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About |

The European Mechanics Society is an international non-governmental non-profit scientific
organization. The objective of the Society is to engage in all activities intended to promote
in Europe the development of mechanics as a branch of science and engineering. The present
colloquium is part of the European Mechanics Society Colloquia series.

Machine learning methods for prediction and control of
turbulent flows

The steady rise of machine learning techniques, combined with the availability of affordable
sensor arrays, has had a tranformative impact in a large number of scientific fields. With
the dramatic increase in data accessibility and computational power, traditional model-
based approaches in engineering are giving way to a data-enhanced paradigm. Prediction
and control of turbulent flows, a challenging area of engineering sciences, are no exception
in this respect. Despite early attempts, the successful control of such complex systems
by machine learning techniques raises specific issues such as weak observability or an
exhaustive range of temporal and spatial scales. Moreover, the effective incorporation of
knowledge about the physical system, such as symmetries, invariances or conservation
laws, into the learning process is far from trivial.

Nonetheless, recent success of machine learning techniques in the prediction of chaotic
dynamical systems and control of highly nonlinear flows has fueled a great many research
efforts and has shown that progress in this field critically relies on an interdisciplinary skill
set, ranging from applied mathematics and machine learning to physics, from compute
science to experimental methods. The aim of this workshop is thus to bring together
control practitioners, fluid dynamicists and machine learning experts to critically review
recent developments in the field and identify both opportunities and challenges in using
machine learning techniques for high-dimensional physical systems. The workshop should
act as a forum for exchanging ideas and as an occasion to learn and discuss.
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Timetable [

CT: Contributed Talk, KL: Keynote Lecture.

Wednesday, 16 of June

8:50-9:00 Welcome remarks
9:00-10-00 KL W. Zhang Machine learning for complex flow and
flow active control

L. Magri, A. Racca and N.

10:00-10:20 Doan Physics-aware reservoir computing for

chaotic learning

Online parameter inference for the
simulation of a Bunsen flame using
heteroscedatic Bayesian neural
networks ensembles

M. Croci, U. Sengupta
10:20-10:40 and M. Juniper

10:40-11:10 Coffee
J. Yang, S. Lee, S.
Bagheri, A. Stroh and P.
Forooghi

Towards and active learning-based
model for prediction of roughness
hydrodynamic properties

11:10-11:30

M. Frihat, M. Malhomme, . . L .
B. Podvin, L. Mathelin, Y. Unsupervised identification of motifs in

11:30-11:50 Fraigneau and F. Yvon turbulent flows using Latent Dirichlet

Allocation
D. Carter, F. De Voogt
11-50-12:10 and B. Sparse reconstruction of flow over a
' ' Ganapathisubramani stalled aerofoil using experimental data
A. Colon de Carvajal, P. .
12:10-12:30 Gilotte and |. Mortazavi Reduced order model!ng .for shear layer
control over an inclined step
12:30-14:00 Lunch

T. Sapsis

14:00-15:00 KL TBA




15:00-15:20

S. Lee, J. Yang, P.

Forooghi, A. Stroh and S.

A transfer learning framework to learn
the Hama roughness function from a

Bagheri small dataset and empirical correlations
R. Semaan, D. Fernex and .
15:20-15-40 B. Noack Cluster-based netwgrk modeling of
complex dynamical systems
15:40-16:10 Coffee
Tt W, Monke and 10 0 e
16:10-16:30 W. Schréder ! cp P .
derived theoretically and via genetic
programming
A. Girayhan Ozbay, A.
Hamzehloo, S. Laizet, P. General-purpose neural 2D Poisson
16:30-16:50 Tzirakis, G. Rizos and B. PUrh o
solver with applications to CFD
Schuller
P. Baddoo, B. Herrmann,
16:5017-10 B. McKeon and S. Kernal learning for Robu-s‘.t Dynamic
Brunton Mode Decomposition
E. Farzamnik, A. laniro, S.
17-10-17-30 Discetti, N. Deng, B. A manifold learner for wake flows:

Noack and V. Guerrero

application to the fluidic pinball




Thursday, 17 of June

Parametrized flows: examples of

9:00-10:00 KL A. lollo convergence between data and
computational science
G. Haller, S. Jain and M. Nonlinear model reduction from
10:00-10:20 Cenedese equations and data to spectral
submanifolds
B. Hug, E. Mémin and G. Koopman eigenfunctions estimation
10:20-10:40 Tissot from reproducing kernel Hilbert space
manifold and ensemble forecasts
10:40-11:00 Coffee
machine learning and data assimilation
N. Deng, B. Noack, M. Galerkin force model for transient and
11:20-11:40 Morzynski and L. Pastur post-transient dynamics — exemplified

for the fluidic pinball

E. Menier, M. A. Bucci,
M. Yagoubi and M. Complementary deep-reduced order

11:40-12:00 Schoenauer model

12:00-14:00 Lunch

Infusing physical and numerical
structure into Autoencoders for
operator-theoretic decomposition and
model reduction of spatio-temporal
dynamics

14:00-15:00 | KL K. Duraisamy

R. Heinonen and P.

15:00—15:20 Diamond Learning how structures form in

drift-wave turbulence

L. Fery, B. Durbrulle, B.

Podvin, F. Pons and D. Identification of sea level pressure

15:20-15:40 Faranda anomaly patterns using Latent
Dirichlet Allocation
15:40-16:10 Coffee
J. McArt, J. Sirignano and Learning subgrid-scale turbulence
16:10-16:30 J. Freund models: coupling back-propagation
with adjoint flow equations
H. Bae and P. : . .
16:30-16-50 Koumoutsakos Multi-agent reinforcement learning of
wall-modeled LES
16:50-17-10 D. Bezgin and N. Adams Neural ODES as PDF turbulence

models




17:10-17:30

M. Buzzicotti, T. Li, F.
Bonaccorso, P. Clark Di
Leoni and L. Biferale

Reconstruction of turbulent data with
deep generative models for semantic
inpainting from TURB-Rot database




Friday, 18 of June

Equation-informed and data-driven

9:00-10:00 KL L. Biferale tools for Eulerian and Lagrangian
turbulent problems
T. Guégan, M. A. Bu‘.:c" Closed-loop control of complex
10:00-10:20 O. Semeraro, L. Cordier systems using deep Reinforcement
and L. Mathelin .
Learning
P.Y. Passaggia, N. Experimental closed-loop control of an
10:20-10:40 Mazellier and A. Kourta airfoil using linear genetic programming
at high Reynolds numbers
10:40-11:10 Coffee
Y. Li, Z. Yang, M.
11-10-11-30 Morzynski, Z. Qiao, S. Explorgtive gradient method for
' ' Krajnovic and B. Noack multi-actuator flow control
G. Y. Cornejo Maceda, Y. Gradient-based machine learning
11-30-11:50 Li, F. Lusseyran, M. control exemplified for the stabilization
’ ' Morzynski and B. Noack of the fluid pinball and open cavity
experiment
R. Paris, S. Beneddine and Deep reinforcement learning for
11:50-12:10 J. Dandois nonlinear closed-loop flow control and
sensor placement
12:10-14:00 Lunch
A. Ferrero, F. Laracca, A. Machine learning methods for the
14:00-14:20 lollo and T. Philibert simulation of turbulent flows in
turbomachinery
P. S. Volpiani, M. Meyer,
D:;dF;;nc:S;h;:;cJ'E. Mahcine—learning augmented
14:20-14:40 . ’ ’ turbulence modeling for RANS
Martin, O. Marquet and D. . . o
. simulations of flows over periodic hills
Sipp
symbolic identification
A. Lozano-Duran and H. Wall model for LES based on
15:00-15:20 Bae L
building-block flows
15:20-15:50 Coffee
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Developing generalizable data-driven
model augmentations using learning
and inference asssisted by
feature-space engineering

V. Srivastava and K.
15:50-16:10 Duraisamy

K. Fukami and K. Taira Machine-learned invariant map for

16:10-16:30 tubulent flow analysis and modeling
16:30-17:30 | KL E. M. Bollt TBA
17:30 Closing words
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List of Abstracts — Talks [

Due to IATEX formatting issue, figures had to be stripped from the abstracts. We apologize
for the inconvenience.

