketch (c) Adobe Flash (d) Adobe Flash (e) Adobe
Illustrator Pathfinder (f) Live Paint

(a) (b) (c)

(d) (e) (f)

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

and the user manipulates these paths to edit the illustration. Live
Paint maintains the fills and strokes on the regions and edges
throughout the editing process. If the user does want the results
generated by previous systems, they can still be achieved by add-
ing control points at intersections or cutting paths.

Figure 2 shows two cases of coloring and editing a simple Live
Paint illustration. The first column shows the paths of the illustra-
tion, and the second shows the initial colored results. These results
would be difficult to achieve in a system that used the stacking
metaphor, but they are easy to do in any planar map system. Live
Paint takes the process a step further, allowing the user to modify
the underlying paths and have the results appear as expected.

A subset of the need addressed by Live Paint was solved by Wiley
and Williams [2006]. Their Druid system allows a user to manipu-
late interwoven 2 1/2-dimensional surfaces, like knots and inter-
locked rings, and to edit these surfaces to maintain apparent local
stacking. It does not, however, address the problem of editing pla-
nar drawings that do not represent interwoven surfaces, like the
first example in Figure 2.

It is difficult to convey the power of Live Paint through static fig-
ures. Any illustration drawn with Live Paint could equally well
have been drawn with other planar map systems, assuming that the
artist knew beforehand exactly what the final illustration should
be. The advantage of Live Paint is that it allows the artist to easily
modify a composition after applying color. Figure 3 shows a more
complex example involving a portion of a cubist-style illustration
of a sunny sky. The top picture shows the paths, and the middle
shows the result after coloring. The bottom shows how Live Paint
allows the artist to adjust the composition of the illustration after
coloring without having to recolor or redraw, something not previ-
ously possible.

2 Correctness

Baudelaire and Gangnet refer to the desirability of this type of
editing in the close of their 1989 paper, but suggest no way to
achieve it. There are two possible reasons this hasn’t been done
before.

One is performance. Creating a planar map from a set of paths is
O(

p

 log

p + n

) in

p

 the number of paths and

n

 the number of inter-
sections. While

n

can in theory be very large, the kinds of illustra-
tions users actually create have only a few intersections per path,
making this term effectively linear in

p

.

This is a promising basis for an editor, but the constant factors are
large. Until recently, any system that created a planar map after
each editing operation would have been far too slow to be useful in
practice. However today’s processors let Live Paint be nearly
instantaneous for simple illustrations, and to respond in about a
second for illustrations containing a thousand paths.

A more important reason is that it is challenging to come up with a
set of rules that capture what users would consider to be the right
answer. It is quite easy to come up with ideas that seem as if they
should work, but for most of them it is just as easy to come up with
examples where they do not.

For example, one might think that moving a path should move the
regions that border it in the same general way. Figure 4 shows that
sometimes this works, and sometimes it doesn’t.

Figure 2: Coloring and editing Live Paint illustrations.

Figure 3: Coloring and editing a more complex illustration.

Figure 4: Should regions move with paths?

Paths Colored Edited

Paths

Colored

Edited

Original drawing

Moving the upper
curve should take the
colors along with it.

Moving the lower
curve should leave the
colors where they are.

30-2 • Asente et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

A dynamic flood fill algorithm constantly updates the filled regions
as the user changes the paths. It would work in many cases, but it
has problems. Not all editing operations are incremental; opera-
tions like path reflection or deleting a vertex from a polygon can
make a path change instantaneously. Dynamic flood fill can also
make things hard on a user—there may be no way to move a path
from one spot to another without affecting intervening paths, and
an edit like that shown in Figure 5 would require the user to care-
fully move a path to avoid losing a color. Finally, it provides no
guidance in deciding how newly-created regions should be filled.
These problems are sufficiently difficult that we chose not to base a
system on dynamic flood fill.

However, dynamic flood fill does provide a conceptual framework
for deciding what the correct result should be. If dynamic flood fill
maintains the illustration’s topology during an operation, neither
creating nor destroying regions, then we will define the flood fill
result as correct. Live Paint uses a set of heuristics that efficiently
produce the same results as dynamic flood fill in nearly all topol-
ogy-preserving editing operations, and applies them in all cases.
User testing has shown that it produces the expected result in
nearly all editing operations.

3 System Architecture

An illustration consists of a set of geometric paths that are given
unique identifiers that persist across changes to the path. Each path
has a non-decreasing parameterization from its beginning to end,
and is characterized as open or closed depending on whether its
ending point coincides with its starting point. In our system a path
is an end-to-end connected set of Bézier curve segments, and the
parameterization is a real number with integer part the ordinal
number of the segment and fraction the Bézier parameterization
along the segment. The set of paths in an illustration is collectively
called the illustration’s

geometry

. The user can select and modify
the paths in the geometry, remove paths from the geometry, and
add new paths to the geometry.

