
HAL Id: hal-02942328
https://hal.science/hal-02942328

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning for population size history inference:
Design, comparison and combination with approximate

Bayesian computation
Théophile Sanchez, Jean Cury, Guillaume Charpiat, Flora Jay

To cite this version:
Théophile Sanchez, Jean Cury, Guillaume Charpiat, Flora Jay. Deep learning for population size
history inference: Design, comparison and combination with approximate Bayesian computation.
Molecular Ecology Resources, 2020, �10.1111/1755-0998.13224�. �hal-02942328�

https://hal.science/hal-02942328
https://hal.archives-ouvertes.fr


DEEP LEARNING FOR POPULATION SIZE HISTORY INFERENCE:

DESIGN, COMPARISON AND COMBINATION WITH APPROXIMATE

BAYESIAN COMPUTATION

Théophile Sanchez1∗, Jean Cury1, Guillaume Charpiat1, Flora Jay1∗

1. Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris-Saclay, Inria, Orsay, France

∗ Correspondence: theophile.sanchez@inria.fr and flora.jay@lri.fr

ABSTRACT

For the past decades, simulation-based likelihood-free inference methods have enabled researchers to1

address numerous population genetics problems. As the richness and amount of simulated and real2

genetic data keep increasing, the field has a strong opportunity to tackle tasks that current methods3

hardly solve. However, high data dimensionality forces most methods to summarize large genomic4

datasets into a relatively small number of handcrafted features (summary statistics). Here we propose5

an alternative to summary statistics, based on the automatic extraction of relevant information using6

deep learning techniques. Specifically, we design artificial neural networks (ANNs) that take as input7

single nucleotide polymorphic sites (SNPs) found in individuals sampled from a single population and8

infer the past effective population size history. First, we provide guidelines to construct artificial neural9

networks that comply with the intrinsic properties of SNP data such as invariance to permutation10

of haplotypes, long scale interactions between SNPs and variable genomic length. Thanks to a11

Bayesian hyperparameter optimization procedure, we evaluate the performance of multiple networks12

and compare them to well established methods like Approximate Bayesian Computation (ABC).13

Even without the expert knowledge of summary statistics, our approach compares fairly well to an14

ABC approach based on handcrafted features. Furthermore, we show that combining deep learning15

and ABC can improve performance while taking advantage of both frameworks. Finally, we apply16

our approach to reconstruct the effective population size history of cattle breed populations.17



1 Introduction18

In the past years, fields such as computer vision and natural language processing have shown impressive results thanks to19

the rise of deep learning methods. What makes these methods powerful is not fully understood yet, but one key element20

is their ability to handle and exploit high dimensional structured data. Therefore, deep learning seems particularly21

suited to extract relevant information from genomic data. It has indeed been used for many tasks outside population22

genetics, such as detection of alternative splicing sites, prediction of protein binding sites or other phenotype markers23

(Alipanahi et al., 2015, Jaganathan et al., 2019, Ma et al., 2018).24

As genomic data become more and more available, it is now possible to leverage genetic variation within species or25

populations to investigate complex demographic histories including multiple admixture events, population structure or26

size fluctuation through time. In fact, initiatives like the 1000 Genomes Project for human populations (Consortium27

et al., 2010) have been extended for better world coverage and data quality (Bergström et al., 2019, Consortium et al.,28

2015, Leitsalu et al., 2014, Mallick et al., 2016, Pagani et al., 2016) and opened up to many other species such as Bos29

taurus with the 1000 Bull Genomes Project (Daetwyler et al., 2014) or chimpanzees and gorillas with the Great Apes30

Genome Project (Prado-Martinez et al., 2013). Even for smaller scale studies, researchers often have access to the31

whole genomes or high-density SNP data of numerous samples. These data collections can only be analyzed with32

inference methods able to scale to dozens or hundreds of individuals and large numbers of genetic markers.33

In this study, we propose several deep learning approaches for reconstructing the detailed histories of past effective34

population sizes from genetic polymorphism within a single population, a task considered difficult for various reasons.35

First, a present-day population, and even more so a sample of it, is one among many possible outcomes of a stochastic36

process depending on population sizes, mutations and recombinations. Second, many other factors such as selective37

pressure, admixture events or population structure also shape the contemporary genetic diversity, which can blur38

the link between population size history and genetic data. As a result, the accuracy of the reconstruction and its39

level of resolution depend on the number of individuals available, the quality of the data and the methodology used.40

Nonetheless, in practice previous methods such as Bayesian skyline plots and their derivatives (Ho and Shapiro, 2011),41

sequential Markov coalescent (SMC) (PSMC, diCal and their derivatives (Li and Durbin, 2011, Sheehan et al., 2013)),42

Approximate Bayesian Computation (Boitard et al., 2016b, Navascués et al., 2017) and SFS-based approaches (Bhaskar43

et al., 2015, Liu and Fu, 2015) have shown great results, supporting archaeological evidence and helping to understand44

species decline or expansion.45

The study of genetic variation relies primarily on genotyping and sequencing data of very high dimensionality, which is46

a major difficulty for most inference methods. Some approaches, such as coalescent-HMMs methods (Spence et al.,47

2018), enable parameter inference using the full dataset by making simplifying assumptions on the underlying models.48

A few of them can process unphased data (Terhorst et al., 2017), scale to large sample sizes (Terhorst et al., 2017)49

or to complex models (Steinrücken et al., 2019). However, no method simultaneously addresses all three. Moreover,50

handling arbitrarily complex models remains untested (e.g. models with more than three populations) or intractable (e.g.51

2



complex spatial models) (Spence et al., 2018). Hence, most frameworks solving complex population genetic tasks do52

not rely on coalescent-HMMs and reduce the data dimension with a pre-processing step during which the dataset is53

converted into a smaller set of statistics called summary statistics. These statistics can then be used in likelihood and54

composite likelihood inference frameworks, when the model or statistics are simple enough, or in simulation-based55

approaches. Among the latter, the widely used Approximate Bayesian Computation (ABC) framework as well as56

several machine-learning algorithms, including Support Vector Machines (SVM) and random forests, were able to57

tackle a variety of tasks such as demographic model selection and parameter inference (Excoffier et al., 2013, Jay et al.,58

2019), detection of selection (Sugden et al., 2018, Tournebize et al., 2019) and introgression (Schrider et al., 2018). The59

current trend when addressing complex tasks is to include a large number of summary statistics inspired by population60

genetic theory in order to minimize the information loss. Summary statistics commonly used are the site frequency61

spectrum (SFS) and its summaries (e.g. Tajima D), linkage disequilibrium (LD) and statistics based on shared segments62

that are identical-by-state (IBS) or identical-by-descent (IBD) (Gladstein and Hammer, 2019, Jay et al., 2019, Sheehan63

and Song, 2016, Smith and Flaxman, 2019). However, they are not guaranteed to be sufficient and the inclusion of64

numerous statistics can impact the performance of standard ABC, a problem known as curse of dimensionality (Blum,65

2010). An active research topic in the ABC community is thus the development of methods addressing this curse of66

dimensionality by (i) selecting the best subset of summary statistics according to some information-based criteria, (ii)67

integrating machine learning steps into ABC to handle a larger number of summary statistics (e.g. kernel methods,68

random forests), (iii) constructing summary statistics using linear and non-linear models based on candidate statistics or69

on the original data when feasible (Aeschbacher et al., 2012, Blum et al., 2013, Fearnhead and Prangle, 2012, Jiang70

et al., 2017, Nakagome et al., 2013, Raynal et al., 2018).71

In our study, we use deep learning, a method derived from machine learning. The objective of this method is to design a72

function, represented by an artificial neural network (ANN), which is a differentiable computational graph organized as73

a stack of linear and non-linear layers, with a high number of trainable parameters (usually thousands or millions). A74

network layer takes as input the outputs of the previous layer(s): each node of the layer performs a linear combination75

of the inputs, followed by a non-linear transformation, and this value is passed to the next layer. Networks vary in their76

shape (number of layers and nodes) and in the way nodes are connected. For example a Multi Layer Perceptron (MLP)77

connects all nodes of a layer to all nodes of the following layer (Rumelhart et al., 1986), while a Convolutional Neural78

Network (CNN) connects only nodes of similar location (LeCun et al., 1995). Despite the differences, any network79

defines a parameterized function that allows for a complex non-linear mapping from a space to another, and therefore80

can solve a complex task, when the provided parameters are suitably adjusted. To tune the parameters, the network is81

trained thanks to a training set consisting of examples of (input, desired output) pairs, by optimizing a criterion (loss82

function) that expresses how well the network performs on the dataset with its current parameters. For example, for an83

object recognition task in images, the input is an image, the output is a probability distribution over possible names of84

objects, and the loss is the distance between the prediction of the ANN and the expected output (a Dirac peak on the85

name of the object shown by the image). The parameters of the function are tuned to minimize this loss thanks to an86

3



optimization algorithm based on gradient descent and backpropagation. This process usually requires a large training87

dataset, in order for the network to be able to learn and generalize well, that is, to perform well on data never seen so far.88

Deep learning has only recently been used to tackle population genetics questions. First, multilayer perceptrons (MLPs)89

were used to process small SNP windows for population assignment (Bridges et al., 2011). Then, the same type90

of architecture has been used to process large sets of summary statistics for predicting jointly selective sweeps and91

simple demographic changes (Sheehan and Song, 2016). Villanea and Schraiber (2019) also applied MLP on summary92

statistics to discriminate between multiple scenarios of archaic introgression and two other studies added an ABC step93

to address a similar task (Lorente-Galdos et al., 2019, Mondal et al., 2019). A second type of ANN, convolutional94

neural networks (CNNs), were then applied to summary statistics computed over 5Kb genomic regions in order to95

predict selective sweeps (Xue et al., 2019). A considerable shift occurred when several studies applied ANNs directly96

on genomic data instead of using summary statistic. Various CNN architectures processing SNP matrices were proposed97

to infer recombination rates along the genome (Chan et al., 2018, Flagel et al., 2018), selection (Flagel et al., 2018,98

Torada et al., 2019), introgression (Flagel et al., 2018) and three-step population size histories (Flagel et al., 2018).99

The CNN implemented by Chan et al. (2018) and based on Deep Sets (Zaheer et al., 2017) is invariant to haplotype100

(chromosome) permutation, i.e to the permutation of rows in the SNP matrix, thanks to convolution filters that treat each101

haplotype in an identical way. The other approaches proposed instead to sort haplotypes by similarity before processing102

them with filters sensitive to the haplotype order (Flagel et al., 2018, Torada et al., 2019). More recently, Recurrent103

Neural Networks (RNN) were applied to estimate the recombination rate along the genome (Adrion et al., 2019), and104

Generative Adversarial Networks (GAN) to learn the distribution of genomic datasets and generate artificial genomes105

(Yelmen et al., 2019).106

Among the variety of developed ANN architectures, it is not straightforward to know which one is the most adapted to107

genomic data for a given population genetic task. In particular, this study aims at reconstructing detailed step-wise108

effective population size histories with 21 size parameters under an unknown recombination rate, a complex model with109

a fairly high dimensional parameter space compared to the population genetic tasks previously addressed with ANNs.110

Hence we propose multiple networks, some of which are new and designed specifically for population genomics, and111

others which are more basic. We then apply a hyperparameter optimisation procedure (BOHB, Falkner et al. (2018)) to112

select the best architecture and hyperparameters. We investigate the performance of two MLPs, one using summary113

statistics and one using SNP data of fixed length. We also compare two novel CNN based architectures, one with114

mixed convolution filter sizes over multiple individuals and another CNN that is adaptive to the genomic input size115

and invariant to the permutation of individuals or haplotypes. Both networks incorporate SNP data and their positions116