Wednesday 16th

Physics-aware reservoir computing for chaotic learning

L. Magrit*, A. Racca*, and N. A. K. Doan® >

The ability of fluid mechanics modelling to predict the evolution of a flow is enabled by
physical principles and empirical approaches. Physical principles, for example conservation
laws, are extrapolative (until the assumptions upon which they hinge break down): they
provide predictions on phenomena that have not been observed. Human beings are
excellent at extrapolating knowledge because we are excellent at finding physical principles.
Empirical modelling provides correlation functions within data. Artificial intelligence and
machine learning are excellent at empirical modelling.

In this talk, the complementary capabilities of both approaches will be exploited to
predict chaotic flows. The focus of the talk is on computational methodologies for
learning dynamics of chaotic flows from data. Applications are aimed at hidden variable
reconstruction, learning of long-term statistics from short-time data, filtering stochastic
noise out of data to learn the deterministic structures, and time-accurate prediction of
turbulence. Three physics-aware architectures are presented: physics-informed echo state
networks (PI- ESN), automatic-differentiated physics-informed echo state networks (API-
ESN), and auto-encoder echo state networks (AE-ESN). The flows under investigation
are chaotic and 2D turbulent.
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Online parameter inference for the simulation of a Bunsen flame using
heteroscedatic Bayesian neural network ensembles

M. Crocit, U. Senguptal and M. Juniper?

The prediction and control of thermoacoustic instability is a persitent challenge in jet and
rocket engine design. In gas turbines, the drive toward lower NO, emissions has led to
the use of lean premixed combustion, which is particularly susceptible to thermoacoustic
Instabilities. Thermoacoustic instaiblity is caused by the heat release rate and the pressure
being in phase during combustion. Heat release are fluctuations are cuase by flame
surface area fluctuations, which in turn are caused by velocity perturbations and flame
dynamics. Any physics-based model must therefore contain the flame's response to
velocity perturbations. This response can be calculated using detailed CFD simulations of
the flame. However, these CFD simulations are expensive. In this work, we use data to
tune the parameters of physics-based reduced-order models in order to reduce the cost
while retaining as much accuracy as possible.

We suggest an inexpensive and easy to implement parameter estimation technique that
uses a heteroscedatic Bayesian neural network trained usng anchored ensembling. The
heteroscedatic aleatoric error of the network models the irreducible uncertainty due to
parameter degeneracies in our inverse problem, while the epistemic uncertainty of the
Bayesian model captures uncertainties which may arise from an input observation’s out-
of-distribution nature. We ue this tool to perform real-time parameter inference in a 6
parameter G-equation model of a ducted, premixed flame from observations of acoustically
excited flames. We train our networks on a library of 1.7 observations of 8500 simulations
of the flame edge, obtained using the model with known parameters. Results on the test
dataset of simulated flames show that the network recovers flame parameters, with the
correlation coefficient between predicted and true parameters ranging from 0.97 to 0.99,
and well-calibrated uncertainty estimates. The trained neural networks are then used to
infer model parameters from real videos of a premixed Bunsen flam captured using a
high-speed camera in our lab. Re-simulation using inferred parameters shows excellent
agreement between the real and simulated flames. Compared to Ensemble Kalman Filter-
based tools that have proposed for this problem in the combustion literature, our neural
network ensemble achieves better data efficiency and our sub-millisecond inference times
represent a savings on computational costs by several orders of magnitude. This allows
us to calibrate our reduced order flame model in real-time and predict thermoacoustic
instability behaviour of the flame more accurately.
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Funding: This project has recieved funding from the UK Enginerring and Physical
Sciences Research Council (EPSRC) award EP/N509620/1 and from the European
Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie

grant agreement number 766264.
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Towards an active learning-based model for prediction of roughness
hydrodynamic properties

J. Yang!, S. Lee?, S. Bagheri?, A. Stroh!, and P. Forooghi®

Roughness is encountered in a variety of engineering applications since many industrial
processes can cause surface roughness, for instance, ice accretion on airplanes, bio-fouling
on ships, etc. The roughness on solid surfaces in flow-related applications can enhance
the near wall momentum transfer, thus it increases the skin friction. This can translate to
significantly altered equipment performances. The increase of skin friction is represented
by a downward shift in the mean velocity profile compared with a smooth surface at
identical friction Reynolds number Re; . This downward shift in the logarithmic layer
is known as the roughness function AU . Prediction of the roughness function is
central to estimation of drag force and modeling of turbulent flow over a rough surface.
However, AU" is not known a priori for any given rough surface, and for every new
roughness topography, AU needs to be determined using a laboratory or high fidelity
numerical experiment, which are both costly. As an alternative to the resource demanding
(numerical) experiments, predictive 'roughness correlations’ have been extensively used
by researchers and engineers. These correlations predict the roughness function solely
based on topographical properties of roughness. In recent years, data-driven methods
have been successfully used in a wide range of industrial applica- tions. Due to the
complex geometry of roughness and the stochastic nature of turbulent flow, the roughness
correlations proposed in previous research show difficulties in extrapolating its performance
of predicting roughness function outside the range of observation. We argue that in order
to achieve a universal roughness predictive model that covers all types of realistic surfaces,
an adequately large roughness database with sys- tematically varied roughness properties
should be generated. However an obstacle that can stop researchers from fulfilling this
task is the cost of determining AU for many surfaces using either laboratory or numer-
ical experiments. In other words, cost of 'labeling’ data points in a roughness database
can be prohibitively large. Therefore, for development of a data-driven roughness model,
it is absolutely desired to select the labeled roughness samples as efficiently as possible.

In the present work, we aim at developing an efficient active learning (AL) framework for
constructing the roughness database as well as training a deep neural network (DNN) for
prediction of roughness function based on this framework. A large roughness repository
Is generated through a mathematical random rough- ness generation method where the
power spectrum (PS) and the PDF of the roughness height are prescribed. The idea is to
identify the most representative roughness samples in the repository, based on the AL
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frame- work, and label them by a painstaking direct numerical simulation (DNS) process.
With the proposed AL framework, the model is initially trained by a initial roughness
dataset with 20 randomly selected surfaces and subsequently enhanced by a small amount
of roughness samples (= 20) additional surfaces guided by AL. It is shown that by adding
a few representative roughness samples to the training set, the uncertainty of the model
prediction can be reduced. The resulting model is also tested on four realistic surfaces
with engineering background. With the first iteration of AL, the accuracy of the model
predictions for these exemplary realistic surfaces are also significantly promoted. Overall,
the results demonstrate the potential of the present AL framework, which will be the
basis for future research towards a universal predictive tool.

Acknowledgement Jiasheng Yang and Pourya Forooghi gratefully acknowledge financial
support from Friedrich und Elisabeth Boysen-Foundation (BOY-151). Sangseung Lee and
Shervin Bagheri gratefully acknowledge support from the Swedish Energy Agency under
Grant number 51554-1 and Swedish Foundation for Strategic Research (FFL15-001).
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Unsupervised identification of motifs in turbulent flows using Latent
Dirichlet Allocation

M. Frihat!, N. Malhomme!, B. Podvin?, L. Mathelin!, Y. Fraigneau!, and F. Yvon?

The identification of coherent structures in turbulent flows is a recurrent problem. The
volume of data available requires the development of adapted post-treatment strategies
which can benefit from machine learning strategies. Proper Orthogonal Decomposition
and Dynamic Mode Decomposition have been successfully used to identify modes, but the
support of the modes is not necessary local, which makes them different from coherent
structures. they are not directly associated with a probabilistic representation. In this
work we consider a clustering method which is based on Latent Dirichlet Allocation (LDA),
a statistical technique used in natural language processing. The technique is applied to a
collection of snapshots representing Reynolds stress events in a turbulent channel flow at
a moderate Reynolds number Re, = 590. Different plane sections, as well as a volumetric
section, are considered. Examples of motifs in a plane section are given in figure 1!,
Results are consistent with the wall-attached model. It is found that motifs scale linearly
with their distance from the wall, and that the distribution of motifs scale as the inverse
of that distance, which is in agreement with the wall-attached model theory.