The geometry of an illustration divides the plane into a set of non-
intersecting

regions

. Each region has a set of visual attributes such
as solid colors, repeating patterns, gradient colors, or transparency.
The attributes for a region are called the region’s

fill

. The user
interface of the system provides several ways for the user to mod-
ify the fill of a region, including a paint bucket tool that applies a
fill to a region that the user clicks in.

The intersections of the paths divide each path into a set of non-
overlapping

edges

. Each edge has a set of visual attributes such as
color, stroke width, and dash pattern. The attributes for an edge are
called the edge’s

stroke

. The user interface of the system provides
several ways for the user to modify the stroke of an edge, including
a paint brush tool that applies a stroke to an edge that the user
clicks on. Unlike regions, which normally do not have a close
association with a particular geometry path, each edge can be asso-

ciated with one or more paths—usually one, but with more if there
are places where multiple paths coincide.

Vertices

 are path endpoints and places where paths intersect. A ver-
tex exists at every intersection, even where exactly two paths inter-
sect at their endpoints. Such a vertex has two edges, one on either
side.

An illustration’s set of regions with their fills and edges with their
strokes make up the

result art

 of the illustration. The result art is
what is the user sees on the display.

A

planar map

 is a data structure with a set of paths and the regions
and edges defined by those paths. The planar map implementation
in Live Paint is based on the work of Bentley and Ottmann [1979]
as modified by Hobby [1999] to snap intersections to a fixed grid.
Curved geometry paths are closely approximated by polylines
before being added to the map.

The planar map supports normal graph operations like enumerat-
ing the edges that surround a region. Additional operations, like
enumerating the edges along a path, enumerating the paths that
include an edge, and enumerating the regions inside a closed path,
relate the graph to the defining geometry. The map also maintains
the stroke for each edge and the fill for each region.

At any one time, there exists the geometry, consisting of the paths
that the user can select and modify, the result art, consisting of the
regions and edges that the user can see and paint, and a planar map
behind the scenes that ties the two together.

When the user makes a change to the geometry, the following steps
occur, as shown in Figure 6:

1. A new geometry is constructed, called the

current geometry

.

2. These paths are used to create a new planar map, called the

cur-
rent planar map

. The regions and edges in the current planar
map do not yet have fills and strokes associated with them.

3. The previous geometry, current geometry, previous planar map,
current planar map, and a description of what kind of changes
were made are passed to a paint assignment module.

4. The paint assignment module assigns fills and strokes to the
regions and edges in the current planar map. This is called

painting

 the map.

5. New result art is created from the current, painted, planar map.

6. The current geometry replaces the old geometry, the current
result art replaces the old result art, and the current planar map
replaces the old planar map.

The system is now ready for the next change.

Figure 5: A bad case for dynamic flood-fill.

Before After

Figure 6: System architecture

Previous
geometry

Previous
result art

Previous
planar map

Paint
assignment

Current
geometry

Current
result art

Current
planar map

C
ha

ng
es

Fills
and
strokes

2

1

3

666

3

5

3
3

3
4

Dynamic Planar Map Illustration • 30-3

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

It should be noted that this cycle has no memory built in; the result
depends only upon the state when the user makes the change and
the change itself. For example, if the intersection of two closed
paths has a fill different from the outsides, the intersection will not
regain that color if the user pulls the paths apart and then re-over-
laps them as two separate operations. This leads to improved pre-
dictability. The user does not need to remember what the
illustration looked like before or how it got to its current state.

The cycle when the user changes the fill of a region or the stroke of
an edge is simpler. In this case Live Paint associates the new fill or
stroke with the region or edge in the planar map, and updates the
result art accordingly.

In order to facilitate operations like finding regions and edges that
have been split by a newly added path, or finding regions and
edges that have been merged by a deleted path, newly added paths
are tagged as such when added to the current map, and deleted
paths remain in the current map, but are marked as deleted. The
region and edge operations for the map have the option to either
combine or treat separately regions and edges that are separated
only by deleted paths. Added paths lose their special tag and
deleted paths go away completely in the next iteration.

The paint assignment module has two parts, a fill assignment mod-
ule and a stroke assignment module. For each region or edge in the
current map, Live Paint uses a set of heuristics to find the region or
edge in the previous map that most closely matches the current
one, and transfers the fill or stroke to the current from the old.

It might seem that general planar graph matching algorithms [Alt
et al, 2003, Neuhaus and Bunke, 2005] might be useful in match-
ing up the current and previous maps, but they are excessive. Live
Paint maintains path identifiers throughout the editing process,
which make it quick and straightforward to match up portions of
an illustration that do match. These portions have regions bordered
by the same paths and edges defined by the same intersections.
The matching process at the same time identifies the portions of
the graph that don’t match exactly, and characterizes them in a way
that gives a useful description of how they are similar and differ-
ent.