(encoded as distances between SNPs), a concept also developed in a different fashion by Flagel et al. (2018). In our last117

setup, we combine ABC and ANN by using the ANN predictions as summary statistics with the aim to benefit from118

the advantages of both methods. Because no end-to-end deep learning approach for demographic inference had yet119

been compared to ABC or other traditional methods, we carefully benchmarked all these networks against variations of120

PopSizeABC, one of the highly performing methods for step-wise size inference that is based on ABC (Boitard et al.,121

4



2016b). We also compare our architecture with CNNs developed for a related demographic task (Flagel et al., 2018).122

Finally we apply our approach to real genomes in order to reconstruct the size history of three cattle breeds.123

2 Materials and Methods124

In this study, we introduce the first deep learning approaches for inferring detailed histories of effective population125

sizes using genomic data. Based on whole sequences of SNP data of multiple individuals from a single population,126

we aimed to predict 21 population size parameters, each corresponding to a time step. Our method and the baseline127

frameworks all relied on large-scale simulated datasets for which the true demographic parameters are known and drawn128

from prior distributions of population sizes and recombination rates. For each drawn parameter set (i.e. demographic129

scenario), we simulated 100 independent genomic loci of length 2Mb (i.e. 100 replicates) for 50 haploid individuals130

using msprime (Kelleher et al., 2016). Using this reference panel, we then trained methods based on ABC, deep learning131

or a combination of both, to predict the demographic parameters (Figure 1). In this section, we will give an overview of132

these methods as well as the hyperparameter optimisation procedure.133

2.1 Simulated data and summary statistics134

Neutral simulations. All methods compared in this study are trained in a supervised fashion, and thus require135

simulated genetic data from numerous populations under various demographic scenarios. Following Boitard et al.136

(2016b), we defined 21 time windows that grow exponentially when going further back in time, so that the most ancient137

size change occurs 130,000 generations ago (Supplementary Text). The time windows are identical for all scenarios.138

Each demographic scenario is generated by drawing a first population size N0 between 10 and 100,000 from a uniform139

distribution which corresponds to the most recent time window. The population sizes of the next time windows follow140

Ni = Ni−1× 10β for i in [1, 21], with β sampled uniformly between -1 and 1 . β is redrawn if it gives a population size141

out of ]10; 100, 000[. We randomly drew from this prior distribution 50,000 scenarios and simulated 100 independent142

2Mb-long segments of 50 haploid individuals for each scenario, using the msprime coalescent simulator version 0.6.1143

(Kelleher et al., 2016). We obtained a total of 5,000,000 SNP matrices X of size M = 50 haplotypes × S SNP sites,144

each associated with a vector of size S that contains the distances between SNPs (in bp). Ancestral and derived alleles145

are encoded with 0 and 1. The mutation rate is set to 10−8 as in MacLeod et al. (2013). The recombination rate is146

sampled uniformly between 10−9 and 10−8 for each scenario to be consistent with the estimations in cattle breeds147

(Sandor et al., 2012). In order to compare all methods based on the same training panel we set a minimum threshold148

of 400 SNPs per 2Mb region and designed the networks accordingly. After filtering and splitting (see Supplementary149

Text) we obtained 1,796,100 SNP matrices for the training set, 50,000 for the validation set, and 76,700 for the test set.150

Except stated otherwise, methods that are not adaptive to the number of SNPs used only the first 400 SNPs of each SNP151

matrix. The proportion of these 400 SNPs kept among all SNPs from a simulated matrix is on average 28%. Finally, we152

make the assumption that the 2Mb-long windows of a scenario are independent, which is true for simulated data but153

not for real data. Information across windows (100 windows by scenario for simulated data and 1,213 for real data) is154

5



combined during the summary statistics computation step for methods using summary statistics or by averaging the155

network predictions over all windows for methods using SNP matrices as input. Thus, the spatial information that may156

exist across these windows for real data is not conserved.157

Simulations with selection. To investigate the robustness of our approach, an extra set of data was simulated under158

demographic changes and selective pressure. We used msms (Ewing and Hermisson, 2010) to simulate scenarios159

including positive selection with additive fitness using varying values of selection coefficient (s in 2Ne units: 100, 200,160

400 or 800), selection starting time (Tsel: 200, 1000 or 2000 generations ago) and initial frequency of the beneficial161

allele (f0: 0.1%, 1%, 5%). The SNP under selection was located at the center of the region. The mutation rate was set162

to 10−8, the recombination rate to 5 · 10−9, the number of haplotypes to 50 and the region length to 2Mb. We generated163

16× 100 replicates for each of the 36 selection parameter combinations (s, Tsel, f0) and 30× 100 replicates with no164

selection under three demographic scenarios (constant, declining or expanding size) leading to a total of 181,800 SNP165

matrices. Inference methods requiring a fixed input size processed the 400 successive central SNPs (ie 200 before and166

200 after the SNP under selection).167

Summary statistics. For each group of 100 segments corresponding to one scenario, we computed the site frequency168

spectrum and the linkage disequilibrium as a function of the distance between SNPs averaged over 19 distance bins for169

a total of 68 summary statistics. Our python script is partly based on the scikit-allel python module (Miles et al., 2019).170

These predefined summary statistics constitute the training, validation and test set for all methods based on summary171

statistics or on their combination with SNP matrices.172

2.2 Baselines173

We compared our approach to five baselines: an ABC approach and a MLP both using linkage disequilibrium and site174

frequency spectrum as summary statistics, and another MLP, a custom CNN and a CNN from (Flagel et al., 2018), all175

using genomic data directly. Each method is evaluated using its prediction error given by the following mean squared176

error:177

1

I × J

I,J∑
i,j

(
Θ̂i
j −Θi

j

)2
,

where Θi
j and Θ̂i

j are respectively the true and predicted standardized population size for the time window i and scenario178

j, I = 21 is the number of time windows and J the number of scenarios in the set. For inference based on raw data and179

neural networks, the prediction Θ̂i
j is given by the average of the population sizes (Θ̂i

jr)r=1,...,nrep estimated for each180

replicate (independent region) r.181

Approximate Bayesian Computation We compared ABC with the simple rejection procedure (i.e. no correction) and182

three correction methods implemented in the R package ’abc’ (Csilléry et al., 2012): local linear regression, ridge183

6



regression and non-linear regression based on a single-hidden-layer neural network. Settings were set to default except184

for the tolerance rate set to six possible values (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3). ABC was run on (a) predefined185

summary statistics, (b) SPIDNA outputs (i.e. automatically computed summary statistics), or (c) a combination of186

predefined summary statistics and SPIDNA outputs. We used the median of the posterior distribution as the demographic187

parameter estimate Θ̂.188

Multi-Layer-Perceptron Networks The first MLP is based on summary statistics, has 3 hidden layers, ReLU activation189

functions and uses batch normalisation. As in Sheehan and Song (2016), the hidden layers have respectively 25, 25, and190

10 neurons. It takes 34 summary statistics as input. This network and all the following ones output 21 demographic191

parameters and are trained with a regular L2 loss function and adam optimizer (Kingma and Ba, 2014) unless stated192

otherwise. This MLP has a total of 2,986 trainable parameters. Our second MLP is based on ’raw’ genomic data and193

takes as input a matrix of 50 haplotypes (rows) for 400 SNPs (columns) and its associated vector of distances between194

SNPs, both flattened into a single vector. Its hidden layers respectively have 20, 20, and 10 neurons, which gives it195

408,981 trainable parameters.196

Custom CNN Our convolutional neural network takes as input the same matrix of 400 SNPs and has 2-dimension197

filters of various shapes. The first layer consists of 5 kernels with rectangular shape (2×2, 5×4, 3×8, 2×10, 20×1)198

applied to the SNP matrix X . Each kernel creates 50 filters, which amounts to 250 feature maps after the first layer.199

The SNP distance vector d is treated by the 5 associated kernel shapes (1×2, 1×4, 1×8, 1×10, 1×1) with 20 filters200

each, making 100 filters in total. The results of the first convolutional layer are then concatenated so that the second201

convolutional layer will couple information from X and d in a way that emphasizes the original location of the SNPs202

along the genome. The outputs of this second layer are then combined and go through 5 convolutional layers and 2203

fully connected layers. Adding convolutional layers one after the other allows our network to combine patterns and204

reduce the size of the data without adding too many weights to our model. This network has a total of 131,731 trainable205

parameters.206

Flagel network We reused the code associated with the repository of the first paper using a CNN for demographic207

inference (Flagel et al., 2018) and adapted it to our dataset and task. We trained the network with the exact same208

architecture as the one published, except that we changed the last layer to allow the prediction of our 21 population209

size parameters. We parametrized the network with the set of hyperparameters leading to the best performance in the210

previous work for two different types of SNP encoding (0/255 or -1/1). It is noteworthy that the actual encoding in their211

code is 0/-1 and not 0/255, thus we kept the same encoding to be able to compare the performance. The networks were212

trained with the same procedure of 10 epochs with early stopping in case of no progression of the loss after 3 epochs.213

The batch size is 200. The input data had 50 haplotypes and either 400 SNPs as processed by our custom CNN or we214

downsampled the data to one every ten SNPs as done in the original work, leading to 1,784 wide input SNP matrices.215

This size corresponds to the tenth of the biggest SNP matrix in our dataset. Smaller simulations are padded with zeros.216

All parameters can be found in table S1.217

7



2.3 Sequence Position Informed Deep Neural Architecture218

We called our architecture SPIDNA, for Sequence Position Informed Deep Neural Architecture, and designed it to219

comply to the principal features of SNP data: data heterogeneity (data includes genetic markers and their positions220

encoded as distances between SNPs), haplotype permutation invariance, long range dependencies between SNPs and221

variable number of SNPs. Similarly to our custom CNN, SPIDNA takes as input a matrix describing haploid individuals222

as rows and SNP as columns, with an additional row for the SNP distances.223

2.3.1 Permutation invariance224

One of the SNP matrix properties is its invariance to the permutation of haploid or diploid individuals (rows of the225

SNP matrix). The same matrix with permuted rows contain the exact same information and should lead to the same226

predictions. Most summary statistics are already invariant to the haplotype order by definition. On the other hand,227

typical operations used in ANNs such as rectangular filters and fully connected layers are not invariant, and consequently228

our baseline ANNs do not respect this data feature. Here we implemented an architecture invariant by design, that stacks229

functions equivariant and invariant to row permutations (Lucas et al., 2018). In our study, the equivariant function is a230

convolutional layer with filters of size 1× a, that treats each haplotype (row) independently and computes equivariant231

features, while the invariant function computes the mean of these features over the row dimension. The invariant232

function reduces the dimension of the data to one row, which is then concatenated to each equivariant row (Figure 2).233

Therefore the correlation between rows increases at each layer, which progressively transforms the equivariant input to234

an invariant output. However, the correlation increase should be moderate and progressive to avoid immediate loss235

of the information at the haplotype level. To promote this, we perform two independent normalizations, one over the236

output of the equivariant function and one over the input of the invariant function, and associate a correlation control237

parameter α that quantifies the contribution of the invariant function to the next layer, thus controlling the speed at238

which the correlation increases between rows.239

2.3.2 Convolution networks to handle data with variable size240

A major difficulty that arises with genomic data is that the number of SNP varies from one dataset to another, or241

from one genomic region to another, due to the stochasticity of biological and demographic processes (and of their242

corresponding genetic simulations). Therefore, we use convolution layers as they can handle data with variable size243

while keeping the number of network weights constant. A filter can be repeated more or fewer times to cover the whole244

input entering each layer, letting the network adapts itself to the data. Consequently, the output size of each convolution245

layer will vary depending on the input size. This prevents the use of fully connected layers directly after a convolution246

layer as it is often the case with CNNs. Instead, we use fully-connected layers only after operations independent of the247

input size and with a fixed output size, namely mean functions over the column and row dimensions (Figure 2).248

