
Genetics and population analysis

dnadna: a deep learning framework for population

genetics inference

Théophile Sanchez1†, Erik Madison Bray1†, Pierre Jobic1,2, Jérémy Guez1,3,

Anne-Catherine Letournel1, Guillaume Charpiat1, Jean Cury 1,4*‡ and

Flora Jay 1*‡

1Université Paris-Saclay, CNRS UMR 9015, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400 Orsay, France,
2ENS Paris-Saclay, 91190 Gif-sur-Yvette, France, 3UMR7206 Eco-Anthropologie, Muséum National d’Histoire Naturelle, CNRS,

Université de Paris, 75016 Paris, France and 4SEED, U1284, INSERM, Université de Paris, 75004 Paris, France

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
‡The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last Authors.

Associate Editor: Janet Kelso

Received on November 17, 2021; revised on October 30, 2022; editorial decision on November 22, 2022; accepted on November 28, 2022

Abstract

Motivation: We present dnadna, a flexible python-based software for deep learning inference in population genet-
ics. It is task-agnostic and aims at facilitating the development, reproducibility, dissemination and re-usability of
neural networks designed for population genetic data.

Results: dnadna defines multiple user-friendly workflows. First, users can implement new architectures and tasks,
while benefiting from dnadna utility functions, training procedure and test environment, which saves time and
decreases the likelihood of bugs. Second, the implemented networks can be re-optimized based on user-specified
training sets and/or tasks. Newly implemented architectures and pre-trained networks are easily shareable with the
community for further benchmarking or other applications. Finally, users can apply pre-trained networks in order to
predict evolutionary history from alternative real or simulated genetic datasets, without requiring extensive know-
ledge in deep learning or coding in general. dnadna comes with a peer-reviewed, exchangeable neural network,
allowing demographic inference from SNP data, that can be used directly or retrained to solve other tasks. Toy
networks are also available to ease the exploration of the software, and we expect that the range of available
architectures will keep expanding thanks to community contributions.

Availability and implementation: dnadna is a Python (�3.7) package, its repository is available at gitlab.com/
mlgenetics/dnadna and its associated documentation at mlgenetics.gitlab.io/dnadna/.

Contact: flora.jay@lri.fr or jean.cury@normalesup.org

1 Introduction

In recent years, deep learning has been applied to biology with the
hope of facilitating complex data analyses and information discov-
ery, and methods are now flourishing in population genetics
(Borowiec et al., 2022). As reviewed by Sanchez et al. (2021), we
distinguish two families: those processing many summary statistics,
with fully connected or convolutional networks and those based on
’raw’ genetic data leveraging deep architectures to automatically
construct informative features (e.g. Adrion et al., 2020b; Battey
et al., 2020; 2021; Burger et al., 2022; Chan et al., 2018; Deelder
et al., 2021; Flagel et al., 2019; Fonseca et al., 2021; Gower et al.,
2021; Isildak et al., 2021; Meisner and Albrechtsen, 2022;
Montserrat et al., 2019; Perez et al., 2022; Qin et al., 2022; Sanchez

et al., 2020; Torada et al., 2019; Wang et al., 2021; Yelmen et al.,
2021). Previous studies have made their implementations available
at least for reproducibility and sometimes with a specific effort for
re-usability. Even so, each of them focuses on a specific network for
a specific task. Adapting them requires a careful understanding of
the code and its direct modification since many options are hard-
coded. This is not only error-prone but also leads to a rapid code
divergence between parallel projects, accompanied by complex
maintenance. The community demands flexible and rigorous tools
as demonstrated by stdpopsim, a library for population genetic
simulations which allows contributions from many researchers
(Adrion et al., 2020a). In genomics, a suite of tools has been devel-
oped to facilitate deep learning applications (e.g. Kopp et al., 2020;
Routhier et al., 2021; Zhang et al., 2021). However, none is able to

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btac765

https://doi.org/10.1093/bioinformatics/btac765

Advance Access Publication Date: 29 November 2022

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btac765/6851140 by guest on 19 M
ay 2024

https://orcid.org/0000-0002-6462-8783
https://orcid.org/0000-0001-5884-4730
http://gitlab.com/mlgenetics/dnadna
http://gitlab.com/mlgenetics/dnadna
http://mlgenetics.gitlab.io/dnadna/
https://academic.oup.com/


Fig. 1. (A) dnadna workflow and its corresponding commands. Each step could be done as a standalone: (1) simulation of a large genetic dataset according to evolutionary

scenarios and priors; genetic data type is not enforced and can be Boolean (classical single-nucleotide polymorphism (SNP) data), integer (e.g. genotype data 0/1/2) or float