It must be said that the problem of fill and stroke assignment is
inherently ill-posed. Figure 7 shows a simple illustration with a
circle that is bisected by a line segment and has different fills on
the two sides. (The figures in this paper all use thin blue lines to
show the paths in the geometry. These paths may or may not be
visible in the result art, depending upon whether the user has
assigned strokes to them.) If the line segment is moved to the right,
there is no way to know which fill to give the undivided circle. In
some cases different users could perform the exact same edit on an
illustration and expect different results. The goal of Live Paint can-
not be to always produce the expected result; instead it is to pro-
duce a reasonable result. The user should not be left wondering

why the result came out as it did; even if it is not the desired result,
the user should be able to understand why it was a reasonable
choice.

Although this paper usually refers to a single Live Paint illustra-
tion, such an illustration can be embedded within a larger docu-
ment that combines multiple Live Paint illustrations as well as
traditional stacked shapes. Each Live Paint illustration is treated as
a unit and can be stacked with other elements of the document,
possibly with transparency. For example, a logo done with Live
Paint could be placed on top of the shirt of a figure that was also
drawn with Live Paint. The logo and figure would not interact;
each could be edited and colored without affecting the other.

4 Fill Assignment

Live Paint uses four different ways to assign fills to the new map:
simple assignment, stable assignment, closed path assignment, and
general assignment.

4.1 Simple Fill Assignment

Simple fill assignment applies when a user’s change consists only
of reparameterizing, adding, extending, deleting, and truncating
paths. This is an optimization that allows Live Paint to avoid the
more complex assignment methods.

If the change consists of changing the parameterization of some
paths in the geometry, no change is made to the fills. Every region
in the current map takes the fill of the corresponding previous
region.The most common case of parameterization change is sub-
dividing one Bézier path segment into two.

If the change consists of adding new paths to the geometry, or
extending existing paths at either end without changing their exist-
ing parts, then some regions in the previous map may have been
divided into multiple regions in the current map. Each divided
region takes the fill of the previous undivided region. Regions not
divided by the addition take the fill of the corresponding previous
region.

If the change consists of removing open paths from the geometry,
or truncating existing paths at either end without changing the
remaining parts, then some regions in the previous map may have
been merged into a single region in the current map. The merged
regions take the fill of whichever previous region was largest.
Regions not merged by the operation take the fill of the corre-
sponding previous region. Note that this is not done for removing
closed paths; the results of doing so are in some cases not intuitive
as shown in Figure 8. Closed path assignment handles the deletion
of closed paths.

Figure 7: An ill-posed case.

?

?

Figure 8: Deleting a closed path. (a) Original illustration. (b) After
deleting square but before merging. (c) Result using largest area
rule. (d) Likely desired result.

(a) (b) (c) (d)

30-4 • Asente et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

4.2 Region Context

If a change is too complex to be handled by simple assignment,
Live Paint gathers information about the regions in the previous
and current maps. This information is called the

context

 of the
region, and contains

• A list of every path that borders the region, and for each path:

– The parameterization values at the start and end of the por-
tion of the path bordering the region.

– Whether the region is to the left of the path, the right of the
path, or on both sides of the path. “Left” and “right” here are
relative to the path, considered in the direction of increasing
parameterization. They do not refer to the orientation of the
path as viewed by the user. A region is on both sides only
when an open path extends into a region but does not divide
the region in two.

– If the path is closed, whether the region is inside or outside
the path.

A region may be bordered by multiple parts of the same path; in
that case Live Paint collects an instance of this information for
each bordering portion.

• A list of every closed path that encloses the region, even if that
path does not directly border the region

The list of the bordering paths and the geometric relationship of
the region to these paths is called the

simple context

 for the region.
The simple context plus the parameterization information is called
the

extended context

 for the region. The lists of previous and cur-
rent regions are ordered lexicographically by extended context,
allowing efficient matching between previous and current regions
with the same context. The details of the lexicographic comparison
function are unimportant; all that matters is that it defines an arbi-
trary total ordering that is shared by both the current and previous
set of regions.

4.3 Stable assignment

Stable assignment assigns fills to areas of the illustration where
nothing has changed. For each current region, if there is a previous
region with identical extended context and identical path inclusion,
the current region takes the fill of that previous region. This guar-
antees no fill changes in unchanging parts of the illustration, and
usually removes most regions from the more complex assignment
methods that follow.

4.4 Closed Path Assignment

If there are regions not yet assigned, and at least one of these
regions is within a closed path, Live Paint performs closed path
assignment. The goal of closed path assignment is to preserve
familiar editing results on parts of the illustration that look as if
they are made from traditional filled, stacked closed paths. This
involves maintaining two invariants across edits involving closed
paths. Overlapping paths that appear to have a particular stacking
order should maintain that apparent stacking order, and if a path
appears to have a fill, all regions in that path should have that fill
unless they are also within a path that appears higher in the stack-
ing order.

Paths that do not overlap have no apparent stacking order relative
to each other. For predictability, Live Paint adds the invariant that a
path with an apparent fill that is moved or changed to overlap a
path that it did not overlap before should now appear to be above
that path.