1Due to IATEX formatting issue, the figure could not be included in this book of abstract. We apologize
to the authors.
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Sparse reconstruction of flow over a stalled aerofoil using experimen-
tal data

D. Carter?, F. De Voogtn and B. Ganapathisubramani

Recent work has demonstrated the use of sparse sensors in combination with the proper
orthogonal de- composition (POD) to produce data-driven reconstructions of the full
velocity fields in a variety of flows. The extent of application of these methods reaches
far beyond observable flows, such as sparse sensing of atmospheric or ocean flows. More
complex flows require a larger basis, obtained from POD, to capture a similar level of
accuracy in the reconstruction. As such data driven methods become more challenging
due to the increasing size of models required.

In this work, we aim to combine the outcomes from POD based analyses with Machine
Learning strate- gies to improve the prediction capabilities using sparse sensors in turbulent
flow relevant to aerodynamic applications. We utilize a time-resolved Particle Image
Velocimetry dataset obtained in a water channel experiment of a NACA 0012 aerofoil at
Rec = 75000 at an angle of attack a = 12° . The flow is stalled at this angle with a
large turbulent separation bubble in the suction side of the airfoil that sheds vorticity into
the wake chaotically. Such a stalled flow over the airfoil requires a large number of basis
(or modes) for reconstruction. This allows us to investigate the extent of data-driven
techniques for the reconstruction of complex flows. We compare both POD-based sensor
selection strategies and random sensor locations that allow us to predict a reduced-state
of the flow field. The reduced state is based on a limited number of POD modes (which
is related to the number of sensors that can be used). To further improve the accuracy of
reconstruction, non-linear Machine Learning methods based on Shallow Neural Networks
(SNN) are used to augment the output from the POD-based technique. Alternatively,
SNN can be used as a model to transform the sensor velocities into the corresponding
reduced state. Preliminary results indicate that a simple 2-layer network can reduce the
reconstruction error for both random selected probes and probes optimized for POD.
Limitations of using SNN for these types of problems will be discussed.
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Reduced order modeling for shear layer control over an inclined step

A. Colon de Carvajal®, P. Gilotte?, and |. Mortazavit

Pressure gradient behind a detachment zone is always difficult to predict. The flow
detachment induced by an inclined surface could help understanding mechanisms that
are important to cpature. Experiments peformed and described in Stela et al. (J. Fluid
Mech., 2017) explain the strong influence of the shear layer characteristics in the flow
reattachment process. It could therefore be intestering to contribute to this phenomena
description thanks to a reduced order model established with dynamic mode decomposition
(DMD). The current study is based on 3D computational results obtained with a LES
solver using a Least-Squares Galerkin emthod. The original uncontrolled flow and a
successfully controlled flow are compared to analyze into detail the interaction between
the shear layer and the flow recirculation. The flow control is performed thanks to periodic
Jets re-energetizing the shear layer at the limit of a detachment edge. This momentum
addition to the shear layer could, at certain frequencies, induce an increase of the pressure
on the ramp in the recirculation zone. A DMD analysis of the flow will shed light on the
frequencies that are energitcally modified.

The anlyzed shear layer is generated from the detachment produced by an inclined surface
at an angle of 25°. Inflow periodic conditions at the shap edge enable to increase the
momentum leading to a reduction of the recirculation zone as well as the turbulent
kinetic energy. However, the link between these inflow conditions and its effect on the
flow behaviour need to be further studied to better understand the shear layer dynamics.
Therefore, DMD allows the decomposition into different frequency modes that are involved
in this energy transfer. This presentation will detail the different steps which are necessary
to perform this decomposition and will contribute to the energy transfer mechanism.
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A transfer learning framework to learn the Hama roughness function
from a small dataset and empirical correlations

Sangseung Lee!, J. Yang?, P. Forooghi®, A. Stroh?, and S. Bagheri!

Nearly all surfaces in fluid-related industries are rough at their operating Reynolds numbers,
and this rough- ness generates additional drag compared to ideally smooth surfaces.
Moreover, roughness of surfaces can increase after being exposed to flows because of
fouling or wear. Therefore, regular examination of surface roughness and its drag is crucial
to prevent excessive energy loss and carbon emission. The additional drag induced by
roughness can be calculated by measuring the downward shift in the inner-scaled mean
stream- wise velocity of flow over a rough surface compared to the flow over a smooth
surface. This downward shift is known as the Hama roughness function. The two main
constituents that govern the Hama roughness function are the rough surface topography
and the friction velocity. Thus, full interactions between flow and rough structures must
be captured, or at least accurately modeled, to calculate the Hama roughness function.

For realistic surfaces with irregular rough structures, there are no universal models that can
accurately reproduce the effect from interactions between flow and rough structures due
to the high-dimensional space of surface features. Accordingly, high-resolution numerical
simulations or experiments are needed to accu- rately measure the Hama roughness
function. In industries, the high cost for performing simulations and experiments obstructs
regular measurements of drag on rough surfaces, making it difficult to plan cycles for
cleaning or replacing surfaces. The recent developments in neural networks have shown
the potential of estimating drag of rough surfaces without expensive simulations or
experiments. Nevertheless, the difficulty of obtaining a large number of data samples to
train a network from scratch is still deterring the practical usage of neural networks in
fluid-related industries.

In this study, we aim to learn a mapping of surface topography to the Hama roughness
function from a small number of data samples (~ 10). We propose a transfer learning
framework that augments a network with an ensemble of known empirical correlations of
drag on rough surfaces. The developed framework is found to improve the learning of the
Hama roughness function compared to existing methods. This framework can be applied
to practical applications where only a limited number of data samples is acquirable.

20



Acknowledgement This work was supported by the Swedish Energy Agency under
Grant number 51554-1, Swedish Foundation for Strategic Research (FFL15-001), and
Friedrich und Elisabeth Boysen-Foundation (BOY-151).
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Cluster-based network modeling of complex dynamical systems

R. Semaan?, D. Fernex!, and B. Noack? 3

Climate, epidemiology, brain activity, financial markets, and turbulence constitute examples
of complex systems. They are characterized by a large range of time and spatial scales,
intrinsic high dimensionality, and nonlinear dynamics. Dynamic modeling for the long-
term features is a key enabler for understanding, state estimation from limited sensor
signals, prediction, control, and optimization. Data-driven modeling has made tremendous
progress in the past decades, driven by algorithmic advances, accessibility to large data, and
hardware speedups. Typically, the modeling is based on a low-dimensional approximation
of the state and system identification in that approximation.

In this conference, we present a novel modeling paradigm starting with a time-resolved
snapshot set. We liberate ourselves from the requirement of a low-dimensional subspace
or manifold for the data and the ana- lytical simplicity assumption of the dynamical
system. The snapshots are coarse-grained into a small number of centroids with clustering.
The dynamics is described by a network model with continuous transitions be- tween
the centroids. The resulting cluster-based network modeling (CNM) uses time-delay
embedding to identify models with an arbitrary degree of complexity and nonlinearity. The
methodology is developed within the network science and statistical physics frameworks.
The talk shall present the latest advances in CNM and demonstrates its capabilities on a
range of applications, such as the Lorenz attractor, ECG heartbeat signals, Kolmogorov
flow, and a high-dimensional actuated turbulent boundary layer. Even the notoriously
difficult modeling benchmark of rare events in the Kolmogorov flow is solved.
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Comparison of drag correlation functions for ellipsoidal particles de-
rived theoretically and via genetic programming

T. Kiwitt!, M. Meinke!, and W. Schroder?,

With the rise in computational power, artificial intelligence (Al) has offered unprecedented
possibilities such as, e.g., automatic vehicle driving, disease detection, or the investigation
of non-linear physical systems. The possible areas in the latter subject are very broad and
can range from the general understanding of non-linear dynamics, over assistance in the
evaluation of experimental analysis, to the modulation of drag.