[e.g. local density of SNPs as in Gower et al. (2021) or summary statistics along the genome as in Xue et al. (2021)]; (2) preprocessing, mainly to filter out examples that do

not fit minimal requirements and split the rest into train/validation/test sets; (3) training neural networks; (4) predicting on test or real datasets using optimized neural net-

works. Note that simulations can be skipped if the user already possesses a labeled dataset. Similarly, training can be skipped if the user reuses a pre-trained network. Here is a

subset of options at each step: (1a) generating simulations: name of predefined scenario to be simulated and its related parameters, such as number of individuals, number of

replicates, mutation rate and demographic parameters; (1b) handling simulations: location on disk and filesystem layout; (2) preprocessing: initial data transformations, filter-

ing values such as minimal number of sampled individuals or SNPs; (3a) architecture design: network name and related arguments (number of filters, layers,. . .); (3b) training:

loss functions, optimization and training hyperparameters (number of epochs, learning rate, batch size, optimizer name,. . .); (3c) on-the-fly data transformations (subsampling,

cropping,. . .). (B, C) Illustration of two standard use cases of dnadna. (D) Extract of a training configuration file in YAML format. (E) View of a plugin python file that will be

passed to dnadna train, where users can implement novel networks based on PyTorch. F: Illustration of a regression task with a pre-trained network. Here we only need to

use ‘dnadna predict’ since the network is already trained. Dotted lines denote true known histories, while boxplots indicate the population sizes predicted for 100 independent

genomic regions at each time step. The estimates for a ‘complete’ genome are given by the averaged predicted values. The error corresponds to the relative squared errors aver-

aged over the whole time period. (G) Illustration of a classification task, following Quickstart tutorial 2. The network was trained on a toy dataset (2000 independent popula-

tion samples split into training and validation) and tested on 2000 additional samples to discriminate whether the population underwent a decline or an expansion of its size.

The contingency table shows that for this classification task, the accuracy is 85.3% on a test set. See mlgenetics.gitlab.io/dnadna/tutorials.html for details on

both experiments

2 T.Sanchez et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btac765/6851140 by guest on 19 M
ay 2024

http://mlgenetics.gitlab.io/dnadna/tutorials.html


handle population genetic datasets and tasks. For these reasons, we
developed dnadna, Deep Neural Architectures for DNA, a task-
agnostic software (in the context of population genetics) that aims

at facilitating applications, development, distribution and exchanges
around neural networks in the field.

2 Software

dnadna is a python-based software for population genetics infer-
ence that enables researchers to (i) develop new networks or
re-use existing architectures, (ii) train them for a given task

(regression, classification or a mix of those) and (iii) share them
in such a way that users can easily apply these trained networks

to their own dataset. In particular, it already implements several
neural networks that have been tested for inferring demographic
and adaptive histories from genetic data. Pre-trained networks

can be used directly on real and simulated genetic data for the
prediction step. Networks can also be re-trained on new simula-

tions (e.g. corresponding to another species or evolutionary
model) and/or to solve other tasks (e.g. classifying introgressed
versus non-introgressed segments or inferring recombination).

Finally, any user can implement new architectures and tasks,
while benefiting from training procedure, test environment, rou-
tines that may be otherwise overlooked (such as proper prepro-

cessing or efficient data loading), and the possibility to easily
share a network to facilitate re-use and benchmarking.

Figure 1 provides an overview of dnadna steps. It is accessible
without coding knowledge thanks to its YAML configuration files

which provide the user with a variety of options at each step of the
process. Because each use case has its own specificity, we developed
a system which allows users to implement plugins (e.g. data trans-

formations, simulators or networks) without modifying the core of
the code.

dnadna is a Python (�3.7) package with multiple dependencies,
the main one being the open-source machine learning library

PyTorch. It has a command line interface and an application pro-
gramming interface (API) (mlgenetics.gitlab.io/dnadna/
api.html). It is highly flexible thanks to a structured configuration

file system based on YAML and JSON Schema. dnadna is dual-
licensed under the GNU Lesser General Public License (LGPLv3þ)
and the compatible CeCILL-C Free Software License Agreement.

Release 1.0 is available from PyPI at pypi.org/project/
dnadna/ and Anaconda at anaconda.org/mlgenetics/
dnadna. Docker images are available at hub.docker.com/u/
mlgenetics.

3 Tutorial examples

We showcase various dnadna use cases via tutorials that will

continue to expand. It is not required to have coding knowledge
to perform similar tasks. A first tutorial walks the user through

the complete process from configuring and generating simulated
genetic data, to running data pre-processing and training a convo-
lutional network to solve a regression task (here predicting the

parameters of a two-step population size history). A second tutor-
ial solves a classification task instead (Fig. 1G). A third tutorial

helps users who already have simulated data, to familiarize them-
selves with dnadna and train a SPIDNA network on a provided
dataset. Finally, we provide tutorials in the form of jupyter note-

books (mlgenetics.gitlab.io/dnadna/tutorials.html
and Fig. 1F).

Acknowledgements

TAU and Kepler GPU platforms and their managers. M Fumagalli and the

participants of the School ‘Inference using full genome data’ (DFG SPP1819)

for beta-testing. S Ribeiro for her comments.

Funding

DIM One Health 2017 RPH17094JJP, Human Frontier Science Project

RGY0075/2019, Paris-Saclay CDS 2.0 (IRS), French National Center for

Scientific Research (CNRS) 80Prime fellowship TransIA, Agence Nationale

de la Recherche ANR-20-CE45-0010-01 RoDAPoG.

