Fundamentals of Human-Computer Interaction 1

Photos/collage by Jack L. Moffet in Dan R. Olsen, « Interacting in Chaos », Interactions, sept-oct 1999.

Michel Beaudouin-Lafon Université Paris-Saclay mbl@lisn.fr

About me

Michel Beaudouin-Lafon

Professor of Computer Science

Université Paris-Saclay

mbl@lisn.fr

https://www.lri.fr/~mbl

About you

Why are you here?

What is your background?

Organization of the course

Fundamentals of HCI 1 vs. Fundamentals of HCI 2

TA sessions

Web site for the course:

https://www.lri.fr/~mbl/FundHCI

Grading

Outline

Introduction

Interaction styles

Psychology of interaction

Graphical interaction

Conceptual design

Human-Computer Interaction

Capabilities: action, perception, cognition

Capabilities: computation, storage, input/output

Environment: physical, social, organisational, cultural, etc.

In the real world: Situated Interaction

An interactive system is **not** ...

An algorithmic system that:

- Reads input

- Processes it

- Writes results

See Wegner, Interaction is more powerful than algorithm

An interactive system is ...

A computer system that:

- Holds an internal state

- Creates perceivable representations of part of this state

- Reacts to input as soon as it arrives

Three properties of interactive systems

Reactive:

U provides input to S,

S must process it immediately and generate output to U

Open:

dependencies between S's output and U's future input are unknown to S

Asymmetric:

U does not have to react immediately to S

U likes to know the dependencies between S's input and output

Two conceptions of human-computer systems

« human-in-the-loop »

System-centric view where the user must conform to the system's rules, e.g. provide input in a specific order or format

Addresses operational tasks where the user performs actions that the computer cannot (yet) do

Two conceptions of human-computer systems

« computer-in-the-loop »

Human-centric view where the computer must be adapted to the capabilities of the user

Addresses creative tasks where the computer extends or augments the capabilities of the user

Conceptual model

Model of how this system operates

Ideally, matches the user's mental model

BEWARE!

We all use interactive systems

We all have ideas of how to improve them

... But few are designers or HCl researchers

Paradox of Human-Computer Interaction (HCI):

Measure of success = invisibility, transparency

Making things simple is difficult (and difficult to understand)

Adaptability of humans is a strength ... and a weakness

- ⇒ HCI is a complex multidisciplinary domain
- ⇒ Design and HCI research require unique skills

Multidisciplinary approach

natural sciences

Research strategies: Psychology

Research strategies: Anthropology

Research strategies: HCI

The design of interactive systems

Importance of human factors

Few quantitative and/or generative theories

Chaotic aspect of design Small causes, large effects

User-centered design

Evaluation

Development

Interaction paradigms

Computer-as-tool
First person interfaces
Augment the user

Focus of the course

Computer-as-partner
Second person interfaces
Delegate tasks

Computer-as-media
Third person interfaces
Human-human communication