Particle-laden flows are of utmost importance in a wide variety of applications in natural
and technical environments. Recently, the effort of using renewable energy sources such
as biomass particles has increased. The geometry of biomass particles, which are, e.g.,
nut shells or wood chips, can no longer be approximated by spheres, instead they are of
ellipsoidal shape. For heavy rigid particles, the expressions used to de- scribe the particle
behavior in Lagrangian point-particle models are mostly reduced to the drag force. It
is therefore vital to derive an accurate correlation function to properly predict the drag
between the particle and the fluid to conduct highly accurate numerical simulations and
maximize the process efficiency and safety.

In this contribution, a comparison between correlation functions for the drag Cgyrag of
an ellipsoidal particle in uniform flow conditions derived theoretically and by an artificial
intelligence approach, the lat- ter being represented by a genetic programming (GP)
method, is conducted. The accuracy, complexity, and applicability of each approach will
be discussed and individual advantages and limitations will be argued.

The results indicate that the theoretically derived equation shows superior accuracy in
exchange for higher complexity, i.e., the human-derived equation shows a mean deviation
of ACqrag = 0.83% while the equation generated by the GP approach yields an accuracy
ACgrag = 1.65%. Comparing the complexity of both equations, the Al derived equation
Is shorter and more compact.

Advantages and limitations of both approaches are discussed. The theoretical derivation of
a correlation equation is based on physical knowledge. In contrast, Al-derived correlation
equations allow an automated approach which can be easily extended to large data sets.

In an additional investigation the GP algorithm is trained to predict whether or not flow
separation on the surface of an ellispoid will occur based on the input parameters Reynolds
number Re, particle aspect ratio 3, and particle inclination angle ¢. The comparison with
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fully resolved simulation data show that the algorithm is able to predict the onset of flow
separation with 94% accuracy.
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Poisson CNIN: a general purpose neural 2D Poisson solver with appli-
cations to CFD

A. Girayhan Ozbay!, A. Hamzehloo!, S. Laizet!, P. Tzirakis?, G. Rizos?, and B.
Schuller?

The Poisson equation plays a central role in the computation of the pressure corrections
when solving the incompressible Navier-Stokes equations in computational fluid dynamics
(CFD). Machine learning methods offer a unique capability to accelerate this step. We
introduce Poisson CNN, a novel convolutional neural network (CNN) architecture to
estimate the solution of the Poisson equation on 2D Cartesian grids, capable of making
predictions for problems with differing grid resolutions/sizes and arbitrary Dirichlet or
Neumann boundary conditions without re-training. The boundary condition flexibility
Is achieved by an innovative approach whereby the problem is decomposed into one
homogeneous Poisson problem plus four inhomoge- neous Laplace sub-problems, with
one sub-model per sub-problem type; Homogeneous Poisson NN (HPNN) and Boundary
Condition NN (BCNN), respectively. Training is conducted on a synthetic dataset with 192
to 384 gridpoints per dimension, using a novel loss function approximating the continuous
Lp norm between the prediction and the target.

The proposed Poisson CNN achieves high accuracy in a variety of practical tasks, despite
training on synthetic data. On a purely synthetic validation set, the Poisson CNN achieves
mean absolute percentage errors (MAPE) of just 8.5%. The individual sub-models were
compared to models commonly utilized in machine learning literature; using the same
number of parameters, the HPNN achieved MAPE values 74% lower than a U-Net on the
same task while the BCNN netted a 64% reduction compared to a Bi-LSTM. In a CFD
context, within a Taylor-Green Vortex (TGV) simulation at Re = 1.0 utilizing single-cycle
Multigrid as the Poisson solver, using initial predictions from the Poisson CNN enabled a
99.3% reduction in the £, pressure error at time t = 1.0 versus zero initial predictions.
Furthermore, it was found that the Poisson CNN can accelerate Multigrid convergence on
grid sizes far larger than those encountered in training, reaching up to 4500 x 4500. In
terms of wall-clock runtime, on an Nvidia V100, the Poisson CNN is similar to Multigrid
on 384 x 384 grids but is 5 times faster on 4500 x 4500 grids.
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Kernel Learning for Robust Dynamic Mode Decomposition

P. J. Baddoo?, B. Herrmann? 3, B. J. McKeon*, and S. L. Brunton?

Discovering interpretable patterns and models from high-dimensional data is one of the
principal challenges of scientific machine learning, with the potential to transform our
ability to predict and control turbulent systems. Generalized linear regression techniques,
such as the dynamic mode decomposition (DMD), and the sparse identification of nonlinear
dynamics (SINDy), are widely used because they are computationally efficient, require
less data than neural networks, are highly extensible, and provide interpretable models.
However, these approaches are either challenged by nonlinearity (e.g., DMD) or don't
scale to high-dimensional systems (e.g., SINDy). In this work, we develop a custom
kernel regression algorithm to learn accurate, efficient, and interpretable data-driven
models for strongly nonlinear, high-dimensional systems. This approach scales to very
high-dimensional systems, unlike SINDy, yet still accurately disambiguates the linear part
of the model from the implictly defined nonlinear dynamics. Thus, it is possible to obtain
linear DMD models, local to a given base state, that are robust to strongly nonlinear
dynamics. Essential to the framework is the construction of a 'dictionary’ of samples that
appreciably contribute to the dynamics. Restricting the regression to this carefully chosen
dictionary reduces overfitting, improves the condition number of the problem, and renders
the problem computationally tractable. We also demonstrate that there is significant
flexibility to incorporate known physical laws (e.g., types of nonlinearities, symmetries,
multi-physics) into kernel design. We apply our algorithm to a range of dynamical systems
and partial differential equations commonly used to model turbulent flows. The method
efficiently and accurately extracts the underlying linear operators of the nonlinear Lorenz
system, the viscous Burgers' equations and the chaotic Kuramoto-Sivashinsky equation
using only data measurements. The disambiguation of the linear operator from the
nonlinear forcing opens the door to purely data-driven resolvent analysis of nonlinear
problems in future works. The framework can be formulated in a compltely online fashion,
thus enabling real-time prediction and control of turbulent systems.
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A manifold learner for wake flows: an application to the fluidic pin-
ball

E. Farzamnik!, A. laniro? S. Discetti?, N. Deng® B. Noack* ® and V. Guerrero®

Reduced-order models (ROM) are highly used to analyze, model, estimate, and control
the flows. Some of the traditional methods which perform linear mapping did not show
satisfactory performance in the transient regimes of highly turbulent flows. However,
current nonlinear methods such as Isometric mapping or Isomap, which uses the geodesic
distances to preserve the dataset’s intrinsic geometry in the high- dimensional space,
provide promising results. In this work, we propose a manifold learner encoder and a
K-Nearest Neighbors (K-NN) decoder to study the complex evolution of the fluidic pinball
configuration. We show that the developed encoder-decoder tool in this work can unravel
some hidden flow phenomena, provide an interpretable relation to some flow features
like force coefficients and distinguish the flow regimes by finding the manifolds in low
dimensional space while providing outstanding robustness compared to other similar tools.
Moreover, the developed decoder in this work shows an outstanding advantage in terms of
reconstruction error compared to traditionally used POD. The promising outcomes from
using these techniques to study complex flow dynamics provide an expansive playground
for further study on developing efficient flow control systems.

Acknowledgement: This work was supported by the research project PITUFLOW-
CM-UC3M, funded by the call “Programa de apoyo a la realizacioon de proyectos in-
terdisciplinares de |+D para joovenes investigadores de la Universi- dad Carlos Il de
Madrid 2019-2020" under the frame of the Convenio Plurianual Comunidad de Madrid-
Universidad Carlos Il de Madrid.
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Thursday 17th

Nonlinear model reduction from equations and data to spectral sub-
manifolds

G. Haller!, S. Jaint, and M. Cenedese?

Determining the forced response of very large, nonlinear mechanical systems remains
a major challenge despite advances in computational power. Projection-based model
reduction techniques have been in use for this purpose but they to rely on ad hoc
mode selection and produce a priori unknown errors. In this talk, we discuss a recent
mathematical alternative to these approaches based on spectral submanifolds (SSMs)
[1], which are very low dimensional, attracting invariant surfaces in nonlinear systems.
Reduction to SSMs turns out to yield previously unimaginable speed-ups in solving large
finite-element models [2]. Very recent results also show that SSMs and their reduced
dynamics can be constructed directly from data [3]. We will illustrate these results on
high-dimensional mechanical systems and experimental data sets. We will also show
that these reduced-order models are powerful to make accurate predictions for detailed
nonlinear behavior that numerical continuation codes would normally miss.

