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Abstract. Inferring population size through time is a long-standing
problem in population genetics. It consists, essentially, in reconstruct-
ing the demography of a population in the past, based on a sample in
the present of the population. Many types of methods have been de-
veloped for decades, but it is only recently that deep learning based
methods started to emerge. It has been shown, however, that in the case
of bacterial populations, classical methods do not work, because the un-
derlying assumption of these methods were not satisfied. Here, we design
and evaluate how an end-to-end deep learning approach that accounts
for unknown recombination and selection events performs on bacterial
populations. We also propose various improvements to this framework,
such as implementing uncertainty estimation.
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1 Introduction

The evolutionary history of a population is imprinted in present-day individu-
als’ DNA. These remains of information are used to reconstruct various evolu-
tionary signals. They can be used to infer, for instance, demographic changes,
selection, or migration events. The genetic diversity observed in a sample of
sequenced individuals from a population is at the basis of population genetic
inferences. Diverse methods exist; some require simulations in addition to real
data, while others require only real data. In bacterial population genetics, most
of the work on demographic inference was done using skyline plots [6], but it
has been shown that this method was not suitable for bacterial populations [9].
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In the last years, methods based on deep learning emerged [11]. The first ones
started using summary statistics as an intermediate representation of the input
data[13], whereas more recent ones directly used the raw genetic diversity as
input data[4, 10]. These latter approaches were coined end-to-end deep learning
approaches. Although in their infancy, they achieved performances comparable
to long-standing methods. In this work, we present an end-to-end deep learn-
ing approach for the inference of bacterial population’s past demography, based
on a network we previously designed for a similar task (yet without selective
nor bacterial recombination processes) [10]. Our general approach is based on
dnadna [11], a framework we developed that facilitates the use, reuse, and shar-
ing of population genetics neural networks. We also highlight how this package is
helpful for the community. Finally, we propose various improvements to current
settings, notably in terms of uncertainty quantification, which is valuable when
inferring an intrinsically stochastic process, and even more so when models train
on simulations rather than real datasets.

2 Methods

2.1 Simulations

The task of inferring effective population size through time is a regression task
in a context of supervised learning. Thus, it requires a training procedure on a
labelled dataset. There are no real datasets for which we know the exact popula-
tion size through time, thus we rely on a simulated dataset to train and test our
network. The simulations were done using SLiM, a forward-in-time simulator
that we adapted to match bacterial populations more closely [2]. Notably, we
made possible bacterial recombination, which is similar to gene conversion, but
between different bacteria. It corresponds to horizontal gene transfer of homol-
ogous DNA. In combination with msprime[7], it allows simulating a wide range
of various scenario while starting at the mutation-drift equilibrium.

We parametrized the simulation after the bacterial species Streptococcus
agalactiae. We simulated three types of demography: bottleneck without recovery
(a sudden reduction in population size), constant size, immediate expansion. For
each type of demography, half of the datasets were simulated under neutrality
and half in presence of an allele under positive selection. We randomly draw most
of the simulation parameters using a generalized Halton sequence, which allows
a better coverage of the parameter space compared to drawing from a uniform
distribution in n-dimensional space. Varying parameters were: the mutation rate,
the recombination rate (as a ratio of the mutation rate), the initial population
size, the time of population size change (bottleneck or expansion), the strength
of this variation, the time of apparition of the allele under selection and the
strength of the selection. We kept other parameters constant across simulations,
such as the chromosome size (2.065 Mb), the number of generations (21900) and
the mean size of the recombination track length (122 kb). We define a scenario
as being a fixed set of parameters used for the simulation, and each scenario
has 100 replicates (so 100 simulations with the same parameters). We simulated
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11000 scenarios, among which 5000 with the bottleneck or expansion settings,
and 1000 for the constant size scenario. Among each, half contains selection, and
the other half is without. At the end of the simulations (i.e., corresponding to
the present), we sampled 600 individuals.

Fig. 1: Schematic of the simulation pipeline. 1/ Forward simulation of bacterial
population. 2/ Recapitation with msprime (ie. generation of the ancient part
of the coalescence trees) 3/ A SNP matrix outputted by the simulator. Figure
adapted from [2]

2.2 Input data

Real data or simulated data are represented in the form of a matrix of SNPs
(single nucleotide polymorphisms) of dimension N x S, with N individuals and
S SNPs. Each simulation has a different number of SNPs. Scenarios for which
any of the replicate had less than 400 SNPs were discarded. At the end, 8629
scenarios were kept, out of which 6041 constituted the training set, 1295 the
validation set, and 1293 the test set. While training, we subsampled 20 of the
600 individuals of each matrix each time a new batch was built.

2.3 Deep Neural Network architecture

We use the SPIDNA architecture that was previously developed in the lab [10].
This architecture is invariant to the permutation of individuals (the lines of
the SNP matrix), and to the input dimension. It is based on 7 blocks that
perform equivariant operations and progressively reduce the data dimension.
Each block contains (i) 50 1D-convolutional filters treating each ’individual’
(line) equivalently, (ii) an invariant operation (mean) that aggregates individual
features into global ones, (iii) the concatenation of individual and global features,
which will be mixed in the next block. At each block a subset of 21 invariant
features contributes directly to the prediction through a fully connected layer.
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2.4 dnadna

dnadna is a python package developed recently in the lab [11] that allows re-
searchers not proficient in deep learning or even coding to use such methods on
population genetic datasets. At the same time, advanced users can create their
own network and share it easily so that the community can reuse it for prediction
or training on another task. A plugin system allows anyone to easily create new
components (network, loss, transformations) for the training procedure.
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Fig. 2: Pipeline of the different command implemented in dnadna