It must be emphasized that the fill and stacking order are only
apparent, not actual. They can change or be eliminated when the
user assigns new fills to regions, as shown in Figure 9. This figure
also shows that not every pair of overlapping paths appear to have
a stacking order, and that not every closed path has an apparent fill.

Closed path assignment begins by analyzing the closed paths in the
previous map to find apparent fill colors and stacking relationships.
This alternates between finding paths that have an apparent color
and finding paths that are apparently below those just determined
to have a color, and is fully described in Appendix A.

The apparent stacking relation is transitive only if all paths
involved have a region in common. It is possible, and useful, to
have non-transitively overlapping paths, as shown in Figure 10.
This non-transitive overlapping will be maintained as long as the
paths are not modified to overlap each other in new ways.

After determining apparent fills and stacking order, Live Paint
examines each current region that is inside at least one closed path
and that does not yet have a fill. If all closed paths that contain the
region have apparent fills, Live Paint checks to see if one of these
closed paths appears to be the top path. If there is exactly one
enclosing path with no other enclosing path apparently above it,
this is the apparent top path. If there is more than one such path,
the apparent top path exists only if the potential top paths were
previously disjoint, and at least one of them has been modified by
the current change. In that case, Live Paint chooses (arbitrarily)
one of the modified paths to be the apparent top path.

If there is an apparent top path, its apparent fill becomes the fill of
the region. The test for multiple paths being previously disjoint
and one path being modified makes modified paths appear to be
above paths that they did not previously overlap.

Figure 9: Apparent fills and stacking orders. (a) The ellipse
appears orange, the rectangle green, and the rectangle appears to
be above the ellipse. (b) Same apparent fills, but the ellipse appears
to be above the rectangle. (c) Same apparent fills, but there is no
apparent stacking order. (d) The ellipse has no apparent fill but the
rectangle does, and the rectangle appears to be above the ellipse.

Figure 10: Non-transitive stacking

(a) (b)

(c) (d)

Dynamic Planar Map Illustration • 30-5

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

4.5 Context Assignment

If there are regions not yet assigned, Live Paint makes a final pass
through the regions doing context assignment. This takes each cur-
rent region and finds the previous region whose context most
closely matches, and transfers the fill from that previous region to
the current region. As a reminder, a region’s simple context
describes how it relates geometrically to the paths that border it,
and its extended context is the simple context plus the parameter-
ization values of the beginning and end of each bordering path seg-
ment.

For every unassigned current region, Live Paint looks at all previ-
ous regions that have the same simple context. There are three pos-
sibilities:

If all previous regions with the same simple context have the same
fill, including when there is only one such previous region, then
the current region takes that fill.

If previous regions with the same simple context have different
fills, the current region takes the fill of the one whose extended
context most closely matches the current region’s extended con-
text, using the metric described below.

If there is no previous region with the same simple context, Live
Paint considers each previous region that borders a path bordering
the current region. The current region takes the fill of whichever of
these regions has an extended context most closely matching the
current region’s extended context, using the metric described
below. If there is no previous region that borders a path bordering
the current region, the current region is left unfilled.

The matching algorithm gives a match quality to each potential
previous region, and chooses the one with the highest quality.
Match quality takes four things into account: hits, misses, bound-
ary coverage, and parameterization distance.

• A hit can potentially occur for each path that borders both the
current and previous region.

– If the current and previous versions of the path are both
closed, a hit occurs if

· both the current and previous regions are inside the path,
or

· both the current and previous regions are outside the path.

– If either the current or previous version of the path is open, a
hit occurs if

· the current region is to the right of the path and the previ-
ous region is either to the right of or on both sides of the
path, or

· the current region is to the left of the path and the previ-
ous region is either to the left of or on both sides of the
path, or

· the current region is on both sides of the path and the pre-
vious region is either to the left or right of the path.

• A miss can potentially occur for each path that borders both the
current and previous region. For each such path, a miss occurs
if no hit occurs, and it is not the case that both the current and
previous regions are on both sides of the path.

• Boundary coverage is what fraction of the boundary of the cur-
rent region is covered by the portions of paths that bounded the
previous region, using path parameterization.

• Parameterization distance looks at each path that borders both
the current and previous region and computes how far away the
bordering portions along the path are from each other. If a path

borders the current region from

t

1c

 to

t

2c

 and the previous
region from

t

1p

 to

t

2p

, the parameterization distance for that

path is sqrt((

t

1c

 -

t

1p

)

2

 + (

t

2c

 -

t

2p

)

2

). The parameterization dis-
tance for two regions is the sum of the parameterization dis-
tances for each bordering path.

Note that no hit or miss occurs for a path that borders only one of
the previous and current regions, or for a path that has the previous
and current regions on both sides. Such a path is ignored in com-
puting match quality.

In comparing two match qualities, the better is the one with

• Fewest misses

• If the number of misses is the same, the most hits

• If the number of hits is the same, the largest coverage

• If the coverage is the same, the smallest parameterization dis-
tance.