In a broader context, even the development of the governing equations for complex
dynamical phenomena in solid and fluid mechanics are often out of reach. Examples include
beam oscillations with unknown material nonlinearities or fluid-structure interactions with
complex geometries. However, as long as these systems can, in principle, be modelled by
PDEs with an invertible linearized flow, the theory of SSMs remains valid for them. This
creates an exciting perspective to learn low-dimensional nonlinear reduced-order models
directly from experimentally measured data for these systems. We sketch the underlying
theoretical considerations and show initial successes of this approach on beam oscillations
and separated shear flow data.
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Koopman eigenfunctions estimation from reproducing kernel Hilbert
space manifold and ensemble forecast

B. Hug!, E. Mémin!, and G. Tissot?

This study aims at proposing a new framework to perform ensemble-based estimations of
dynamical trajectories of a geophysical fluid flow system. To perform efficient estimations,
the ensemble members are embedded in a set of evolving reproducing kernel Hilbert spaces
(RKHS) defining a (Hilbert) manifold of spaces. The method proposed here is designed to
deal with very large scale systems such as oceanic or meteorological flows, where it is out
of the question to explore the whole attractor, neither to run very long time simulations.
Instead, we propose to learn the system locally, in phase space, from an ensemble of
trajectories. The novelty of the present work relies on the fact that the feature maps
between the native space and the RKHS manifold are transported by the dynamical system.
This creates, at any time, an isometry between the tangent RKHS at time t and the initial
conditions. This has several important consequences. First, the kernel evaluations are
constant along trajectories, instead to be attached to a system state. By doing so, a new
ensemble member embedded in the RKHS manifold at the initial time can be very simply
estimated at a further time. This framework displays striking properties. The Koopman
and Perron—Frobenius operators on such RKHS manifold are unitary, even though the
system might be non invertible. They are furthermore uniformly continuous (with bounded
generators) and diagonalizable. As such they can be rigourously expended in exponential
forms. This set of analytical properties enables us to provide a practical estimation of
the Koopman eigenfunc- tions. In the proposed strategy, evaluations of these Koopman
eigenfunctions at the ensemble members are exact. To perform robust estimations, the
finite-time Lyapunov exponents associated with each Koopman eigenfunction (which are
easily accessible on the RKHS manifold as well) are determined. On this basis, we are
able to filter the kernel by removing contributions of the Koopman modes that exceed
the predictability time. We show that it leads to robust estimations of new unknown
trajectories. The methodology Is demonstrated on a barotropic quasi-geostrophic model
of a double gyres. After comparing various kernels and provided guidelines to adapt
the kernel with the spread of the ensemble, we show isometry and Koopman-filtered
reconstructions.

29



Data-driven flow modeling using machine learning and data assimila-
tion

N. Kumar!, F. Kerhervé!, and L. Cordier?,

In flow control, Reduced-Order Models based on Proper Orthogonal Decomposition (POD
ROMs) are often employed as a surrogate model of high-fidelity models. In practical
applications, three difficulties are encountered: 1) it is necessary to know the governing
equations of the dynamics to derive the reduced-order model by Galerkin projection
of the model onto the POD modes, 2) the POD ROMs represent only one dynamical
configuration and 3) the long-term stability of the POD-ROM is often difficult to ensure.
In this paper, we deal successively with these three aspects. A regression model based on
artificial neural network is proposed as a surrogate alternative to the POD ROM. This
method addresses the limitations of POD ROM — the lack of an a priori guarantee of
stability, and requirement of closure formulation to account for the unresolved modes.
The model maps the reduced coefficients of the high-fidelity solution in low-dimensional
space to a given set of parameter values. This non-intrusive modelling suits the problems
with no or limited knowledge of the physical system. Here, a novel multistep, residual-
based, parametrized neural network framework is proposed and is augmented with data
assimilation (DA) to provide accurate long-term dynamical predictions. The proposed
non-intrusive approach is used to recover the dynamical states in numerical and experi-
mental fluid flow problems. The neural network based identification has been found to
provide sufficiently accurate initial estimates. Deviations in the long-term prediction are
mitigated by augmenting the framework with DA. This approach also allows the estimation
of dynamics corresponding to parameters not considered in the model training set.
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Galerkin force model for transient and post-transient dynamics exem-
plified for the fluidic pinball

N. Deng' 2, B. Noack® M. Morzynski*, and L. Pastur?

The literature on aerodynamic forces on bodies associated with the proper orthogonal
decomposition (POD) or any other Galerkin model is suprisingly sparse. On the one hand,
force computations are at the heard of engineering fluid mechanics. On the other hand,
systematic investigations and interpretations of the aerodynamic force in the Galerkin
framework are mostly missing. As the forces depend on the viscous and pressure fields, it
is challenging to model the force with the velocity-based POD modes. The pioneering
early work of Shiels & Jeon reveals that the instantaneous forces on the body can be
expressed with only the velocity fields and their derivatives. Liang & Dong applied it
to the velocity-based POD modes, and derived a force expression in terms of the force
of each POD mode and the force from the interaction between the POD modes. The
Galerkin force model proposed in this work reveals that any force component is a constant-
linear-quadratic function of the mode amplitudes. It provides a significant opportunity to
achieve nonlinear modelling of the force dynamics and advances our understanding of the
elementary degrees of freedom that contribute to the force.

The aim of this work is to present an aerodynamic force model in the Galerkin framework.
For the Galerkin approximation of a bluff-body flow, the instantaneous force on the body
is derived as a constant- linear-quadratic function of the mode amplitudes from first
principles. The drag and lift force formulae can be further simplified for the mean-field
model using symmetry properties and sparse calibration, thereby indicting the drag- and
lift-producing modes. In the presentation, the Galerkin force model is exemplified for
the unforced fluidic pinball, a two- dimensional flow around three fixed cylinders with
one radius distance to each other in an equilateral triangle arrangement. Based on the
least-order mean-field model, the resulting force model can successfully reproduce the
unsteady force evolution for the transient and post-transient dynamics with six different
Navier-Stokes solutions. We foresee many applications of the Galerkin force model for
other bluff bodies and flow control.
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Complementary deep reduced order model

E. Menier!' 2, M. A. Bucci!, M. Yagoubi!, and M. Schoenauer?

Reducing simulation time is critical for applications such as closed loop control or iterative
design op- timisation. In this context, model reduction techniques have become a
growing area of research in the last decades. While research efforts have mainly been
centered around feature based approaches like POD, BPOD or DMD, direct approaches
leveraging Deep Neural Networks have been proposed in recent years with great success.
Despite these promising results, neural network architectures provide little to no physical
guarantees, and have limited interpretability. On the other hand, feature based methods
often reconstruct the final solution through a linear combination of modes embedded with
physical constraints. However, this often comes at the cost of loss of information and
increased error rates.

POD-Galerkin models are a perfect example of this trade-off between physical guarantees
and performance loss. These models have been shown to be very efficient for the reduction
of linear systems, but they are extremely limited when applied to nonlinear systems such
as the Navier-Stokes equations. For example, Noack et al. have shown that a simple 3
equations model was able to capture the oscillatory dynamics of a flow over a cylinder,
but failed to correctly predict the transition time and trajectory from a steady point of
the system to its oscillatory regime.

To address these shortcomings, we propose to add a closure term to POD-Galerkin models
to correct their dynamics. Observing that the information lost during the projection on
the POD basis can be retrieved by considering the past states of the system, we use
simple neural networks in combination with delay differential equations to reconstruct
the required correction. We show that a satisfactory model can be trained through the
Neural ODE framework to learn a memory based correction from simulation data. The
final architecture can be compared to a time-continuous recurrent neural network.