Overall, we designed an architecture accounting for invariance and adaptive specificities by stacking multiple equivariant249

blocks (Figure 2, label B). An equivariant block consists in one convolution layer with filters of size 1 × 3 that are250

8



equivariant (B1), averages of the convolution outputs across the haplotype axis (B2) and the SNP axis (B3) that are both251

invariant, a concatenation of the equivariant and invariant features (B4), one max pooling layer that is also adaptive to252

the number of SNPs (B5) and one fully-connected layer that updates the demographic predictions at each block (B6)253

via a sum function (C1) (Figure 2).254

We designed three variations of the SPIDNA permutation-invariant architecture (fully detailed in Supplementary Text).255

The first one uses batch normalization, after each convolution layer, and therefore takes as input a fixed number of256

400 SNPs, similarly to two of the baselines. The second one is invariant to the number of SNPs and uses instance257

normalization, after each convolution layer, to normalize layer inputs per-data instead of per-batch (for the batch258

normalization). The last variation is also invariant to the number of SNPs, but uses two separate instance normalization259

steps, as well as the correlation control parameter α. The first variation using batch normalization has 110584 trainable260

parameters and the other two using instance normalization have 110384.261

2.4 Hyperparameter optimization262

Compared to other machine learning methods, ANNs have a potentially infinite amount of hyperparameters when263

including for instance the number of layers, the number of neurons in each of them, the learning rate, weight decay264

or the batch size. Moreover, a run over a full dataset with enough epochs to reach convergence is time consuming265

for networks with a complex architecture defined by many learnable parameters. Therefore, the development of deep266

learning architectures often relies on the experience and intuition of the practitioner in a try-and-repeat process. Grid267

search and random search are two strategies for exploring the hyperparameter space uniformly. They are commonly268

used but are limited by the computing resources available. In our study, we used HpBandSter, a package that implements269

the HyperBand (Li et al., 2016) algorithm to run many hyperparameter trials on a smaller resource budget (i.e. few270

epochs) and runs the most promising trials on a greater budget. Combined with BOHB (Falkner et al., 2018), a Bayesian271

optimisation procedure that models the expected improvement of the joint hyperparameters, this method provides more272

guided and faster search of the hyperparameter space. At each step, BOHB draws a new combination of hyperparameter273

values to be tested according to the expected improvement and to a predefined prior. Here, we performed a search in274

a 5-dimensional space defined by uniform priors over the type of architecture (architectures from our baselines and275

variations of SPIDNA architecture, based on 400 SNPs or the full number of SNPs), the learning rate, the weight decay276

and the batch size. For SPIDNA architectures that controlled correlation, we added the control parameter α to the277

Bayesian optimization procedure with a log-uniform prior between 0.5 and 1. The search was performed for 3 budget278

steps and replicated 5 times, leading to a total of 83 successfully trained networks.279

As the training time of the MLP using summary statistics was short, we optimized its hyperparameters with a random280

search by drawing 27 configurations from uniform distributions and trained a network for each configuration during 6281

epochs. The batch size was drawn between 10 and 100, learning rate between 5 · 10−5 and 1 · 10−2 and weight decay282

between 5 · 10−5 and 1 · 10−2.283

9



For ABC, the tolerance rates ranged from 0.05 to 0.3 by step of size 0.05 and were optimized for 12 ABC algorithms284

independently (4 correction methods × 3 types of inputs: predefined summary statistics, SPIDNA outputs or both).285

2.5 Cattle breed data286

We inferred the demographic history of Angus, Fleckvieh and Holstein cattle breeds using the data set of 25 sequenced287

individuals from the 1,000 genome bull project (Daetwyler et al., 2014) that was analysed by (Boitard et al., 2016b). As288

the data of real cattle sequence is prone to phasing and sequencing errors, we converted the real data from haplotype289

to genotype with a minimum allele frequency (maf) of 0.2, as suggested by Boitard et al. (2016b) and applied the290

same treatment to the simulated training set. We split the real data of each breed into 2Mb and removed segments291

comprising centromeres leaving 1,213 segments. We obtained a similar number of SNPs for the three breeds: Angus292

(average: 4,536 SNPs, maximum: 22,391 and minimum: 775), Fleckvieh (average: 4,837 SNPs, maximum: 24,896 and293

minimum: 896) and Fleckvieh (average: 4,732 SNPs, maximum, 24,098 and minimum: 1,212). Then we trained ABC,294

SPIDNA and a combination of both with the best hyperparameter configurations on the modified simulated data and295

performed the inference. The best version of SPIDNA without ABC is non-adaptive and therefore uses 400 SNPs from296

each segment which represents 10% of the total number of SNPs in the cattle data and 67% for the training dataset.297

All computational resources used for this study are described in the Supplementary Text.298

3 Results299

3.1 Hyperparameter optimization300

The configuration with the lowest loss generated by the hyperparameter optimization procedure used 400 SNPs with301

SPIDNA, batch normalization, a weight decay of 2.069 · 10−2, a learning rate of 1.416 · 10−2 and a batch size of 78302

(Figure S1). Configurations with large batch sizes tended to have lower losses (Figure S1), which is expected as large303

batches provide a better approximation of the full training set gradient. However, a batch size too close to the training304

set size can lead to overfitting the training set. Here, we did not observe overfitting for any run when monitoring training305

and validation losses. The best configurations also tended to have low learning rates and weight decays (Figure S1).306

These low values slow down the convergence, but usually decrease the final prediction error if the budget (i.e. number307

of training epochs) is high enough for the network to reach convergence.308

3.2 Comparison of the optimized architectures309

For each architecture, we selected the best configuration obtained with the hyperparameter optimization procedure310

and trained it for a greater budget (i.e. 10 epochs), allowing an in-depth comparison. We found no strong decrease of311

prediction errors after this longer training compared to their counterparts with a 107 budget (107 training SNP matrix,312

i.e. 5.57 epochs) (Figures 3 and S1). Prediction errors for the validation set (used in the hyperparameter optimization313

10



procedure) and the test set are shown in the table S2. In the following paragraph, each method is designated along its314

index in the table S2.315

We first compared the optimized neural networks to optimized ABC approaches based on predefined summary statistics.316

The prediction errors achieved by ABC using summary statistics ranged from 0.496 (index 0, ABC rejection, i.e.317

without correction) to 0.364 (ABC neural networks, index 3). The MLP network based on summary statistics performed318

worse than ABC with correction (0.437, index 4). Moreover, MLP based on raw data performed very poorly (0.675,319

index 5) and all other networks based on raw data outperformed this MLP. Most of them (all except SPIDNA instance320

normalization on 400 SNPs, 0.641 and 0.599, index 12 and 14) outperformed the ABC rejection (0.454 and 0.469,321

index 11 and 15) or led to similar errors (0.489, index 13). The Flagel CNNs adapted from Flagel et al. (2018) that322

were not using dropout had average test losses of 0.541 and 0.444 (index 7 and 8). The two other Flagel networks323

achieved prediction errors similar to SPIDNA (network based on the first 400 SNPs: 0.609, index 9; network based on324

1784 downsampled SNPs: 0.484, index 10), however they had 8 to 34 times more learnable parameters than SPIDNA.325

Lastly, we evaluated two methods that combine deep learning and ABC, by considering the features automatically326

computed by a network as summary statistics for ABC (Jiang et al., 2017). When using only the predictions of SPIDNA327

as input to ABC with correction (linear regression, ridge regression or neural network), we improved greatly SPIDNA’s328

performance and obtained errors similar to the ABC based on predefined summary statistics (0.369 compared to 0.364,329

index 21 and 3). When using both SPIDNA predictions and predefined summary statistics as input to the ABC algorithm330

we decreased further the prediction errors (0.347, index 29).331

3.3 Reconstruction of specific demographic histories using SPIDNA and SPIDNA+ABC332

We further illustrated the performance of SPIDNA on a subset of demographic scenarios that were previously investigated333

(Boitard et al., 2016b) (Figure 4). We simulated six scenarios: “Medium”, “Large”, “Decline”, “Expansion”, “Bottleneck”334

and “Zigzag” the same way as the neutral simulations by specifying the demographic parameters instead of drawing335

them from a prior. The method correctly reconstructed histories of constant size, expansion and decline, as SPIDNA336

predictions from 100 independent genomic regions (black boxplots) approximately followed the real population size337

trend and magnitude. The true parameters were always included in the 90% credible intervals (light blue envelopes)338

predicted by SPIDNA combined with ABC without predefined summary statistics and, for most cases, in the 50%339

credible intervals (dark blue). Both methods also correctly reconstructed a complex history encompassing an expansion340

interrupted by a bottleneck and followed by a constant size (see Figure 4 ’Bottleneck’). However, they were unable to341

correctly estimate the parameters of a very complex ’Zigzag’ history except for its initial growth period and instead342

reconstructed a smoother history with values intermediate to the lower and higher population sizes (see Figure 4343

’Zigzag’). This confirmed the smoothing behavior identified previously for ABC and MSMC on these demographic344

scenarios (Boitard et al., 2016b). Finally, similarly to ABC on predefined summary statistics (Boitard et al., 2016b),345

SPIDNA predictions of very recent population sizes were slightly biased toward the center of the prior distribution,346

however combining SPIDNA with ABC tended to correct this bias in most cases.347

11



3.4 Impact of positive selection on SPIDNA and ABC inference348

We investigated the impact of positive selection on SPIDNA and ABC inference for three illustrative demographic349

cases (scenarios Medium, Decline and Expansion of Figure 4). Because including selection required a change in the350

genetic simulator (msms instead of msprime), we first ensured that the change of tool to generate the new test dataset351

had no influence on the prediction accuracy (Figure S2). We then simulated 2Mb regions including a central SNP under352

positive selection, with varying selection strength, starting time and frequency of the beneficial allele at this time (100353

regions for each scenario). We chose a conservative approach in which all 100 regions are under selection (worst case354

scenario). For each scenario we predicted the population size history using SPIDNA (batch normalization) or ABC355

(with local linear correction) on summary statistics. Both ABC and SPIDNA predictive errors varied with the selection356

coefficient (Figure S3). On average a moderate selective pressure (100-400) did not decrease the performance (Figure357

S3 top row). ABC inference for declining population datasets was the only one negatively impacted (increased error358

for s=200 and 400). In fact, in multiple cases increasing s decreased the prediction error mean. Very strong selection359

(s = 800) on the other hand led to an increased prediction error mean in all cases except for the declining histories360

inferred by SPIDNA. In addition, the 95% quantile and standard deviations of the prediction errors tend to increase with361

s (Figure S3) indicating that the prediction should be taken more cautiously in the presence of strong positive selection.362

This variance was systematically smaller for SPIDNA than ABC. In particular, a handful of histories reconstructed with363

ABC were far off while SPIDNA prediction errors remained comparatively low for all scenarios (Figure S4).364

3.5 SPIDNA infers the decline of effective population size of cattle365

We inferred the effective population size history of three breeds of cattle (Angus, Fleckvieh and Holstein) based on366

the same 75 individuals studied by Boitard et al. (2016b) and sampled by the 1,000 Bull Genomes Project (Figure367