Figure 11 shows a simple case of context assignment. The original
illustration has two regions

a

 and

b

, with the context descriptions
shown. After moving the diagonal path, there are two regions

x

 and

y

, with the descriptions shown. There is only one previous region
that matches

x

, and one that matches

y

, giving the expected results.

Figure 12 shows a case where boundary coverage resolves an
ambiguity. After moving the straight line, there are two regions,

x

and

z

, with the same simple context. Previous regions

a

 and

c

match in simple context but have different fills, so Live Paint
invokes the matching rules to find the best matches for regions

x

and

z

. When looking for a match for

x

, regions

a

 and

b

 have equal
numbers of misses (0) and equal numbers of hits (2). Live Paint
compares the boundary coverage of

x

 relative to region

a

 with its
boundary coverage relative to region

c

. The coverage relative to
region

a

 (complete) is larger than that relative to

b

 (none), so

x

takes region

a

’s fill. Similarly,

z

 takes

c

’s fill. Intuitively, ambigu-
ous cases are handled by taking regions that are as close as possi-
ble to the defining parts of the bounding paths.

Figure 11: A simple case for context assignment.

Figure 12: Fill assignment using boundary coverage

a
b

x
y

x
y

Before:
a: Inside path 1
 Left of path 2
b: Inside path 1
 Right of path 2

After:
x: Inside path 1
 Left of path 2
y: Inside path 1
 Right of path 2

Result of fill
assignment

1 1 1

2 2 2

1

2

1

2

1

2

a

b

c
x

y

z x

y

z

Before:
a, c: Right of path 1
 Left of path 2
b: Left of path 1
 Right of path 2

After:
x, z: Right of path 1
 Left of path 2
y: Left of path 1
 Right of path 2

Result of fill
assignment

30-6 • Asente et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

Figure 13 demonstrates why misses are given priority over hits in
region matching. After moving path 1, neither region

x

 nor

y

 has a
direct context match, so Live Paint considers all regions that bor-
der the defining paths. Finding a match for region

y

 is simple:
region

a

 has no hits and 1 miss, while region

b

 has 3 hits and no
misses. Region

b

 is a better match. Finding a match for region

x

 is
more complicated. Region

a

 has 3 hits and no misses, but region

b

has 4 hits and 1 miss. If misses were not given priority over hits,
region

x

 would take

b

’s fill. Giving misses priority results in the
improved fill assignment of the final picture. Intuitively, giving
misses priority prevents fills from jumping across paths.

Parameterization distance is used only when the boundary cover-
ages match, most commonly when the boundary coverage is zero.
This finds the closest matching region when the regions do not
border any of the same portions of the paths.

As an optimization, Live Paint saves the context for each current
region with the planar map. This can then be used directly as the
context for the previous region on the next fill assignment opera-
tion.

5 Stroke Assignment

Assigning strokes to the result art is simpler than assigning fills.
The appropriate result for most editing operations is to give each
edge of the current path the stroke of some edge of the previous
version of the path; it is rarely appropriate to introduce a stroke
that was not present on the path before. This means that each path
can be treated independently, only looking at the edges of its previ-
ous version to find strokes for the current version’s edges.

The one exception to this occurs when a change makes paths that
did not coincide in the previous geometry partially or completely
coincide in the new geometry. In this case, there is at least one cur-
rent edge that is part of both paths, and its stroke can only come
from one of the previous paths’ edges. However, the invariant in
the previous paragraph can still hold true for one of the paths; in
Live Paint it holds true for the modified path. Each path can there-
fore still be treated independently as long as unmodified paths
have their edges assigned before modified paths. A newly coinci-
dent edge that is part of an unmodified path first takes a stroke
from that path, and then assigning strokes to the modified path
overrides that stroke with a new one. If a change modifies multiple

paths simultaneously to make them coincident, the order is arbi-
trary and whichever path gets processed last keeps the invariant.

Stroke assignment is similar to fill assignment, but it uses vertices
to match edges rather than edges to match regions. We will only
sketch out the general method:

1. Handle simple cases, when all edges of the previous path had
the same stroke or when neither the path nor any paths that
intersect it have changed.

2. Characterize each vertex along the current and previous path
with a description of which other paths intersect it, how they
intersect it, and the parameterization values.

3. Associate each vertex in the current path with the vertex in the
previous path that matches most closely.

4. Use the vertex matches at the ends of each current edge to
choose a previous edge, and give the current edge the previous
edge’s stroke.

6 System Considerations

While fill and stroke assignment are the core of Live Paint, there
are other pieces needed to make a complete editing system.

6.1 Gap Detection and Closure

Hand-drawn pictures often contain small gaps in outlines of
regions. These gaps cause areas that the user intended to be sepa-
rate regions instead become one region, and areas that should be
enclosed become part of the outside world. Live Paint allows the
user to fill illustrations with gaps, as shown in Figure 14, using a
gap-detection algorithm similar to that described by Gangnet et al.
[1994]. One extension is that Live Paint dynamically finds gaps
each time the illustration changes, and gaps can move around as
parts of the illustration change.