With this approach, we preserve the simple structure and low computational cost of
Galerkin models while improving their performance. Using the 3 modes model example
from [4], we show that the corrected ROM reproduces perfectly the original transition
trajectory, and generalises well to unseen initial conditions. On-going work is concerned
with validating and improving the proposed approach by applying it on the more challenging
chaotic pinball case.
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Learning how structures form in drif-wave turbulence

R. Heinonen® 2, and P. Diamond?,

In magnetically confined plasma, instabilities associated with radial pressure gradients
give rise to drift- wave turbulence (DWT). Anomalous transport, structure formation,
and virtually all other aspects of DWT dynamics are encoded in turbulent fluxes which
are generated by cross-correlations between fluctuating quantities. Computing these
cross-correlations may be considered the central problem of plasma turbulence modeling
and is crucial to understand confinement properties. However, doing so analytically is a
notorious challenge that always requires the use of successive (and sometimes questionable)
approximations, such as the introduction of a small parameter, a closure for higher-order
moments, or the imposition of an ad-hoc mathematical model.

In this work, we instead use supervised learning to infer models for key turbulent fluxes from
simulation. We use numerical solutions of the 2-D Hasegawa-Wakatani system, a simple
but self-consistent model for collisional DWT, to train a neural network which outputs the
local turbulent particle flux and Reynolds stress as functions of local mean gradients, flow
properties, and turbulence intensity. The neural network detects a previously unreported,
non-diffusive particle flux which is proportional to the gradient of vorticity. We recover
this flux with a simple analytic calculation, and identify it as a simple but novel route to
staircase-like pattern formation. Using this supervised learning approach, we also uncover
a Cahn-Hilliard-type model for the generation of zonal flow via Reynolds stress, which
agrees with but finds corrections to previous theoretical work. Together with the particle
flux, we thus obtain a simplified (but still self-consistent) 1-D model for the turbulent
dynamics directly from simulation data. We solve this model numerically and compare to
the numerical solutions of the full 2-D system. We discuss the importance of symmetry
to our supervised learning method, the method'’s portability to other applications, and its
range of validity.

Funding: This work received funding from the United States Department of Energy
under Award Number DE-FG02-04ER54738 and from the European Research Council
(ERC) under the European Union's Horizon 2020 research and innovation program (grant
agreement No. 882340).
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Identification of sea level pressure anomaly patterns using Latent
Dirichlet Allocation

L. Fery' 2, B. Dubrulle® B. Podvin* F. Pons! and D. Faranda® ® ©

Atmospheric circulation in middle latitudes is often represented with weather regimes,
which are typical field configurations of relevant observables - such as geopotential height or
sea level pressure - determined by pattern recognition methods. Each weather regime can
be considered as a mixture of basic synoptic objects, which are cyclones and anticyclones.
This combination makes it difficult to disentangle shifts in these structures recurrence and
intensity, and in particular those relevant to extreme events. Here we propose a change
of perspective by applying Latent Dirichlet Allocation (LDA), a generative statistical
model for collections of discrete data which is typically used as a topic model for text
documents, to a set of snapshots featuring daily sea level pressure anomaly. LDA acts
as a soft clustering technique providing a representation of a daily map in terms of a
combination of motifs, which are latent patterns inferred from the dataset. We notice
that the motifs correspond to cyclones and anticyclones, the basic structures of weather
regimes. Furthermore, we show that the weights provided by LDA are a practical way
to characterize the effects of climate change on the recurrence and intensity of these
structures and to identify precursors of extreme events.
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Learning subgrid-scale turbulence models: coupling back-propagation
with the adjoint flow equations

J. MacArt!, J. Sirignano? and J. Freund?

The weights of a deep neural network model are optimized in conjunction with the
governing flow equations to provide a model for sub-grid-scale stresses in a temporally
developing plane turbulent jet at Reynolds number Rey = 6000. The objective function
for training is first based on the instantaneous filtered velocity fields from a corresponding
direct numerical simulation, and the training is by a stochastic gradient descent method,
which uses the adjoint Navier—Stokes equations to provide the end-to-end sensitivities of
the model weights to the velocity fields. In-sample and out-of-sample testing on multiple
dual-jet configurations show that its required mesh density in each coordinate direction for
prediction of mean flow, Reynolds stresses, and spectra is half that needed by the dynamic
Smagorinsky model for comparable accuracy. The same neural-network model trained
directly to match sub-grid-scale stresses—without the constraint of being embedded
within the flow equations during the training—fails to provide a qualitatively correct
prediction. The coupled formulation is generalized to train based only on mean-flow
and Reynolds stresses, which are more readily available in experiments. This provides a
robust model, which is important, though a somewhat less accurate prediction for the
same coarse meshes, as might be anticipated due to the reduced information available for
training. The anticipated advantage of the formulation is that the inclusion of resolved
physics in training increases its capacity to extrapolate. This is assessed for the case of
passive scalar transport, for which it outperforms established models due to improved
mixing predictions. Figure 12 shows a demonstration of the advantage of the em- wise
velocity with an ML model trained as an bedded training for a planar turbulent jet using
a coarse mesh. Although a priori training, which minimizes the sub-grid-scale stress
mismatch, is able to reproduce the stress nearly perfectly (figure 1 a), the results are
poor when the model is included in the governing equations and they are evolved in time
(figure 1 b), for the model's interactions with the governing equations are not sufficiently
constrained. In contrast, the embedded training, performed with the neural-network back-
propagation algorithm coupled with the corresponding adjoint-based sensitivity of the
governing equations, provides a model that drives the solution of the governing equations
toward the target data, which here are instantaneous filtered velocity fields. Solving with
the embedded model tracks the corresponding direct numerical simulation closely, even
on the relatively coarse mesh. It also provides effective augmentation—modestly less
accurate but similarly robust—for similar out-of-sample free shear flows (not shown).

2Not shown in this book of abstract because of IATEX issues. We apologize to the authors.
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tional Nuclear Security Administration, under Award Numbers DE-NA0002374 and DE-
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project, which is supported by the National Science Foundation (awards OCI-0725070 and
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Multi-agent reinforcement learning of wall-modeled large-eddy-simulation

H. J. Bae!' 2, P. Koumoutsakos?! 3

Simulations of wall-bounded turbulent flows have become a key element in the design
cycle of wind farms and aircraft, and a major factor in the predictive capabilities of
simulations of atmospheric flows. Due to the high Reynolds numbers associated with
these flows, direct numerical simulations (DNS), where all scales of motion are resolved,
are not attainable with current computing capabilities. Large-eddy simulations (LES)
aim to reduce the necessary grid requirements by resolving only the energy-containing
eddies and modeling the smaller scale motions. However, this requirement is still hard to
meet in the near-wall region, as the stress-producing eddies become progressively small,
scaling linearly in size with the distance to the wall. In turn, modeling the near-wall
flow such that only the large-scale motions in the outer region of the boundary layer are
resolved, wall-modeled LES (WMLES) stands as the most feasible approach compared to
wall-resolved LES or DNS. The use WMLES for engineering applications is expected to
narrow the number of wind tunnel experiments, reducing both the turnover time and cost
the design cycle.

We propose multi-agent reinforcement learning (MARL) for the development of wall
models for LES. Reinforcement learning identifies optimal strategies for agents that
perform actions, contingent on their information about the environment, and measures
their performances via scalar reward functions. In this work, discretization points act
also as cooperating agents that learn to supply the LES closure model, and their actions
compensate for both the closure terms and errors associated with the numerics of the
flow solver.

In the case of WMLES, the performance of the MARL can be measured by comparing the
statistical properties of the simulation to those of reference data such as the wall-shear
stress. MARL does not rely on a priori knowledge but rather aims to discover active
closure policies according to patterns in the flow physics captured by the filtered equations.
The respective wall models are robust with respect to the numerical discretizations,
as these erros are taken into consideration in the training process. Furthermore, the
model discovery method can be readily extended to complex geometries and different
flow configurations, such as flow over rough surfaces and stratified and compressible
boundary layers. We demonstrate the potential of this approach on WMLES of turblent
high-Reynolds number channel flow and turbulent boundary layer. The MARL-based
wall model is able to reproduce flow quantities obtained by fully-resolved simulations and
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performs as well as the widely-used Reynolds-averaged Navier-Stokes models that have
been tuned for this particular flow configuration.