5). The best ABC and SPIDNA configurations both infer a large ancestral effective population size and a decline368

for the past 70,000 years. However, SPIDNA reports higher recent population sizes (Angus:11,334, Holstein:12,311,369

Fleckvieh:13,579) than ABC (Angus:344, Holstein:389, Fleckvieh:1,436). Interestingly, SPIDNA infers the same370

population sizes for all three breeds before 10 thousand years ago. This is in agreement with the estimation of the371

beginning of the domestication (Zeder, 2008). Posterior point estimates obtained by SPIDNA combined with ABC372

also indicated a decline after domestication, but with larger population sizes for the last 30,000 years than SPIDNA373

alone and fairly large credible intervals at recent times (Figure S6). Angus had the largest recent population size and374

Fleckvieh the smallest in contrary to the two previous methods. Credible intervals of ABC based on SPIDNA outputs375

overlapped SPIDNA predictions except for the most ancient time window. On the contrary, credible intervals of ABC376

based on summary statistics overlap SPIDNA predictions except for the most recent time windows (Figure S6). Finally377

SPIDNA combined with ABC identified an episode of smooth decline and recovery of the population size preceding378

the domestication (between 400,000 and 30,000 years ago). ABC on summary statistics did not infer this ancient379

change (this study and Boitard et al. (2016b)), however Boitard et al. (2016a) also estimated that 123,465 years ago the380

ancestral population size increased from 73,042 to 137,775 using fastsimcoal2 (Excoffier et al., 2013).381

12



4 Discussion382

In this paper, we introduced a deep learning approach to infer the detailed size history of a single population directly383

from genomic data given an unknown recombination rate. This consisted in inferring jointly 21 population size384

parameters. We not only increased the complexity of the demographic model with respect to previous works such385

as Flagel et al. (2018), but also compared the performance of our architecture to other methods including ABC, and386

applied our approach to real data sets. We found that our approach compared competitively with one of the best to date387

approaches, with the added advantage of not relying on summary statistics. A robustness analysis based on a subset of388

demographic scenarios also indicated that SPIDNA might be more robust than ABC to the presence of positive selection389

in the data. Finally, we reconstructed the effective population size fluctuations of three cattle breeds and confirmed that390

they all had similar sizes when they were part of the same ancestral species Bos taurus and underwent a decline likely391

linked to their domestication, although the estimated strength of this decline depended on the inference method.392

4.1 On the practicability and importance of architecture design393

When applying deep learning techniques, the design of the neural network architecture is critical, as poor design can lead394

to a lack of expressive power, information loss, underfitting, overfitting, or unnecessary complications that slow down395

the training process. The recent history of successes in Computer Vision consists in architecture improvements, leading396

to performance jumps (e.g. from MLP to LeNet, AlexNet, VGG, Inception and ResNet (He et al., 2016, Krizhevsky397

et al., 2012, LeCun et al., 1998, Simonyan and Zisserman, 2014, Szegedy et al., 2017)). But these successes have been398

built incrementally by relatively small changes over the last years, involving a large number of studies, researchers, tasks399

and tested architectures. Therefore, automating architecture and hyperparameter choice is an important challenge that400

can yield benefit to smaller fields such as population genetics. In our study, the Bayesian hyperparameter optimisation401

procedure allowed us to test multiple networks thanks to a better usage of the computational power available by giving402

more budget to the most promising ANN architectures and hyperparameters. This procedure could be extended to403

hyperparameters that further describe the architecture of the network such as the number and type of layers, number404

and type of neurons, the type of non-linearity or the topology. Thanks to this procedure we investigated a series of405

architectures, starting from the simple multi-layer fully-connected network (MLP) and moving on to more complex406

architectures, and exhibited the link between design and performance.407

To interpret the results and compare them, let us first note that in Figure 3, a 0 error means perfect prediction, while an408

error of 1 means that no information is extracted from the input. Indeed, a function outputting always the same value,409

for all samples, can at best predict the average target value over the dataset, in which case the error is the standard410

deviation over the dataset of the value to predict, which is normalized to 1 in our setup.411

Processing the SNP and distance matrices with a MLP led to high prediction errors, especially for recent population412

sizes. This is not surprising, since genomic information is encoded as a simple list of values, where the order has no413

meaning from the MLP point of view, which then cannot exploit information given by the data structure. In summary,414

13



an MLP configuration has several drawbacks: (i) the number of network parameters to estimate is high; (ii) the MLP415

can only retrieve the geometry of the data through training, with no guarantee that it will learn the spatial structure of416

the genome (i.e. the column order and distance between SNPs) or distinguish from which individual comes each SNP.417

In spite of all these hindrances, the MLP still performed far better than random guesses or constant prediction (32%418

better).419

On the contrary, CNN layers process input elements by groups, allowing close SNPs to be processed together. This420

feature, combined with the stacking of layers in CNNs, helps the network to construct features dependent on the SNPs421

proximity. Important summary statistics used in ABC or other inference methods such as linkage disequilibrium can422

potentially be easily expressed by such CNN. Hence we proposed several novel convolutional architectures, tailored to423

genetic data. We first developed a custom CNN with 2D filters that could have different shapes, i.e. mixed kernel sizes424

but also non-symmetrical masks. There is indeed no rational behind considering square masks only as is usually done425

in computer vision to describe pixel neighborhoods, as rows and columns in our case correspond to different entities426

(individual or phased haplotype versus markers). Using varied mask shapes (e.g., 2×2, 5×4 or 3×8) helps our custom427

CNN to learn features of various patterns, potentially mimicking different types of summary statistics (“vertical” masks428

integrate over individuals, enabling the computation of allele frequencies at a SNP, while “horizontal” ones integrate429

over SNPs, as IBS or IBD sharing tract length does). Such mixed size filters have proven useful in the Computer Vision430

literature also, under the name of Inception architectures (Szegedy et al., 2017); they allow the extraction of a mixture431

of different kinds of information from multiple scales within the same layer. The large gap in performance between a432

simple MLP and this custom CNN confirms the importance of such considerations. A natural extension would be to433

integrate this feature into SPIDNA, our permutation-invariant architecture.434

4.2 Novel architectures tailored to genomic data435

4.2.1 Invariance to haplotype permutation436

The order in which simulated haplotypes are arranged in a SNP matrix has no meaning. Although the custom CNN437

network above cannot be guaranteed to be exactly invariant to the haplotype order, it can approximately learn this data438

property. To avoid wasting training time to learn that there is no information in the row order, it has been proposed to439

systematically sort the haplotypes according to a predefined rule (Flagel et al., 2018, Torada et al., 2019). Because440

there is no ordering in high dimensional space that is stable with respect to perturbations (Qi et al., 2017), we chose yet441

another alternative and enforced our network to be permutation-invariant by design. Permutation-invariant networks,442

or exchangeable networks, were successfully applied in population genetics by Chan et al. (2018) for inferring local443

recombination, but our architecture is different in that the invariant operations are performed at each block, enabling444

both individual equivariant features and global invariant features to contribute to the next layer. It has been proven445

that this type of architecture provides universal approximation of permutation-invariant functions (Lucas et al., 2018,446

Zaheer et al., 2017). Here we applied the methodology from Lucas et al. (2018) by using the mean as our invariant447

operation, but we encourage developers to experiment with other invariant functions such as moments of higher448

14



order. Among our permutation-invariant architectures, the best one (SPIDNA using batch normalization) had a smaller449

prediction error than our custom CNN. However, it is not clear whether this improvement is directly linked to its built-in450

permutation-invariance property, or to other differences between the two networks. Controlling the speed to invariance451

thanks to the parameter α improved the performance of the instance normalization SPIDNA, but not significantly the452

performance of the instance normalization adaptive SPIDNA (see table S2).453

4.2.2 Robustness to the number of individuals454

Importantly, SPIDNA adapts to the number of individuals, which is an advantageous property compared to many455

methods relying on summary statistics. SPIDNA can be trained on data sets having similar or varying sample sizes, and,456

once trained, it can be directly applied to a dataset of reasonably close sample size, but unobserved during training. We457

provide an example of robustness in an experiment focusing on a subset of demographic scenarios (decline, growth,458

medium or large constant size) and a wide range of sample sizes (from 10 to 150, Figure S5). SPIDNA using batch459

normalization (trained on exactly 50 individuals) did not suffer a strong loss of accuracy when the sample sizes remained460

in the [45,65] range. Outside of this range, the predictions were inaccurate in two cases: small sample sizes under461

expanding and constant size scenarios, or large sample sizes under the expansion scenario. This was expected because462

this specific network was not exposed to diverse sampling sizes during training. Given the observed variations across463

scenarios and if the sample size is expected to vary substantially from 50, we advise the user to perform a similar464

experiment based on her/his targeted sample size and a larger number of scenarios drawn from the prior distribution. If465

needed, the user can then train a new SPIDNA network without any change in its architecture, either on a set containing466

a wider range of sampling sizes or on a set matching the targeted sample sizes. To fasten the training, this network467

could be initialized with the weights of the network optimized for the sample size 50, and fine-tuned on the new set.468

4.2.3 Automatic adaptation to the number of SNPs469

The two networks designed to be adaptive to the number of SNPs have the advantage of being applicable to genetic470

data of any length, the opposite of networks specific to a particular number of SNPs, which transform the data with471

padding or compression, or are retrained for different lengths, or take as input portions of larger sequences. Our two472

SPIDNA adaptive networks show results close to the best of non-adaptive versions, though slightly worse (0.469 versus473

0.454, see table S2), although the difference disappears when SPIDNA is combined with ABC (0.369 versus 0.372).474

This small performance drop is likely due to differences in normalization rather than to the adaptive feature. Indeed,475

the best non-adaptive SPIDNA uses batch normalization while the adaptive versions use instance normalization as476

there is currently no implementation of batch normalization for batches with inputs of mixed sizes. We think that477

adaptive architectures could greatly benefit from an optimised implementation of adaptive batch normalization or from478

an implementation of batches with mixed data sizes. Nonetheless, SPIDNA networks with instance normalization had a479

much better performance when using all SNPs rather than the 400 first SNPs only, which suggests that adaptability is a480

useful feature (see table S2).481

15



Our adaptive architecture provides an alternative to data compression based on computer vision algorithms: since482

compression is not optimized for the task of interest, it could induce information loss by reducing data prematurely.483

Note indeed that the success of deep learning in computer vision lies precisely in the replacement of ad-hoc data484

descriptors and processing pipelines (e.g., SIFT features to describe image keypoints (Lowe, 2004), and the “bag of485

visual words” pipeline (Sivic and Zisserman, 2003) to build an exploitable representation of them through clustering and486

histograms) by ones that can be optimized. It is also an alternative to padding, a technique that consists in completing487

the SNP and distance matrices at the edges so that they all match the biggest simulated SNP matrix; it is left to the488

neural network to guess where the real genetic data stops and where padding starts. As such it may make the task489

more difficult, given that the SNP matrix size is highly variable between different demographic histories and some490

examples would contain more padding values that actual genetic information. RNN are also a natural alternative to491

process sequence of variable size, though they induce an unequal contribution of SNPs to the final result, depending on492

their ordering along the sequence. Indeed, as the information from the previous elements of the sequence is stored in493

the internal state of the RNN, earlier parts of the sequence can be more easily forgotten. Nonetheless, they were very494

recently proven to be useful to predict local recombination rate along the genome (Adrion et al., 2019) and future works495

should investigate whether this scales up to global characteristics and to a different task.496