When Live Paint finds gaps, it adds gap-closing segments to the
geometry. Live Paint completely ignores these segments when
doing region matching for fill assignment. They are not considered
to be part of a region’s context, they do not participate in coverage
computation, and they are not part of the parameterization distance
computation.

Gap segments never receive strokes; if the user wants to stroke a
gap, he or she can draw a new path. However, gap segments do
divide paths that they intersect into multiple edges. When doing
stroke assignment on such a path, Live Paint treats all gap seg-
ments as equivalent in vertex matching. Any gap segment matches
any other gap segment, and no gap segment matches any non-gap
path.

Figure 13: Effect of misses in region matching

1
2 3

4 5

a

b

1

2 3

4 5
1

2 3

4 5
1

2 3

4 5

x

y

x

y

x

y

Before:
a: Left of path 1
 Left of path 2
 Right of path 3
b: Right of path 1
 Left of path 2
 Right of path 3
 Left of path 4
 Right of path 5

After:
x: Left of path 1
 Left of path 2
 Right of path 3
 Left of path 4
 Right of path 5
y: Right of path 1
 Left of path 4
 Right of path 5

Result of fill
assignment
without giving
misses priority
over hits.

Result of fill
assignment
giving misses
priority over
hits.

Figure 14: Filling a picture that has gaps.

Dynamic Planar Map Illustration • 30-7

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

6.2 Conversion

Live Paint allows the user to convert an illustration that uses stack-
ing into a Live Paint illustration. First Live Paint creates an illus-
tration with the same paths, with all regions having no fill and all
edges having no stroke. It then runs the classic painter’s algorithm
by considering each path in the original illustration from lowest in
the stacking order to highest, filling regions inside the path, strok-
ing edges along the path, and removing the strokes from previ-
ously-stroked edges inside the path.

6.3 Persistent Representation

When saving an illustration, Live Paint annotates each path with a
list of

fragments

, which are stretches along the path where the left-
side fill, the right-side fill, and the stroke do not change. Each frag-
ment describes the two fills and the stroke. To reconstruct an illus-
tration, Live Paint creates a new planar map from the paths and
uses the fragment descriptions to paint the regions and edges.

7 Validation and Problem Cases

Live Paint’s results were validated by observing real users using it
to create real illustrations. If a user got unanticipated results, we
saved the illustration before the edit along with the edit and tried to
enhance the assignment heuristics to produce the desired outcome.
One example of this was the introduction of closed path assign-
ment. Our test users quickly grasped the concept of planar editing,
but they continued to expect closed paths to behave like they do in
a traditional stacking editor. Figure 8 shows one case where the
results differ. Adding closed path assignment allowed users to
work as before when editing closed paths.

We also kept a large body of test cases that produced expected
results. Whenever the assignment heuristics changed, we re-ran all
these cases to detect the introduction of unexpected behavior.

We also ran tests with several experienced Live Paint users creat-
ing real-world illustrations. During these tests, we kept track of
how often they felt that Live Paint gave unexpected results, and our
correctness rate was approximately 98%. However, since these
were experienced users, they knew how to avoid cases that give
Live Paint problems. Other tests with inexperienced users showed
higher error rates, but the incidence of corrective behavior (undo-
ing or making fixes) was no higher than with traditional methods.

There are four categories that cause most Live Paint problems.

Stacked art made from non-closed paths:

 Live Paint’s handling of
apparently stacked illustrations so closely mimics traditional
stacked semantics that users expect it to work this way when they
create filled shapes that are defined by separate open paths, such as
a rectangle defined by four intersecting lines. However, Live Paint
can only apply stacking semantics to closed paths, giving rise to
problems as shown in Figure 15(a). This deficiency accounts for
the largest number of failures, and we know of no way to address it
in the Live Paint heuristics. User interface techniques could, how-
ever, give additional information to the system to improve this.

Interwoven shapes:

 Interwoven shapes are closed paths that have
locally stacked areas but no global stacking. This includes cases
like linked rings, where two shapes are both above and below each
other in different places, and cases like knotwork where a single
path appears to overlap itself. Live Paint produces the expected
results when a user makes small changes to these paths, but large

changes, like moving one ring to the other side of a ring it is linked
with, often fail, as shown in Figure 15(b). Users usually learn that
they can get more predicable results in these cases by making the
change in several smaller steps. This failure could be addressed by
augmenting the apparent stacking algorithms with the techniques
described by Wiley and Williams [2006] to give Live Paint an
explicit understanding of these overlaps so that it could maintain
them.

Scribbly paths

: If a path intersects itself many times, changes to it
tend to produce unexpected results. This is because there are many
regions and edges with similar or identical simple contexts. Edit-
ing such a path often creates a new region that most closely
matches a distant region, causing fills to jump around surprisingly.
Fortunately, these kinds of paths are rarely used. This could be
addressed by making boundary coverage more important than hits
or misses, but we found it difficult to do this without creating
undesirable results in simpler cases.