Acknowledgements The authors acknowledge the support of Air Force of Scientific
Research (AFOSR) Multidisciplinary University Research Initiative (MURI) project : Pre-
diction, Statistical Quantification and Mitigation of Extreme Evens Caused by Exogeneous
Causes or Intrinsic Instabilities under grant number FA9550-21-1-0058.
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Turbulence modeling using CFD-driven symbolic identification

D. Bezgin', and N. Adams!

Complex dynamic interactions across multiple scales render the numerical simulation
of turbulence a difficult problem. Reynolds-averaged Navier-Stokes (RANS) equations
are widely used in practice and are traditionally closed by employing the eddy viscosity
hypothesis and the assumption of isotropy. A different appraoch is taken by so called
probability density function (PDF) turbulence models which solve a transport equation for
the on-point, one-time PDF of turbulent fluctuating quantities. Instead of discretizing the
Fokker-Planck equation directly, classical PDF methods make use of Monte-Carlo methods
in which an ensemble of particles is advected by a corresponding stochastic differential
equations. Recently, machine learning models, especially neural network based-approaches,
have been applied to turbulence modeling. We propose to use latent neural ordinary
differential equations (NODE) as parametrizable generative models for learning the PDF
transport of fluctuating flow quantities such as velocity fluctuations. A latent NODE
model learns a mapping between observation and latent space and the coresponding latent
space dynamics. Thereby, the continuous latent space dynamics are determined by a
neural network. Given time series data of turbulent velocity fluctuations, the generative
model is able to learn the latent space dynamics of the PDF of these fluctuations. After
proper training, we can sample an ensemble of initial conditions from the learned latent
distribution and propagate them forward in time by the NODE. The resulting latent
trajectories are then decoded to velocity space yielding realizations of the instantaneous
flow field. By successive ensemble-averaging, we obtain the Reynolds stresses and close
the RANS equations. We show proof of concept by learning PDFs for the return to
isotropy of homogeneous shear turbulence. DNS simulations of homogeneous shear-
released turbulence are obtained by a spectral solver. Early results indicate that NODE
are in fact able to learn the PDF transport equations and provide a powerful tool for
data-driven PDF turbulence models.
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Reconstruction of turbulent data with deep generative models for
semantic inpainting from TURB-Rot database

M. Buzzicotti!, T. Li%, F. Bonaccorso! 3, P. Clark Di Leoni*, and L. Biferale!

We study the applicability of tools developed by the computer vision community for feature
learning and semantic image inpainting to perform data reconstruction of fluid turbulence
configurations. The aim is twofold. First, we explore on a quantitative basis the capability
of convolutional neural networks embedded in a deep generative adversarial model to
generate missing data in turbulence, a paradigmatic high-dimensional chaotic system. In
particular, we investigate their use in reconstructing two-dimensional damaged snapshots
extracted from a large database of numerical configurations of 3D turbulence in the
presence of rotation, a case with multi-scale random features where both large-scaled
organised structures and small-scale highly intermittent and non-Gaussian fluctuations
are present. Second, following a reverse engineering approach, we aim to rank the input
flow properties (features) in terms of their qualitative and quantitative importance to
obtain a better set of reconstructed flow fields. We present two approaches based on
Context Encoders. The first one infers the missing data via a minization of the £, pixelwise
reconstruction loss plus a small adversarial penalisation. The second searches for the
closest encoding of the corrupted flow configuration from a previously trained generator.
Finally, we present a comparison with different data assimilation tools, either based on
Nudging (an equation informed unbiased protocol) well known in the numerical weather
prediction community or on Gappy POD developed in the context of image reconstruction.
The TURB-Rot database http://smart-turb.roma2.infn.it, of roughly 300k 2D
turbulent images is released an details on how to download it are given.
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Experimental closed-loop control of an airfoil using linear genetic pro-
gramming at high Reynolds numbers

P.-Y. Passaggial, N. Mazellier!, and A. Kourta?

Flow separation over wings at high angles of attack represents a threat to both the
aerodynamic performances and the aeroelastic loads associated with the structure of the
aircraft. Flow control aims at mitigating the detrimental effects of massively separated
regions using either continuous or pulsed blowing, for instance. Feedback control of
such configurations is becoming of increasing interest for the aerospace in- dustry where
feedback control can improve both the performance of the control and the amount of
energy injected to control separation. Nevertheless, real-time feed- back control at large
Reynolds numbers combines major scientific challenges. Both actuators and sensors are
required to operate over large ranges of amplitudes and frequencies. In addition, real-time
control has to be able to operate these control laws at several kHz in order to tackle the
physics of flow separation and insure the feed- back between sensors and actuators. A
such feedback loop is intractable unless model reduction is considered or machine learning
control-based methods are employed.

Here we implement real-time feedback control using a Linear Genetic Program- ming
Control (LGPC) algorithm, based on symbolic programming, to determine ef- fective
control laws that improve both the aerodynamic performances and decrease the amount of
air injected for the control. These symbolic control laws couple a set of pressure sensors
to blowing jets with variable flow rates and are able to identify the key mechanisms leading
to stall control. Experimental results obtained for an ON- ERA D airfoil are analysed for
two different cost functions where the cost associated with the control effort is varied. In
addition, the best control laws are calculated for several angles of attack and for Reynolds
numbers ranging between 5 x 10° and 10°.
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Closed-loop control of a separated flow using Reinforcement learn-
ing

T. Guégan!, O. Semeraro?®, M. A. Bucci®, L. Cordier?, and L. Mathelin?

In recent years, continuous progress has been made on the performance of air transport
systems such as aircraft or helicopters, particularly in terms of flight envelope, radiated
noise, maneuverability, vibration level, etc. However, further improvements can be achieved
using closed-loop flow control. This technique consists in using measurements from sensors
placed on the system to drive some actuators in order to modify the flow in a given
way. The interest of closed-loop control schemes is to improve the robustness of the
control law against unmodelled disturbances. In usual model-based control approaches, a
dynamical model is used to describe the behaviour of the system. This model allows to
predict the effect of a given control action and can therefore be used to derive a control
strategy for optimal performance. However, a physical model is not always available. In
addition to systems whose governing equations are simply unknown or poorly known, there
are many situations where solving the governing equations is too slow with respect to
the dynamics at play to be useful. While reduced- order models may help in solving an
approximate system meeting real-time requirements, they usually lack robustness and can
critically lose accuracy when control is applied, resulting in poor performance at best. A
different line of control strategy relies on a data-driven approach. In this view, no model
is assumed to be known and the control command is derived based on measurements
only. Typical of this viewpoint are extremum-seeking, control strategies that rely on
system identification techniques that lead to auto- regressive models, subspace methods
or realization-type identification algorithms like ERA. Recently, efforts have focused on
a genetic programming approach for optimizing the control policy and on the use of a
reinforcement learning paradigm. In the present work, we follow up on our earlier effort
and consider a reinforcement learning strategy for the closed-loop nonlinear control of
separated flows. Specifically, neural networks are used to approximate both the control
objective and the control policy, hence the name Reinforcement Learning (RL). We
consider the flow over the fluidic pinball in the realistic setting where one can rely only on
a few pressure sensors in the wake to learn the system behavior and an efficient control
law. The performance of the control strategy will be demonstrated on the reduction of
the drag.

Fundings: This work was supported by the French Agence Nationale de la Recherche
ANR-17-CE22-0008.