4.3 Advantages and challenges of deep learning497

Alongside the ability of deep learning to automatically extract informative features from high dimensional data, artificial498

neural networks are also very flexible. For instance, they can be used for transfer learning, that is, a network trained for499

a specific task can be reused for another one by only modifying the last layers (e.g. a network trained for population500

size history inference could be reused for classification between demographic scenarios) (Pan and Yang, 2009). The501

new network will benefit from the embedding already learned for the previous task, improving error and learning time.502

We also highlight that, as for most ABC methods, the parameters are inferred jointly, a major point as the common503

population genetics model parameters almost never have an independent impact on shaping genetic diversity. We noted504

that for highly fluctuating population sizes, SPIDNA estimated smooth histories. Smoothing can be seen as a good505

byproduct and was for example achieved on purpose by SMC++ thanks to a spline regularization scheme (Terhorst506

et al., 2017). A tentative explanation for SPIDNA’s smoothing effect while no regularizer was used is that it is easy507

for neural networks to express smoothing filters in their last layer. As, in our task, smoothing is correlated with lower508

prediction variance, the training of SPIDNA naturally chooses to smooth out its predictions. This could be seen as a509

tendency to favor low variance in the bias/variance trade-off.510

4.3.1 Combining deep learning and Approximate Bayesian Computation to approximate the posterior511

distribution512

We found that adding an ABC step to the deep learning approach increased its performance. This ABC step takes as513

input the demographic parameters predicted by SPIDNA instead of the usual summary statistics. This strategy was514

16



proposed by Jiang et al. (2017) who showed that a deep neural network could approximate the parameter posterior515

means, which are desirable summary statistics for ABC. It was applied under the name of ABC-DL in two population516

genetics studies for performing model selection, however both papers relied on the joint SFS as predefined candidate517

summary statistics (Lorente-Galdos et al., 2019, Mondal et al., 2019). Here, we are taking advantage of both the deep518

architecture to bypass summary statistics and the Bayesian framework to refine the prediction and approximate the519

posterior distribution. The statistics currently processed by ABC are the average over multiple independent regions of520

SPIDNA predicted population sizes. A natural future step would be to investigate whether combining differently these521

regions leads to improved predictions.522

It not yet clear why this combination decreases the prediction error. Neural networks, such as SPIDNA, learn a very523

general mapping of the whole input space to the output demographic parameter space. On the other hand, ABC learns a524

local relationship, the posterior distribution of the demographic parameters, for each targeted/observed example based525

on its neighbourhood in the input space. Combining ABC with SPIDNA thus adds a local inference step to the general526

mapping learnt by SPIDNA, and this might help readjust the predictions locally. This is illustrated in Figure 4 where527

recent population sizes estimated by SPIDNA have a tendency towards the center of the prior while SPIDNA+ABC528

corrects it. This combination might be modifying the bias/variance trade-off favored by SPIDNA towards higher529

variance. These hypotheses could be investigated further in future works.530

This gain however comes with a disadvantage which is the need for ABC to approximate a posterior distribution for each531

new dataset. This can be fairly time consuming for large panels containing many populations for which demography has532

to be reconstructed. Contrary to ABC, SPIDNA and other deep learning approaches, once trained, provide immediate533

predictions. This amortization of the training time is relevant for all studies processing large number of datasets such as534

meta analyses over populations or species (e.g Roux et al. (2016)) or addressing window-based tasks, such as selection535

and introgression scans, local ancestry or recombination estimations. In these cases the parameter predictive uncertainty536

could be estimated by the network (Chan et al., 2018, Lakshminarayanan et al., 2017) rather than through an ABC537

procedure.538

Finally, we showed that applying ABC to SPIDNA predictions combined with precomputed summary statistics led to an539

error 4.7% smaller than the one of a regular ABC and 6.0% smaller than SPIDNA. This indicates that the information540

retrieved by SPIDNA does not completely overlap the information encoded in the predefined summary statistics but is541

not completely orthogonal either. The different behaviours of SPIDNA and ABC in terms of robustness to the presence542

of selection also support this hypothesis. These are the first steps towards understanding and interpreting the artificial543

neural networks currently used in population genetics, a major challenge that the deep learning field currently faces for544

many of its applications (Gilpin et al., 2018) and that has not yet been investigated in our community.545

4.3.2 Application to real data546

Applying a method trained on simulated data to a real dataset can be a difficult task. Here we show that the estimated547

effective population sizes of the three cattle breeds were qualitatively similar across the different methods used. All of548

17



them were able to recover the large ancestral population size shared by the three breeds, followed by its decline after549

domestication. However, the methods produced size estimates that were quantitatively different, notably in the strength550

of the decline and the recent population sizes. For quality reasons, inference was done using genotypes pruned of low551

frequency alleles rather than haplotypes. The architecture and hyperparameters were optimized based on simulated552

haplotypes, and the network was trained on simulated genotypes. It is possible that an architecture designed with553

a new hyperparameter optimization procedure calibrated for filtered genotypes would decrease SPIDNA error rate.554

However, the discrepancy between ABC and SPIDNA reconstructions in the last 10,000 years might also be due to555

the sensitivity of ANNs to overfitting and to mispecifications in the model generating training data. For example,556

decrease in performance due to demographic mispecification has already been shown for selection inference based on557

ANNs (Torada et al., 2019). In our work we investigated whether positive selection on de-novo mutation or standing558

variation could have such a strong effect on demographic inference and found that SPIDNA was robust to various559

selective scenarios. In the cattle case, model mispecification arises because cattle breeds are subjected to strong artificial560

selection pressures based on observed phenotypes, with few males contributing to the next generations, which is an561

extreme case of selection and a clear violation of the coalescent assumptions underlying our training simulated set. In562

addition, errors or missing information in real data were not modelled in the training set, a procedure that can improve563

ABC performance when using multiple summary statistics such as haplotype length statistics (Jay et al., 2019). When564

comparing performance on training and validation sets, we found that our architectures were not overfitting. Yet it is565

possible that the features automatically constructed by ANNs are more sensitive to a gap between real and simulated566

data (e.g. unmodelled errors and artificial selection) than an ABC method based on SFS and LD statistics. Although567

we checked the robustness of SPIDNA to the simulator tool and to multiple cases of natural selection on haplotype568

data (Figures S2 and S3), artificial selection based on phenotype and pedigree information is yet another type of model569

violation. Systematically testing and improving the robustness of ANNs trained on simulations is a great challenge for570

the coming years.571

Conclusion572

We addressed a challenging task in population genetics, that is, reconstructing effective population size through573

time. We showed that this demographic inference could be done for unknown recombination rates. The approach574

combining SPIDNA and summary statistics has a slight increase in performance compared to the more classical575

method (ABC based on summary statistics), while the approach based on SPIDNA performs similarly without requiring576

any expert knowledge regarding the computation of summary statistics. Besides, the combination with an ABC577

approach (without predefined statistics) allows to obtain posterior distributions. We are confident that a network578

exchangeable and adaptive to the input size is a promising architecture for future lines of work for other population579

genetics tasks, as it could prevent premature loss of information and favor learning new features rather than known580

haplotype invariance. These new features can be seen as automatically learned summary statistics and will be crucial in581

areas where inference is challenging and for which researchers are always designing novel and hopefully expressive582

18



summary statistics (see for example the recent line of research on adaptive introgression (Racimo et al., 2015)). As for583

now, co-estimating multiple processes remains a hard task, and inference is mostly done under simplifying assumptions,584

e.g. selection or recombination are inferred under a fixed demographic scenario and step-wise population size is585

reconstructed for a single panmictic population. The success of ABC and simulation-based methods is partly due586

to their ability to include complex models via simulations. Here we showed, for the first time, that a well designed587

artificial neural network is capable of retrieving information about fluctuating effective population size, competes588

favorably with a commonly used approach, and can also be combined with existing summary statistics if needed.589

Additionally, recent studies showed that artificial neural networks could detect introgression and selection (Flagel590

et al., 2018, Torada et al., 2019). For the above reasons, and because extracting information automatically should lead591

to the identification of features that disentangle processes hardly distinguishable, we are hopeful that future robust592

networks trained on complex simulations could help solve some of these tasks. Finally, we provided (i) a tool for593

users wanting to infer population size history of any species that can be applied to phased or unphased genomes594

(available from https://gitlab.inria.fr/ml_genetics/public/dlpopsize); (ii) new exchangeable network595

architectures, some of which have the promising feature of being adaptive to input size ; (iii) guidelines for future596

developers on building architectures and hyper-optimization to facilitate the development of new artificial neural597

networks for population genomics.598

Acknowledgments599

We are grateful to the genotoul bioinformatics platform Toulouse Midi-Pyrenees (Bioinfo Genotoul) and the TAU team600

for providing computing and storage resources, to the Paris-Saclay Center for Data Science 2.0 (IRS) for funding. JC601

salary was funded by DIM-1Health. We are also grateful to Simon Boitard for helpful discussions and providing the602

cattle dataset. We thank Michael Blum for his comments on a first version of the manuscript and Diviyan Kalainathan603

for his support with the Titanic platform. We also thank Jeffrey Spence, Lex Flagel and two anonymous reviewers for604

their comments.605

Data Availability Statement606

The data that support the findings of this study are openly available in dlpopsize at https://gitlab.inria.fr/ml_607

genetics/public/dlpopsize.608

References609

Jeffrey R Adrion, Jared G Galloway, and Andrew D Kern. Inferring the landscape of recombination using recurrent610

neural networks. bioRxiv, page 662247, 2019.611

Simon Aeschbacher, Mark A Beaumont, and Andreas Futschik. A novel approach for choosing summary statistics in612

approximate bayesian computation. Genetics, 192(3):1027–1047, 2012.613

19

https://gitlab.inria.fr/ml_genetics/public/dlpopsize
https://gitlab.inria.fr/ml_genetics/public/dlpopsize
https://gitlab.inria.fr/ml_genetics/public/dlpopsize
https://gitlab.inria.fr/ml_genetics/public/dlpopsize


Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the sequence specificities of614

dna-and rna-binding proteins by deep learning. Nature biotechnology, 33(8):831, 2015.615

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. Trans. Neur.616

Netw., 5(2):157–166, March 1994. ISSN 1045-9227. doi: 10.1109/72.279181. URL https://doi.org/10.1109/617

72.279181.618

Anders Bergström, Shane A McCarthy, Ruoyun Hui, Mohamed A Almarri, Qasim Ayub, Petr Danecek, Yuan Chen,619

Sabine Felkel, Pille Hallast, Jack Kamm, et al. Insights into human genetic variation and population history from 929620

diverse genomes. bioRxiv, page 674986, 2019.621

Anand Bhaskar, YX Rachel Wang, and Yun S Song. Efficient inference of population size histories and locus-specific622

mutation rates from large-sample genomic variation data. Genome research, 25(2):268–279, 2015.623

Michael GB Blum. Approximate bayesian computation: a nonparametric perspective. Journal of the American624

Statistical Association, 105(491):1178–1187, 2010.625

Michael GB Blum, Maria Antonieta Nunes, Dennis Prangle, Scott A Sisson, et al. A comparative review of dimension626

reduction methods in approximate bayesian computation. Statistical Science, 28(2):189–208, 2013.627

Simon Boitard, Mekki Boussaha, Aurélien Capitan, Dominique Rocha, and Bertrand Servin. Uncovering adaptation628

from sequence data: lessons from genome resequencing of four cattle breeds. Genetics, 203(1):433–450, 2016a.629