Bars are not lines:

 While a user might expect a thin rectangle or
other thin closed path to act similarly to an open path, Live Paint
treats them very differently. An open path has a left side and a right
side, but a long rectangle has an inside and an outside. Both
“sides” of the rectangle are outside, and Live Paint treats them
similarly. If the horizontal line in Figure 13 were replaced by a thin
horizontal rectangle, there would be no misses to constrain context
matching, and the result would be as shown in (c). This failure
could be addressed by using the medial axis of thin shapes to
define a left and right side of the shape. However, while this prob-
lem has caused much anxiety for the authors, it has never been
observed happening to a real user.

8 Future Work

The major performance bottleneck with Live Paint is that each
change requires reconstruction of the planar map and assigning
fills and strokes to all regions and edges. Unlike most illustration
systems, which typically respond in time proportional to the num-
ber of paths changed at one time, Live Paint responds in time pro-
portional or worse to the total number of paths in the illustration.
Although response time is quite acceptable for small- and
medium-complexity illustrations, large illustrations with many
thousands of paths can take seconds to respond to even small
changes. Such cases normally only arise through wholesale con-
version of complex illustrations to Live Paint. Users don’t nor-
mally want to have thousands of potentially interacting paths; it is
excessively confusing. When constructing a complex illustration,

Figure 15: Problem cases: (a) Apparently stacked art from non-
closed paths. (b) Interwoven shapes.

(a)

(b)

30-8 • Asente et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

they usually divide it into simple, overlapping, non-interacting lay-
ers.

An incremental planar map implementation such as that described
by Ganget et al. [1989] could improve performance by eliminating
the need to reconstruct the map with each edit and by limiting fill
and stroke assignment to the parts of the illustration that have actu-
ally changed. However, past experience by the authors found scal-
ability problems when applying Gangnet’s approach directly to
maps containing even several hundred paths; the rounded approach
described by Hobby [1999] performed better for maps of this size.
Combining an incremental approach with rounding is challenging
since any modification to the geometry can make rounding
changes cascade throughout the map far beyond the area directly
affected by the modification.

Since assigning fills involves picking the most highly-ranked
region from several alternatives, a useful extension would be to
create a user interface that presents ranked choices to the user in
case an assignment is incorrect.

A problem with any planar system is that it can create tiny edges
and sliver regions where paths do not intersect exactly as the user
intended. The intersection rounding done by Live Paint makes the
problem even more likely to occur. The system could be improved
by merging these with larger adjacent edges and regions.

There is always room for improvement in any heuristic-based sys-
tem. Since fill and stroke assignment are independent, it is possi-
ble, but rare, for a change to cause a stroke along the edge of a
region to become detached from the region and end up elsewhere
on the bounding path. Other kinds of heuristics are possible; for
example, a change that preserves the number of regions should
usually also preserve the number of regions with a particular fill.

Live Paint does not make use of continuous descriptions of user
changes. There are cases where doing so might give better results,
for example, using the trajectory when a user moves a dividing line
out of a circle to decide which color to leave behind. However,
using the trajectory in all cases gives rise to the problems
described in Section 2 discussing dynamic flood fill. It is not clear
whether using the information in some, but not all, cases would
give a more predictable system.

In general, a great deal of care must be taken when introducing a
new heuristic; it is quite easy to create rules that improve assign-
ment in some situations but that make the assignment in other situ-
ations worse. We explored several promising directions that ended
up having too many failure cases before we settled on the current
set of rules.

Appendix A Finding Apparent Fills and Stack-
ing Relationships

Live Paint determines the apparent fills and stacking relationships
using an iterative algorithm.

1. Mark each region as active, meaning that it has not yet been
associated with a path that has an apparent fill.

2. For each closed path, if all regions within it have the same fill,
or all regions within it that are not also within another path have
the same fill, assign that fill as the apparent fill of the path.

3. Repeat:

a. For each path

p

 that was just assigned an apparent fill, con-
sider each closed path

q

 that shares a region with

p

. If each

active region that is inside both paths and that borders on

p

has

p’s

 apparent fill, and

q

 contains at least one region out-
side

p

 that borders on

p

 and has a fill different from

p’s

apparent fill, then path

p

 is apparently above path

q

. Mark all
regions that are within both paths as inactive. Place

q

 on a
list of potentially fillable paths. If this generates no poten-
tially fillable paths, terminate.

b. For each potentially fillable path, if all active regions within
it have the same fill, or all active regions within it that are not
also within another path have the same fill, assign that fill as
the apparent fill of the path. If no path was assigned an
apparent fill, terminate.

4. For each triple of paths

a

,

b

, and

c

, with

a

 apparently above

b

,

b

apparently above

c

, and

c

 not apparently above

a

, if there exists
at least one region inside all of

a

,

b, and c, then a is apparently
above c.