2.5 Uncertainty estimation

Uncertainty in deep learning and machine learning in general can be charac-
terized in two types of uncertainty. First, aleatoric uncertainty corresponds to
the randomness that affects the data itself. Because evolutionary processes are
random, trying to capture such uncertainty is essential in population genetics.
Second, epistemic uncertainty corresponds to the fact that the training set does
not cover the entirety of the space of possible inputs. This is highly relevant
in population genetics as we use simulations and real data may lie outside the
space defined by the simulations (reality gap).To capture aleatoric uncertainty,
we use instead of the classic MSE loss, the negative log likelihood loss for each
parameter [8]. This loss takes as input 2 parameters (instead of 1 for the MSE),
the mean and the variance of the value to be predicted. Hence, the networks is
trained to output the parameters defining a Gaussian posterior for each targeted
parameter. This has been investigated in the context of recombination hotspot
inference [1]. Concerning the epistemic uncertainty, various methods have been
proposed. We use the deep ensemble method, which consists in training a set
of networks (typically 5) independently. These are considered as uniformely-
weighted Gaussian mixture model for which predictions are combined [8].

3 Results

We use SPIDNA to infer the population size through time. Although there were
only two different population sizes in the simulations (before and after the bottle-
neck/expansion), we decided to predict 21 time steps as in the original SPIDNA
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paper [10]. Similarly to other tools commonly used in the field [3, 12, 14], this
flexible modelling has the advantage of being agnostic to the type of population
size trajectory.

Fig. 3: Prediction of the population size with SPIDNA on the validation set for
9 randomly picked scenarios. The black line is the true population size used for
the simulation, and in red is the prediction for the 100 replicates.

Fig. 3 presents the estimated histories for a subset of nine scenarios (the MSE
over the validation dataset is 0.63). We observe that the trend of the predicted
(red) and true (black) histories are often similar, although the predicted changes
are smooth rather than sudden. This confirms that the method captures infor-
mative signal in the data indicative of past history, but that it may be difficult
to associate it to an exact time of change unless sudden changes are enforced as
done in model-based inference (with e.g. dadi [5]).

Nonetheless, the accuracy of the inference varies. When focusing on multiple
replicates of a same scenario, we observe a variability of the predictions, usually
high in recent times and lower in the ancient past. It is due to the underlying
variability of the replicates generated by the stochastic evolutionary processes.
The prediction of the variability could hence be an indication of the uncertainty
of the method regarding the reconstruction of a given scenario. However, when
predicting the history from real data, we only have one replicate (corresponding
to a single circular chromosome for a sample of individuals).

Thus, we applied our new SPIDNA network that models the target parame-
ters as Gaussian distributions. It enables to quantify an uncertainty per replicate
rather than per scenario. We see in the figure 4 that the prediction of the uncer-
tainty is smaller when the network makes a good prediction, and conversely, the
uncertainty is larger when the prediction is farther off. In Figure 5, we see that
on average, a better prediction of the population size at a given time step(lower
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MSE) is associated with a smaller uncertainty (lower predicted std). This is es-
pecially true for the time steps where a change of population occurs (basically,
after the step 4). For the first steps (most ancient times), the prediction is often
accurate (also because the variability in prediction is relatively small here), as
seen in figures 3 and 4.

(a) Expansion : good prediction and small
uncertainty

(b) Expansion : bad prediction and high
uncertainty

(c) Bottleneck : good prediction and small
uncertainty

(d) Bottleneck : bad prediction and high
uncertainty

Fig. 4: Example of scenarios where the uncertainty estimation differs depending
on the accuracy of the prediction. The top row corresponds to the same scenario
during which an expansion occurred, while the bottom row corresponds to an-
other scenario where a bottleneck occurred. Each black line is the prediction for
the 100 replicates of the given scenario. The blue line is the true demography.
The red line is the prediction of one of the replicates chosen to be close to the
true value or not. The red shaded area is the standard deviation as predicted by
the network (predicted mean +/- predicted std)

4 Conclusion

Overall, we proposed a set of tools to use deep learning methods for bacte-
rial population genetics, from a bacterial simulator to the easy-to-use dnadna
framework for users who are not proficient in coding and machine learning. We
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Fig. 5: Relation between the predicted error (mean square error) and the pre-
dicted standard deviation for each parameter (time steps). For a given plot,
corresponding to a time step, the MSE of a given replicate is plotted against the
predicted standard deviation for this replicate, across all scenarios. We computed
the spearman ρ to assess whether worse MSE is correlated to higher uncertainty
(i.e. larger predicted std). All p-values are below 10−10.

demonstrated the practicality of this pipeline and confirmed that deep neural
networks have great potential, despite the particular complexity of the task (in-
ferring effective population sizes without knowing the recombination parameters
or selective pressure). Furthermore, we enhanced the pipeline by providing un-
certainty estimations, a key feature for a broader adoption of machine learning
approaches by the microbiologist and population genetics communities. Another
feature that could foster deep learning applications is the use of transfer learning,
where users avoid retraining a model from scratch, and instead adjust an exist-
ing model to the specificity of their dataset and task. We are currently adding
this feature within dnadna, and will present the assessment of its impact. Trans-
fer learning is an important step to decrease the training time and energy cost
of deep learning tools. Indeed, we must not ignore the impact of deep learning
on energy consumption, and thus we must seek to decrease that cost. Another
advantage of having both uncertainty estimation and transfer learning, is to de-
ploy this type of method for ancient DNA. With such data, there is an additional
source of randomness due to the higher rate of sequencing error, which makes
uncertainty estimation even more essential. Moreover, the high cost of simulat-
ing ancient DNA (reproducing DNA degradation, low coverage, etc.) places us
in the context of training on small sets, where transfer learning is helpful.
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