Simon Boitard, Willy Rodriguez, Flora Jay, Stefano Mona, and Frédéric Austerlitz. Inferring population size history630

from large samples of genome-wide molecular data-an approximate bayesian computation approach. PLoS genetics,631

12(3):e1005877, 2016b.632

Michael Bridges, Elizabeth A Heron, Colm O’Dushlaine, Ricardo Segurado, Derek Morris, Aiden Corvin, Michael Gill,633

Carlos Pinto, International Schizophrenia Consortium, et al. Genetic classification of populations using supervised634

learning. PloS one, 6(5), 2011.635

Jeffrey Chan, Valerio Perrone, Jeffrey Spence, Paul Jenkins, Sara Mathieson, and Yun Song. A likelihood-free inference636

framework for population genetic data using exchangeable neural networks. In Advances in Neural Information637

Processing Systems, pages 8594–8605, 2018.638

1000 Genomes Project Consortium et al. A map of human genome variation from population-scale sequencing. Nature,639

467(7319):1061, 2010.640

1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature, 526(7571):68, 2015.641

Katalin Csilléry, Olivier François, and Michael GB Blum. abc: an r package for approximate bayesian computation642

(abc). Methods in ecology and evolution, 3(3):475–479, 2012.643

Hans D Daetwyler, Aurélien Capitan, Hubert Pausch, Paul Stothard, Rianne Van Binsbergen, Rasmus F Brøndum,644

Xiaoping Liao, Anis Djari, Sabrina C Rodriguez, Cécile Grohs, et al. Whole-genome sequencing of 234 bulls645

facilitates mapping of monogenic and complex traits in cattle. Nature genetics, 46(8):858, 2014.646

20

https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181


Gregory Ewing and Joachim Hermisson. Msms: a coalescent simulation program including recombination, demographic647

structure and selection at a single locus. Bioinformatics, 26(16):2064–2065, 2010.648

Laurent Excoffier, Isabelle Dupanloup, Emilia Huerta-Sánchez, Vitor C Sousa, and Matthieu Foll. Robust demographic649

inference from genomic and snp data. PLoS genetics, 9(10):e1003905, 2013.650

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization at scale. In651

Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,652

volume 80 of Proceedings of Machine Learning Research, pages 1437–1446, Stockholmsmässan, Stockholm Sweden,653

10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/falkner18a.html.654

Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate bayesian computation: semi-655

automatic approximate bayesian computation. Journal of the Royal Statistical Society: Series B (Statistical Method-656

ology), 74(3):419–474, 2012.657

Lex Flagel, Yaniv Brandvain, and Daniel R Schrider. The unreasonable effectiveness of convolutional neural networks658

in population genetic inference. Molecular biology and evolution, 36(2):220–238, 2018.659

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining explanations:660

An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on data science and661

advanced analytics (DSAA), pages 80–89. IEEE, 2018.662

Ariella L Gladstein and Michael F Hammer. Substructured population growth in the ashkenazi jews inferred with663

approximate bayesian computation. Molecular biology and evolution, 36(6):1162–1171, 2019.664

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In665

In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS’10). Society for666

Artificial Intelligence and Statistics, 2010.667

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings668

of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.669

Simon YW Ho and Beth Shapiro. Skyline-plot methods for estimating demographic history from nucleotide sequences.670

Molecular ecology resources, 11(3):423–434, 2011.671

Kishore Jaganathan, Sofia Kyriazopoulou Panagiotopoulou, Jeremy F McRae, Siavash Fazel Darbandi, David Knowles,672

Yang I Li, Jack A Kosmicki, Juan Arbelaez, Wenwu Cui, Grace B Schwartz, et al. Predicting splicing from primary673

sequence with deep learning. Cell, 176(3):535–548, 2019.674

Flora Jay, Simon Boitard, and Frédéric Austerlitz. An abc method for whole-genome sequence data: inferring paleolithic675

and neolithic human expansions. Molecular biology and evolution, 36(7):1565–1579, 2019.676

Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H Wong. Learning summary statistic for approximate bayesian677

computation via deep neural network. Statistica Sinica, pages 1595–1618, 2017.678

21

http://proceedings.mlr.press/v80/falkner18a.html


Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and genealogical analysis679

for large sample sizes. PLoS Comput Biol, 12(5):1–22, 05 2016. doi: 10.1371/journal.pcbi.1004842. URL680

http://dx.doi.org/10.1371%2Fjournal.pcbi.1004842.681

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.682

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural683

networks. In Advances in neural information processing systems, pages 1097–1105, 2012.684

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty685

estimation using deep ensembles. In Advances in neural information processing systems, pages 6402–6413, 2017.686

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The handbook of brain687

theory and neural networks, 3361(10):1995, 1995.688

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to document689

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.690

Liis Leitsalu, Toomas Haller, Tõnu Esko, Mari-Liis Tammesoo, Helene Alavere, Harold Snieder, Markus Perola,691

Pauline C Ng, Reedik Mägi, Lili Milani, et al. Cohort profile: Estonian biobank of the estonian genome center,692

university of tartu. International journal of epidemiology, 44(4):1137–1147, 2014.693

Heng Li and Richard Durbin. Inference of human population history from individual whole-genome sequences. Nature,694

475(7357):493, 2011.695

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel696

bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560, 2016.697

Xiaoming Liu and Yun-Xin Fu. Exploring population size changes using snp frequency spectra. Nature genetics, 47(5):698

555, 2015.699

Belen Lorente-Galdos, Oscar Lao, Gerard Serra-Vidal, Gabriel Santpere, Lukas FK Kuderna, Lara R Arauna, Karima700

Fadhlaoui-Zid, Ville N Pimenoff, Himla Soodyall, Pierre Zalloua, et al. Whole-genome sequence analysis of a pan701

african set of samples reveals archaic gene flow from an extinct basal population of modern humans into sub-saharan702

populations. Genome biology, 20(1):77, 2019.703

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60704

(2):91–110, 2004.705

Thomas Lucas, Corentin Tallec, Yann Ollivier, and Jakob Verbeek. Mixed batches and symmetric discriminators for706

GAN training. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on707

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 2844–2853, Stockholmsmässan,708

Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/lucas18a.html.709

Wenlong Ma, Zhixu Qiu, Jie Song, Jiajia Li, Qian Cheng, Jingjing Zhai, and Chuang Ma. A deep convolutional neural710

network approach for predicting phenotypes from genotypes. Planta, 248(5):1307–1318, 2018.711

22

http://dx.doi.org/10.1371%2Fjournal.pcbi.1004842
http://proceedings.mlr.press/v80/lucas18a.html


Iona M. MacLeod, Denis M. Larkin, Harris A. Lewin, Ben J. Hayes, and Mike E. Goddard. Inferring Demography712

from Runs of Homozygosity in Whole-Genome Sequence, with Correction for Sequence Errors. Molecular713

Biology and Evolution, 30(9):2209–2223, 07 2013. ISSN 0737-4038. doi: 10.1093/molbev/mst125. URL https:714

//doi.org/10.1093/molbev/mst125.715

Swapan Mallick, Heng Li, Mark Lipson, Iain Mathieson, Melissa Gymrek, Fernando Racimo, Mengyao Zhao, Niru716

Chennagiri, Susanne Nordenfelt, Arti Tandon, et al. The simons genome diversity project: 300 genomes from 142717

diverse populations. Nature, 538(7624):201, 2016.718

Alistair Miles, Peter Ralph, Summer Rae, and Rahul Pisupati. cggh/scikit-allel: v1.2.1, June 2019. URL https:719

//doi.org/10.5281/zenodo.3238280.720

Mayukh Mondal, Jaume Bertranpetit, and Oscar Lao. Approximate bayesian computation with deep learning supports721

a third archaic introgression in asia and oceania. Nature communications, 10(1):246, 2019.722

Shigeki Nakagome, Kenji Fukumizu, and Shuhei Mano. Kernel approximate bayesian computation in population723

genetic inferences. Statistical applications in genetics and molecular biology, 12(6):667–678, 2013.724

Miguel Navascués, Raphaël Leblois, and Concetta Burgarella. Demographic inference through approximate-bayesian-725

computation skyline plots. PeerJ, 5:e3530, 2017.726

Luca Pagani, Daniel John Lawson, Evelyn Jagoda, Alexander Mörseburg, Anders Eriksson, Mario Mitt, Florian727

Clemente, Georgi Hudjashov, Michael DeGiorgio, Lauri Saag, et al. Genomic analyses inform on migration events728

during the peopling of eurasia. Nature, 538(7624):238, 2016.729

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data engineering,730

22(10):1345–1359, 2009.731

Javier Prado-Martinez, Peter H Sudmant, Jeffrey M Kidd, Heng Li, Joanna L Kelley, Belen Lorente-Galdos, Krishna R732

Veeramah, August E Woerner, Timothy D O’Connor, Gabriel Santpere, et al. Great ape genetic diversity and733

population history. Nature, 499(7459):471, 2013.734

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification735

and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages736

652–660, 2017.737

Fernando Racimo, Sriram Sankararaman, Rasmus Nielsen, and Emilia Huerta-Sánchez. Evidence for archaic adaptive738

introgression in humans. Nature Reviews Genetics, 16(6):359–371, 2015.739

Louis Raynal, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. Abc random740

forests for bayesian parameter inference. Bioinformatics, 35(10):1720–1728, 2018.741

Camille Roux, Christelle Fraisse, Jonathan Romiguier, Yoann Anciaux, Nicolas Galtier, and Nicolas Bierne. Shedding742

light on the grey zone of speciation along a continuum of genomic divergence. PLoS biology, 14(12), 2016.743

23

https://doi.org/10.1093/molbev/mst125
https://doi.org/10.1093/molbev/mst125
https://doi.org/10.1093/molbev/mst125
https://doi.org/10.5281/zenodo.3238280
https://doi.org/10.5281/zenodo.3238280
https://doi.org/10.5281/zenodo.3238280


David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation.744

In David E. Rumelhart and James L. Mcclelland, editors, Parallel Distributed Processing: Explorations in the745

Microstructure of Cognition, Volume 1: Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.746

Cynthia Sandor, Wanbo Li, Wouter Coppieters, Tom Druet, Carole Charlier, and Michel Georges. Genetic variants in747

rec8, rnf212, and prdm9 influence male recombination in cattle. PLoS genetics, 8(7), 2012.748

Daniel R Schrider, Julien Ayroles, Daniel R Matute, and Andrew D Kern. Supervised machine learning reveals749

introgressed loci in the genomes of drosophila simulans and d. sechellia. PLoS genetics, 14(4):e1007341, 2018.750

Sara Sheehan and Yun S Song. Deep learning for population genetic inference. PLoS computational biology, 12(3):751

e1004845, 2016.752

Sara Sheehan, Kelley Harris, and Yun S Song. Estimating variable effective population sizes from multiple genomes: a753

sequentially markov conditional sampling distribution approach. Genetics, 194(3):647–662, 2013.754

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv755

preprint arXiv:1409.1556, 2014.756

Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in videos. In null, page757

1470. IEEE, 2003.758

Chris CR Smith and Samuel M Flaxman. Leveraging whole genome sequencing data for demographic inference with759

approximate bayesian computation. Molecular ecology resources, 2019.760

Jeffrey P Spence, Matthias Steinrücken, Jonathan Terhorst, and Yun S Song. Inference of population history using761

coalescent hmms: review and outlook. Current opinion in genetics & development, 53:70–76, 2018.762

Matthias Steinrücken, Jack Kamm, Jeffrey P Spence, and Yun S Song. Inference of complex population histories using763

whole-genome sequences from multiple populations. Proceedings of the National Academy of Sciences, 116(34):764