Conflict of Interest: none declared.

Data availability

The data underlying this article are available in its associated online
software repository.

References

Adrion,J.R. et al. (2020a) A community-maintained standard library of popu-

lation genetic models. eLife, 9, e54967.

Adrion,J.R. et al. (2020b) Predicting the landscape of recombination using

deep learning. Mol. Biol. Evol., 37, 1790–1808.

Battey,C. et al. (2020) Predicting geographic location from genetic variation

with deep neural networks. eLife, 9, e54507.

Battey,C.J. et al. (2021) Visualizing population structure with variational

autoencoders. G3, 11, 1–11.

Borowiec,M.L. et al. (2022) Deep learning as a tool for ecology and evolution.

Methods Ecol. Evol., 13, 1640–1660.

Burger,K. et al. (2022) Neural networks for self-adjusting mutation rate esti-

mation when the recombination rate is unknown. PLoS Comput. Biol., 18,

e1010407.

Chan,J. et al. (2018) A likelihood-free inference framework for population

genetic data using exchangeable neural networks. In: Advances in

Neural Information Processing Systems, Montréal, Canada, Vol. 31,

pp. 8603–8614. https://dblp.org/rec/conf/nips/ChanPSJMS18.html?view¼
bibtex.

Deelder,W. et al. (2021) Using deep learning to identify recent positive selec-

tion in malaria parasite sequence data. Malaria J., 20, 270.

Flagel,L. et al. (2019) The unreasonable effectiveness of convolutional neural

networks in population genetic inference. Mol. Biol. Evol., 36, 220–238.

Fonseca,E.M. et al. (2021) Phylogeographic model selection using convolu-

tional neural networks. Mol. Ecol. Resour., 21, 2661–2675.

Gower,G. et al. (2021) Detecting adaptive introgression in human evolution

using convolutional neural networks. eLife, 10, e64669.

Isildak,U. et al. (2021) Distinguishing between recent balancing selection and

incomplete sweep using deep neural networks. Mol. Ecol. Resour., 21,

2706–2718.

Kopp,W. et al. (2020) Deep learning for genomics using janggu. Nat.

Commun., 11, 3488.

Meisner,J. and Albrechtsen,A. (2022) Haplotype and population structure in-

ference using neural networks in whole-genome sequencing data. Genome

Res., 32, 1542–1552.

Montserrat,D.M. et al. (2019) Class-conditional VAE-GAN for local-ancestry

simulation. In: The 14th Machine Learning in Computational Biology

(MLCB) meeting. https://dblp.org/rec/journals/corr/abs-1911-13220.html.

Perez,M.F. et al. (2022) Coalescent-based species delimitation meets deep

learning: insights from a highly fragmented cactus system. Mol. Ecol.

Resour., 22, 1016–1028.

Qin,X. et al. (2022) Deciphering signatures of natural selection via deep learn-

ing. Brief. Bioinformatics, 23. https://doi.org/10.1093/bib/bbac354.

Routhier,E. et al. (2021) keras_dna: a wrapper for fast implementation of

deep learning models in genomics. Bioinformatics, 37, 1593–1594.

Sanchez,T. et al. (2021) Deep learning for population size history inference:

design, comparison and combination with approximate Bayesian computa-

tion. Mol. Ecol. Resour., 21, 2645–2660.

Torada,L. et al. (2019) ImaGene: a convolutional neural network to quantify

natural selection from genomic data. BMC Bioinformatics, 20, 337.

Wang,Z. et al. (2021) Automatic inference of demographic parameters using

generative adversarial networks. Mol. Ecol. Resour., 21, 2689–2705.

Xue,A.T. et al.; Ag1000g Consortium. (2021) Discovery of ongoing selective

sweeps within anopheles mosquito populations using deep learning. Mol.

Biol. Evol., 38, 1168–1183.

Yelmen,B. et al. (2021) Creating artificial human genomes using generative

neural networks. PLoS Genet., 17, e1009303.

Zhang,Z. et al. (2021) An automated framework for efficiently designing deep

convolutional neural networks in genomics. Nat. Mach. Intell., 3, 392–400.

dnadna 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btac765/6851140 by guest on 19 M
ay 2024

http://mlgenetics.gitlab.io/dnadna/api.html
http://mlgenetics.gitlab.io/dnadna/api.html
http://pypi.org/project/dnadna/
http://pypi.org/project/dnadna/
http://anaconda.org/mlgenetics/dnadna
http://anaconda.org/mlgenetics/dnadna
http://hub.docker.com/u/mlgenetics
http://hub.docker.com/u/mlgenetics
http://mlgenetics.gitlab.io/dnadna/tutorials.html
https://dblp.org/rec/conf/nips/ChanPSJMS18.html?view&hx003D;bibtex
https://dblp.org/rec/conf/nips/ChanPSJMS18.html?view&hx003D;bibtex
https://dblp.org/rec/journals/corr/abs-1911-13220.html
https://doi.org/https://doi.org/10.1093/bib/bbac354