Figure 16 shows some closed paths that appear to have fills and
stacking. Paths are identified with numbers and regions with let-
ters. Ellipse 1 appears gray, rectangle 2 appears orange, rectangle 3
appears purple, and rectangle 4 appears green. The paths appear to
be stacked in numeric order. The fill and stacking determination
finds this out in this order:

1. Step 2 determines that path 1 is apparently gray because all
regions within it (c and d) are gray. Path 2 is apparently orange
because all regions within it that are not in another path (g) are
orange. Path 4 is apparently green for the same reason (a).

2. Step 3a determines that path 1 appears to be above 2 and 3.
After making the regions inside 1 (c and d) inactive, it deter-
mines that path 2 appears to be above 3 and 4. Regions inside 2
(e, f, and g) then become inactive.

3. Step 3b determines that path 3 is apparently purple because all
its active regions (b) have the same fill).

4. Step 3a determines that path 3 appears to be above 4. b becomes
inactive.

5. Step 3b finds no new apparent fill, so the iteration ends.

6. Step 4 determines path 1 appears to be above path 4 because 1
appears above 3, 3 appears above 4, and all three paths share a
region (c).

Appendix B Performance

We timed Live Paint making single-path changes to three illustra-
tions, two of them shown in Figure 17. “Cruise” is a fairly simple
Live Paint illustration. “Building” is of moderate complexity.
“Multi-cruise,” not shown, is a very complex illustration made by
creating multiple offset copies of the paths in “Cruise”.

Figure 16: Apparently stacked closed paths

2

4

1

3

c d e f ga b

Dynamic Planar Map Illustration • 30-9

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

All performance figures were measured with a stopwatch using a
2.5 GHz Macintosh PowerPC G5, and include editor overhead to
redraw the illustration after the change. Changes to “Cruise” were
too fast to measure. “Building” has a high degree of structure and
an unusually large number of regions for the number of paths.
“Multi-cruise”, with over a thousand paths and eight thousand
regions, is essentially unusable from a user perspective because of
its complexity. Its performance is not good, but it is reasonable.

Example # Paths # Regions Response
Cruise 38 233 instantaneous
Building 210 2596 .4 seconds
Multi-cruise 1154 8388 1.1 seconds

It is also worth noting that the “Building” example could easily be
split into 3 simpler, overlapping Live Paint illustrations. This
would improve performance considerably and make the drawing
easier to edit. Lines from one area of the building would not inter-
fere with those in other areas. Most complex illustrations are like
this; it is rare to find one that is not.

References

ADOBE SYSTEMS INC. 2005. Adobe Illustrator CS2 User Guide.
Adobe Systems Inc.

ALT, H., EFRAT, A., ROTE, G., and WENK C. 2003. Matching Pla-
nar Maps. In Journal of Algorithms, 49, 2, 262-283.

BAUDELAIRE, P. and GANGNET, M. 1989. Planar Maps: An Inter-
action Paradigm for Graphic Design. In CHI’89 Proceedings,
Addison-Wesley, 313-318.

BENTLEY, J. and OTTMANN, T. 1979. Algorithms for Reporting
and Counting Geometric Intersections. In IEEE Transactions
on Computers, C-28, 9, 643-647

FEKETE, J.-D., BIZOUARN, É., COURNARIE, É., GALAS, T., and
TAILLEFER, F. 1995 TicTacToon: A paperless System for Pro-
fessional 2D Animation. In Proceedings of ACM SIGGRAPH
95, Computer Graphics Proceedings, Annual Conference
Series, ACM, 79-89.

GANGNET, M., HERVÉ, J.-C., PUDET, T, and VAN THONG, J.-M.
1989. Incremental Computation of Planar Maps. In Computer
Graphics, 23, 4, ACM, 345-354.

GANGNET, M., VAN THONG, J.-M., and FEKETE, J.-D. 1994. Auto-
matic Gap Closing for Freehand Drawing. ACM SIGGRAPH
94 Technical Sketch.

HOBBY, J. 1999. Practical Segment Intersection with Finite Preci-
sion Output. In Computational Geometry 13, Elsevier, 199-
214.

MACROMEDIA, INC. 2005. Macromedia Flash 8: Using Flash.
Macromedia, Inc.

NEUHAUS M. and BUNKE, H. 2004. An Error-tolerant Approximate
Matching Algorithm for Attributed Planar Graphs and its
Application to Fingerprint Classification. In Proceedings of
the 10th International Workshop on Structural and Syntactic
Pattern Recognition, Springer-Verlag LNCS 3138, 180-189.

WILEY, K. and WILLIAMS, L. 2006. Representation of Interwoven
Surfaces in 2 1/2 D Drawing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 65-74.

YOUNG, M. and HALVORSON, M. 2003. Microsoft Office System
Inside Out—2003 Edition. Microsoft Press.

Figure 17: Sample illustrations

Cruise

Building

30-10 • Asente et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 30, Publication date: July 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