17115–17120, 2019.765

Lauren Alpert Sugden, Elizabeth G Atkinson, Annie P Fischer, Stephen Rong, Brenna M Henn, and Sohini Ramachan-766

dran. Localization of adaptive variants in human genomes using averaged one-dependence estimation. Nature767

communications, 9(1):703, 2018.768

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-resnet and the769

impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.770

Jonathan Terhorst, John A Kamm, and Yun S Song. Robust and scalable inference of population history from hundreds771

of unphased whole genomes. Nature genetics, 49(2):303, 2017.772

Luis Torada, Lucrezia Lorenzon, Alice Beddis, Ulas Isildak, Linda Pattini, Sara Mathieson, and Matteo Fumagalli.773

Imagene: a convolutional neural network to quantify natural selection from genomic data. BMC bioinformatics, 20774

(9):337, 2019.775

24



Rémi Tournebize, Valérie Poncet, Mattias Jakobsson, Yves Vigouroux, and Stéphanie Manel. Mcswan: A joint site776

frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular777

ecology resources, 19(1):283–295, 2019.778

Fernando A Villanea and Joshua G Schraiber. Multiple episodes of interbreeding between neanderthal and modern779

humans. Nature ecology & evolution, 3(1):39–44, 2019.780

Alexander T Xue, Daniel R Schrider, Andrew D Kern, Ag1000G Consortium, et al. Discovery of ongoing selective781

sweeps within anopheles mosquito populations using deep learning. bioRxiv, page 589069, 2019.782

Burak Yelmen, Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin Tallec, Francesco Montinaro, Cyril783

Furtlehner, Luca Pagani, and Flora Jay. Creating artificial human genomes using generative models. bioRxiv, page784

769091, 2019.785

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J786

Smola. Deep sets. In Advances in neural information processing systems, pages 3391–3401, 2017.787

Melinda A Zeder. Domestication and early agriculture in the mediterranean basin: Origins, diffusion, and impact.788

Proceedings of the national Academy of Sciences, 105(33):11597–11604, 2008.789

Figures and Tables790

msprime
Simulator

ANN	(MLP,	CNN,
SPIDNA)

Predictions

+

Demographic
Histories

Time

0			1			1			1			0			1			1			1
0			0																								1			0
1			0																								0			1
0			0			1			1			1			0			1			1

11		7			8			3		12		5		9		18SNP	Distances

SNPs

...

...

Summary	Statistics

Co
un

ts

1	2																		n		

1	2																		n		

Co
un

ts

LD

dist

LD

dist

MLP Predictions

Prior
Random
Draws

ABC¹² Predictions

ABC¹² Predictions

ABC² Predictions

Figure 1: Overview of the methods compared in this study. Demographic histories are drawn from a prior distribution on
21 population sizes N i

e and one recombination rate ρ, and are used to generate SNP matrices with msprime. Two types
of summary statistics are computed from these simulations (SFS and LD). The predictions (outputs) made by different
kind of ANNs (MLP, custom CNN and SPIDNA architecture) are compared to an MLP using the summary statistics
and to ABC using either the summary statistics, SPIDNA outputs or both. 1 ANN outputs used are the predictions made
by the version of SPIDNA with the lowest prediction error. 2 ABC without correction, with linear regression, ridge
regression or a single layer neural network are compared.

25



0					0					0					0

+

0.7		0.2		0.4		0.8	

SPIDNA	block 	7

1 3,	50	filters

	SNPs

	h
ap

lo
ty
pe

s

maxpool

fully-connected	layer

	SNP	distances

network	outputs

mean

mean

1 3,	50	filters

1 3,	50	filters
B

B1

B2
B3

B4 B5

B6

SNP	features
+

SNP	distances
features

Features	from	B1
convolution

Features	from	B1
convolution

+
Mean	over	rows

Inputs	of	SPIDNA
block

A1

A2

A3
A4

C1

C2

Figure 2: Schematic of SPIDNA architecture. SPIDNA takes as input a SNP matrix associated with its vector of
distances between SNPs (in blue). A convolution layer is applied to the SNPs (A1) and another convolution layer is
applied to the distances (A2). Results of A2 are repeated to be concatenated with results from A1 (A3). The output is
passed to a series of seven SPIDNA blocks (A4). Each SPIDNA block starts with a convolution layer (B1) followed by
the mean over rows of the convolution layer result (B2) and the mean over columns of B2 result (B3). The concatenation
of B1 and B2 results (B4) is processed by a max pooling layer (B5) and passed to the next SPIDNA block. In parallel,
the output of B3 is processed by a fully-connected layer (B6). The prediction vector (in green) is updated at each
SPIDNA block with a sum (C1) of its previous value and B6 results. It is finally output by the last block as the predicted
demographic parameters (C2).

26



Summary
Statistics

SNP
Matrices

SPIDNA
Outputs

Summary
Statistics

+
SPIDNA
Outputs

Figure 3: Prediction errors on the test set of the best run of each method after the hyperparameter optimization. The
best configurations of each ANN (MLP, custom CNN and SPIDNA) have been retrained for 10 epochs. Traditional
ABC methods are depicted in yellow, deep MLPs and CNNs in red and orange, SPIDNA ANNs in blue, combinations
of ANNs and ABC in green. Methods are grouped into 4 families: “Summary statistics” (processed by ABC or
ANN), “SNP matrices” (processed by ANN), “SPIDNA outputs” (processed by ABC, no summary statistic used),
“Summary statistics and SPIDNA outputs” (processed by ABC). Vertical black lines on top of each bar represent the 95%
confidence interval of prediction errors. Horizontal dashed line indicate the lowest error obtained (adaptive SPIDNA +
ABC with local linear regression using summary statistics and SPIDNA outputs).

27



102

103

104

105

Medium Large

102

103

104

105

Decline Expansion

101 102 103 104 105
102

103

104

105

Bottleneck

101 102 103 104 105

Zigzag

Generations before present (log scale)

Ef
fe

ct
iv

e 
po

pu
la

tio
n 

siz
e 

(lo
g 

sc
al

e)

Figure 4: Predictions of SPIDNA and ABC using SPIDNA outputs, for six predefined scenarios (dashed black lines).
100 replicates were simulated for each scenario. Boxplots show the dispersion of SPIDNA predictions (over replicates).
For each history inferred by SPIDNA combined with ABC, we display the posterior median (plain blue line), the 50%
credible interval (dark blue) and the 90% credible interval (light blue).

28



102 103 104 105 106

Years before present (log scale)

103

104

105

Ef
fe

ct
iv

e 
po

pu
la

tio
n 

siz
e 

(lo
g 

sc
al

e)

Domestication

Angus
Fleckvieh
Holstein
SPIDNA
ABC
SPIDNA+ABC

Figure 5: Effective population size of three cattle breeds inferred by ABC (dotted lines), by the best SPIDNA architecture,
SPIDNA batch normalization (plain lines), and by ABC based on SPIDNA outputs (dashed lines). Domestication is
estimated to have occurred 10,000 years ago (vertical dotted line).

Supplementary Text791

Simulation details792

We defined the demographic parameters by following similar rules as Boitard et al. (2016b): I = 21 time windows793

[ti, ti+1] were defined from present to ancient periods with ti = 1
a

(
(1 + aT )i/(I−1) − 1

)
generations, i going from 0794

to I − 1, T = 130, 000, a = 0.06 and tI = +∞. These values of T and a were chosen by Boitard et al. (2016b) to795

capture important periods of cattle history. They could be modified to describe more precisely specific parts of the796

history by playing with the ratio between the length of recent versus old time windows. By increasing exponentially the797

time windows as we go further in the past, we obtain more detailed scenarios for recent times. Generation time for798

cattle are assume to be about 5 years.799

Dataset filtering and splitting800

After simulation, scenarios producing fewer than 400 SNPs in any 2Mb regions were removed. This threshold could801

be changed by modifying the networks or simulating longer regions. However, the real cattle dataset has on average802

4,357 SNPs across a 2Mb-long region, so these scenarios were far outside the plausible posterior distribution. That803

29



reduced the dataset to 18,461 scenarios (i.e. 1,846,100 SNP matrices) out of the 50,000 scenarios simulated with an804

average of 2,486 SNPs and a maximum of 17,839 SNPs. This dataset is split into a validation set of 500 scenarios (i.e.805

50,000 validation SNP matrices overall) and a training set with the remaining 17,961 scenarios (i.e. 1,796,100 training806

SNP matrices). In order to check for hyperparameter overfitting, we have also simulated a test set from the same prior807

distribution. Hence, we randomly drew 2,000 scenarios and kept the 767 scenarios with more than 400 SNPs which808

gives 76,700 test SNP matrices. Training, validation and test set demographic parameters were all standardized using809

mean and variance from the training set.810

SPIDNA details811

Except for the different normalization layers and the correlation control parameter α, the three variations of SPIDNA812

have the same architecture represented in Figure 2. At each step i of the network, we consider that the data has four813

dimensions Bi ×Mi × Si × Fi, B being the batch dimension, M the row dimension (also the haplotype/genotype814

dimension before the first layer), S the column dimension (also the SNP dimension before the first layer) and F the815

feature dimension (only one feature before the first layer). A first convolution layer of 50 1×3 filters is applied to816

the SNP matrix (Main Figure 2, label A1), and another convolution layer of 50 1×3 filters is applied to the vector of817

distances between SNPs (A2) and repeated M times. The results of the two convolutions have now the same dimensions818

and are concatenated along the feature dimension (A3). The resulting tensor is then passed to seven blocks put end to819

end (A4), each one involving an equivariant function and an invariant function (B). The equivariant function ψ is a820

convolutional layer of 50 1×3 filters (B1) that outputs a tensor of size Bi−1×Mi−1× (Si−1−2)×Fi−1/2. The result821

of the equivariant function is then passed to the invariant function ρ, which is the mean over the dimension M (B2).822

Thus ρ(φ(Xi−1)) has size Bi−1 × (Si−1 − 2)× Fi−1/2, which is repeated M times to maintain the same dimension823

as φ(Xi−1). Then ρ(φ(Xi−1)) and φ(Xi−1) are concatenated over the feature dimension (B4). Finally, max-pooling824

filters of dimension 1×2 are applied, and the result is passed to the next block (B5). In parallel, each block computes the825

average over the column dimension S of the 21 first features of ρ(φ(Xi−1)) that are then passed to a fully-connected826

layer with 21 outputs (B6). The predictions of each block are summed (C).827

From batch normalization to instance normalization828

Network weight initialization is a difficult task that can lead to vanishing or exploding gradient (i.e. network weight829

error gradients are too low or high for proper training) when not carefully done and is associated with a poor learning830

rate (Bengio et al., 1994, Glorot and Bengio, 2010). Most initialization schemes try to force the outputs of each layer to831

follow some distribution assuming normalized input data. Batch normalization solves this problem by normalizing layer832

outputs over the whole batch during training and computing a running mean and variance for the evaluation steps. We833

used this type of normalization for our networks that take as input a fixed number of SNPs. For the networks invariant834

to the number of SNPs, we could not concatenate all batch data into the same tensor because of their varying sizes.835

Therefore, we use instance normalization, which computes both mean and variance over the feature dimension.836

30



Computational resources837

Simulations have been performed on the genotoul bioinformatics platform with the following hardware:838

• 68 nodes with 2 E5-2670 v2 Intel CPUs (2.50GHz, 20 threads) and 256GB of RAM839

• 48 nodes with 2 E5-2683 v4 Intel CPUs (2.10GHz, 32 threads) and 256GB of RAM.840

All summary statistics, trainings and predictions were computed on the TAU’s Titanic platform with the following841

hardware:842

• 5 nodes with 4 GTX 1080 (12GB of VRAM) GPUs, 2 E5-2650 v4 Intel CPUs (2.20GHz, 24 threads) and843

252GB of RAM844

• 7 nodes with 4 RTX 2080 (12GB of VRAM) GPUs, 2 Silver 4108 Intel CPUs (1.80GHz, 18 threads) and845

252GB of RAM846

• 1 node with 4 Tesla P100 (16GB of VRAM) GPUs, 2 E5-2690 v4 Intel CPUs (2.60GHz, 28 threads) and847

252GB of RAM848

• 1 node with 2 RTX 2080 (8GB of VRAM) GPUs, 2 E5-2650 v4 Intel CPUs (2.20GHz, 24 threads) and 252GB849

of RAM850

Both platforms use Slurm as job scheduling system. Batch sizes and deep learning architectures were all designed to fit851

on less than 12GB of VRAM during training. To train non-adaptive architectures, batches were split between 3 GPUs852

with at least 12GB of VRAM. Adaptive architectures were trained on one GPU as batch data of varying sizes could not853

be concatenated in the same tensor. The training of SPIDNA took at most 1h42 per epoch for non-adaptive version and854

31h31 per epoch for adaptive version. The slow computation time of adaptive SPIDNA is mostly due to data being855

inputted one by one in the network instead of concatenated in tensors.856

31



Supplementary figures and tables857

Figure S1: Population size prediction error for each run of the hyperparameter optimization procedure. X-axes indicate
the hyperparameter (batch size, learning rate, weight decay and alpha) or budget values, and colors indicate the type of
network used for the run (MLP, custom CNN and multiple SPIDNA architectures). For each network the best run is
surrounded by a square.

32



0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r f
or

 e
ac

h 
re

pl
ica

te

scenario = Medium scenario = Large

msprime ms msms
simulator

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r f
or

 e
ac

h 
re

pl
ica

te

scenario = Decline

msprime ms msms
simulator

scenario = Expansion

Figure S2: Robustness to simulator tool. Distributions of SPIDNA predictive errors per replicate (i.e, per independent
genomic region) for four demographic scenarios and three different genetic simulators (msprime, ms, msms). SPIDNA
batch norm. network was trained on simulated datasets generated with msprime. The test datasets were generated by
different simulators, based on the same demographic parameters and under neutrality. X-axes: simulator for the test set
; Y-axes: predictive error for each region/replicate (i.e. for each matrix of size 50 samples ×400 SNPs) averaged over
the 21 time steps. Each violin describes 100 replicates.

33



0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.09

0.10

0.11

0.12

m
ea

n 
of

 p
re

di
ct

iv
e 

er
ro

rs
scenario = Medium

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.1

0.2

0.3

0.4

0.5

0.6
scenario = Decline

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.06

0.07

0.08

0.09

0.10

0.11

0.12
scenario = Expansion

mean of predictive errors

method
abc
spidna

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

qu
an

til
e9

5 
of

 p
re

di
ct

iv
e 

er
ro

rs

scenario = Medium

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
scenario = Decline

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.10

0.15

0.20

0.25

0.30
scenario = Expansion

quantile95 of predictive errors

method
abc
spidna

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

st
d 

of
 p

re
di

ct
iv

e 
er

ro
rs

scenario = Medium

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.0

0.2

0.4

0.6

0.8

1.0

scenario = Decline

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.00

0.02

0.04

0.06

0.08

0.10

scenario = Expansion

std of predictive errors

method
abc
spidna

Figure S3: Robustness to the presence of positive selection. ABC and SPIDNA (batch norm.) predictive errors
computed from 100 2Mb-long regions for three demographic scenarios (Medium constant size, Decline and Expansion)
under various selective pressures (with additive fitness effect). The reference/training set is the same as the one used
throughout the paper (neutral simulations generated with msprime from a prior distribution on recombination rate and
population sizes). The test datasets were simulated using msms with multiple values of selection strength, starting time
and initial frequency of the beneficial allele. X-axes: Selection coefficient SAa. Y-axes: Mean (top), 95% quantile
(middle row) and variance (bottom row) estimators of the predictive error (across 30 test sets for SAa=0 and 144 test
sets for any other SAa value). Vertical bars correspond to 95% confidence intervals computed via bootstrap.

34



0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ed

ict
iv

e 
er

ro
r

method = abc

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

method = spidna

scenario = Medium

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0

1

2

3

4

Pr
ed

ict
iv

e 
er

ro
r

method = abc

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

method = spidna

scenario = Decline

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ed

ict
iv

e 
er

ro
r

method = abc

0.0 100.0 200.0 400.0 800.0
SAa(scaled)

method = spidna

scenario = Expansion

Figure S4: Robustness to the presence of positive selection. ABC and SPIDNA (batch norm.) predictive errors
computed from 100 2Mb-long regions for three demographic scenarios (Medium constant size, Decline and Expansion)
under various selective pressures. The reference/training set is the same as the one used throughout the paper (neutral
simulations generated with msprime from a prior distribution on recombination rate and population sizes). The test
datasets were simulated using msms with multiple values of selection strength, starting time and initial frequency of the
beneficial allele. X-axes: Selection coefficient SAa. Y-axes: Distribution of predictive errors (across 30 test sets for
SAa = 0 and 144 test sets for any other SAa value).

35



Number of haplotypes 
 (sample size)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r f
or

 e
ac

h 
re

pl
ica

te

scenario = Medium

Number of haplotypes 
 (sample size)

scenario = Large

10 25 35 40 45 50 55 60 65 75 100 150
Number of haplotypes 

 (sample size)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r f
or

 e
ac

h 
re

pl
ica

te

scenario = Decline

10 25 35 40 45 50 55 60 65 75 100 150
Number of haplotypes 

 (sample size)

scenario = Expansion

Figure S5: Robustness to sample size. Distributions of SPIDNA predictive errors per replicate (i.e, per independent
genomic region) for four demographic scenarios and different sampling sizes. SPIDNA (batch norm.) network was
trained on simulated datasets containing exactly 50 samples. The test datasets were simulated with msprime based on
the same four demographic parameter sets but with different sample sizes (ranging from 10 to 150 haplotypes). X-axes:
sample size M of the targeted region ; Y-axes: predictive error for each replicate (i.e. for each matrix of size M samples
×400 SNPs) averaged over the 21 time steps. Each violin describes 100 replicates.

36



102 103 104 105 106

Years before present (log scale)

101

102

103

104

105

106

Ef
fe

ct
iv

e 
po

pu
la

tio
n 

siz
e 

(lo
g 

sc
al

e)

Domestication

Angus

SPIDNA
ABC
SPIDNA+ABC

102 103 104 105 106

Years before present (log scale)

101

102

103

104

105

106

Ef
fe

ct
iv

e 
po

pu
la

tio
n 

siz
e 

(lo
g 

sc
al

e)

Domestication

Fleckvieh

SPIDNA
ABC
SPIDNA+ABC

102 103 104 105 106

Years before present (log scale)

101

102

103

104

105

106

Ef
fe

ct
iv

e 
po

pu
la

tio
n 

siz
e 

(lo
g 

sc
al

e)

Domestication

Holstein

SPIDNA
ABC
SPIDNA+ABC

Figure S6: Effective population size of three cattle breeds inferred by the best SPIDNA architecture, SPIDNA batch
normalization, by ABC (dotted lines) and by ABC based on SPIDNA outputs (dashed lines). Boxplots show the
dispersion of SPIDNA predictions (over replicates). For each history inferred by ABC and by SPIDNA combined
with ABC, we display the posterior median (dotted and dashed lines) and the 95% credible interval. Domestication is
estimated to have occurred 10,000 years ago (vertical dotted line).

37



input dimen-
sion

SNP encod-
ing

Convolution
type

Kernel
size

Pooling
size

Log-scaled
output?

Sort chromo-
somes?

Use dropout?

50× 400 0/-1 1D 2 2 Yes Yes Yes
50 × 1784 0/-1 1D 2 2 Yes Yes Yes
50× 400 -1/1 1D 2 2 Yes Yes No
50× 1784 -1/1 1D 2 2 Yes Yes No

Table S1: Parameters used for the Flagel CNN

38



Method Adaptive Summary
statistics ABC correction Alpha Validation

error
Test
error

0 ABC No Yes No No 0.490 0.496
1 ABC No Yes Linear reg. No 0.357 0.369
2 ABC No Yes Ridge reg. No 0.363 0.376
3 ABC No Yes Single layer NN No 0.352 0.364
4 MLP No Yes No No 0.399 0.437
5 MLP No No No No 0.690 0.675
6 Custom CNN No No No No 0.485 0.487
7 Flagel CNN 0/-1 encoding No No No No 0.537 0.541
8 Flagel CNN 0/-1 encoding Downsampling No No No 0.437 0.444
9 Flagel CNN -1/1 encoding No No No No 0.610 0.609
10 Flagel CNN -1/1 encoding Downsampling No No No 0.482 0.484
11 SPIDNA No No No No 0.453 0.454
12 SPIDNA No No No No 0.637 0.641
13 SPIDNA Yes No No No 0.487 0.489
14 SPIDNA No No No 0.849 0.592 0.599
15 SPIDNA Yes No No 0.539 0.466 0.469
16 ABC + SPIDNA No No No No 0.462 0.462
17 ABC + SPIDNA No No Linear reg. No 0.364 0.377
18 ABC + SPIDNA No No Ridge reg. No 0.371 0.380
19 ABC + SPIDNA No No Single layer NN No 0.363 0.372
20 ABC + SPIDNA Yes No No 0.539 0.458 0.460
21 ABC + SPIDNA Yes No Linear reg. 0.539 0.363 0.369
22 ABC + SPIDNA Yes No Ridge reg. 0.539 0.382 0.391
23 ABC + SPIDNA Yes No Single layer NN 0.539 0.374 0.384
24 ABC + SPIDNA No Yes No No 0.476 0.478
25 ABC + SPIDNA No Yes Linear reg. No 0.339 0.353
26 ABC + SPIDNA No Yes Ridge reg. No 0.341 0.357
27 ABC + SPIDNA No Yes Single layer NN No 0.345 0.361
28 ABC + SPIDNA Yes Yes No 0.539 0.474 0.478
29 ABC + SPIDNA Yes Yes Linear reg. 0.539 0.335 0.347
30 ABC + SPIDNA Yes Yes Ridge reg. 0.539 0.339 0.354
31 ABC + SPIDNA Yes Yes Single layer NN 0.539 0.347 0.365

Table S2: Prediction errors of the best configuration of each method after hyperparameter optimization

39


	Introduction
	Materials and Methods
	Simulated data and summary statistics
	Baselines
	Sequence Position Informed Deep Neural Architecture
	Permutation invariance
	Convolution networks to handle data with variable size

	Hyperparameter optimization
	Cattle breed data

	Results
	Hyperparameter optimization
	Comparison of the optimized architectures
	Reconstruction of specific demographic histories using SPIDNA and SPIDNA+ABC
	Impact of positive selection on SPIDNA and ABC inference
	SPIDNA infers the decline of effective population size of cattle

	Discussion
	On the practicability and importance of architecture design
	Novel architectures tailored to genomic data
	Invariance to haplotype permutation
	Robustness to the number of individuals
	Automatic adaptation to the number of SNPs

	Advantages and challenges of deep learning
	Combining deep learning and Approximate Bayesian Computation to approximate the posterior distribution
	Application to real data