42



Explorative gradient method for multi-actuator flow control

Y. Lit, Z. Yang®?, M. Morzynski®, Z. Qiao*, S. Krajnovic*, and B. Noack!

We address a challenge of active flow control—the optimization of many actuation
parameters with a limited testing budget. The proposed explorative gradient method
(EGM) combines fast gradient-based descent to hitherto known minima with effective
exploration of potentially better minima. EGM enforces strict testing budgets and quotas
for exploitation and exploration. EGM is applied to net drag power reduction of fluidic
pinball by cylinder rotation based on DNS simulation (3 inputs), drag reduction of a
35-degree Ahmed body with steady blowing based on RANS simulation (10 inputs),
and a yawed bluff body with zero-net mass-flux jet in experiment (10 inputs). EGM
Is a versatile optimizer framework with numerous future applications. It cannot only
be applied to parameter optimization but also to model-free control law optimization,
hitherto performed by genetic programming and deep reinforcement learning.
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Gradient-based machine learning control exemplified for the stabiliza-
tion of the fluidic pinball and the open cavity experiment

G. Cornejo Maceda?, Y. Lit F. Lusseyran® M. Morzynski® B. Noack?

Flow control is at the heart of many engineering applications. In general, control
design is challenged by the high-dimensionality of the dynamics, the nonlinearity with
many frequencies crosstalk mechanisms and the large time-delay between actuation and
sensing. Hence, most closed-loop control studies of turbulence resort to a model-free
approach. A key step is the formulation of the control problem as a challenging non-convex
optimization problem in which the possibility of sevaral Icoal minima must be expected.
Genetic programming control (GPC) has been pioneered by Dracopoulo (1997) over
20 years ago and has been proven to be particularly successful for nonlinear feedback
turbulence control in experiments. GPC has consistently outperformed existing optimized
control approaches, often with unexpected frequency crosstalk mechanisms. However,
the lack of exploitation of local gradients leads to poor convergence to the minimum.
This challenge is well known and will be addressed in this study.

In this talk, we employ gradient-augmented machine learning control methods for fast
optimization of control laws: the explorative gradient method, combining latin hypercube
ssampling and downhill simplex for parametric optimization, and the gradient-enriched
machine learning control combining GPC and downhill simplex for feedback control law
optimization. The two algorithms comprise exploration and exploitation steps to locate new
minima in the search space and populate their neighborhood. We exemplify the algoirhtms
with the stabilization of a cluster of three equally distant cylinders — the fluidic pinball
— in increasingly complex search spaces. We optimized general steady actuations with
EGM and feedback control laws with gMLC. As expected, the optimized feedback control
law surpasses the steady actuation control. Intriguinly, the best performance is achieved
by a combination of asymmetric steady forcing and phasor control. Moreover, gMLC
learns the control law significantly faster than previously employed genetic programming
control. gMLC capability to quickly learn feedback control laws directly from the plant
has also been demonstrated in experiments, in particular with the successful control of the
open cavity, revealing a need of feedback for increased performances. Other experiment
successes include drag reduction of a generic truck model under yaw and lift increase of
an airfoil under angle of attack at a Reynolds number near one million. Building on thise
successes, we belive that gMLC will greatly accelerate the optimization of control laws
for MIMO control as compared to GPC.
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Deep reinforcement learning for nonlinear closed-loop flow control
and sensor placement

R. Paris!, S. Beneddine?, and J. Dandois?,

Deep reinforcement learning (DRL) provides relevant methods for discovering efficient
control laws through interactions with the environment. Unlike most of deep learning
application domains (e.g. image analysis or language translation) where gathering training
data is relatively cheap, fluid mechanics requires more resources whether it is from
numerical simulations or experiments.

Flow solutions also evolve in a (very) high-dimensional space, thus allowing only for
partial state observations and forbidding any systematic mapping of the action-state
space. These specific constraints highlight the need to both extract relevant information
and explore the solution space with highly sample-efficient training methods. Algorithm
variants such as the ones using experience replay or curriculum learning arouse a specific
interest.

On simple sand-box cases such as a bidimensionnal low Reynolds cylinder flow (refer
to fig 1) or a stalled bidimensionnal airfoil flow, DRL demonstrates its ability to derive
energy-efficient control policies. The observed robustness of these policies is a direct
consequence of the training process that uses a trial-and- error paradigm to optimize the
control action.

We also show that the reinforcement learning paradigm is well-suited for seeking sparsity
In observations and control actions, a criterion that is crucial in regards to the context.
The proposed method leads to a significant reduction in the number of sensors without
noticeably degrading control performance. The physical interpretation of these sparsified
layout appears to be non-trivial.

Fundings: This work is funded by ONERA and the French Agency for Innovation and
Defence (AID) via a PhD scholarship. Their support is gratefully acknowledged.
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Machine learning methods for the simulation of turbulent flows in
turbomachinery

A. Ferrero!, F. Laroccal, A. lollo? and T. Philibert!

Turbulence modelling represents a critical aspect in the prediction of the flow field in
turbomachinery. Recently, high-fidelity simulations like Large Eddy Simulations (LES) or
Direct Numerical Simulations (DNS) become possible thanks to the constant increase
in computational power that has been achieved in the last decades. However, these
simulations remain prohibitive for performance prediction during a design process because
of the large number of configurations which must be investigated. For this reason, high
fidelity simulations can be exploited to generate trustworthy solutions on representative
test cases in order to understand the phenomena which govern the flow field. Furthermore,
it is possible to exploit these results to improve the accuracy of low order models which can
then be used for design purposes. In particular, Reynolds- averaged Navier-Stokes (RANS)
models represent an efficient way to compute the average flow field but they can become
quite inaccurate in the presence of separation or transition from laminar to turbulent flow.
In this framework, machine learning strategies represent a possible approach to improve
the predictive capability of existing RANS models starting from high-fidelity data obtained
from LES or experiments [2]. Among the different algorithms, field inversion is a promising
strategy. The approach, originally introduced by Paris et al., was exploited to improve
RANS models for turbomachinery by Ferrero et al. The method relies on two steps:
an optimisation procedure (the field inversion) and a regression performed by machine
learning. The first step requires the definition of an optimisation problem where the goal
function is represented by the error between the numerical prediction and the reference
data: this error is minimised by finding an optimal field of corrections which alter the
source term of the turbulence model. The solution of the optimisation problem contains a
lot of information: in each point of the computational domain the local correction and all
the fluid variables are known. This makes it possible to exploit machine learning algorithms
to identify a correlation between some local flow features and the correction field. This
regression step allows to generalise the results and to use the data-augmented RANS
model for general predictions. Even if the first results of the field inversion strategy seem
promising, several open questions remain. First of all, the reference data (experimental
or from high-fidelity simulations) are affected by uncertainty and it propagates through
the field inversion procedure up to the final data-augmented model. Furthermore, a
significant modelling uncertainty is associated to the regression step: the selection of the
flow features which should determine the local correction is not trivial. It is possible to
follow some basic guidelines (nondimensional inputs, Galilean invariant inputs,...) but it is
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not clear how to demonstrate that the correlations captured by the regression analysis
are based on a cause-effect principle. In this work Artificial Neural Networks and Random
Forests are investigated as regression tools to find a correction to the Spalart-Allmaras
RANS closure model for the flow in low pressure gas turbines. The correction acts as an
Intermittency model and allows to extend the original model to transitional low Reynolds
number working conditions.
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Machine learning-augmented turbulence modeling for RANS simula-
tions of flows over periodic hills

P. Volpianil, M. Meyer!, L. Franceschini*, J. Dandois!, F. Renac!, E. Martin!, O.
Marquet?, and D. Sipp*

Thanks to their low computational cost, Reynolds-Averaged Navier-Stokes (RANS)
simulations remain an indispensable tool in the design, analysis, and optimization of many
aerodynamic components. Nevertheless, it is well known that complex effects such as flows
with separations, high streamline-curvature, strong pressure gradients, etc. are poorly
modeled by this approach. With the accelerating developments and the availability of
modern machine-learning tools, aerodynamic computations are increasingly influenced by
data- science. Therefore, more attention is directed towards data-driven techniques that
attempt an improvement of the performance and a generalization of turbulence models.
It is a particular focus of such methods to compensate model form errors by training
machine-learned model corrections and it is a growing perspective to apply machine
learning in the context of turbulence modelling.

We demonstrate a data-driven approach that aims to introduce a correction to the
RANS Spalart-Allmaras (SA) turbulence model based on: (i) data assimilation to infer
a modelling correction from high-fidelity data, and (ii) machine learning by means of
neural network training to construct the correction term as a function of available flow
quantities. The final neural-network contribution is a Boussinesg-correction in form of a
volume forcing term on the momentum equations, rather than a turbulent eddy-viscosity
adjustment. It is well-known that linear eddy viscosity models such as SA suffer from
inaccuracies when dealing with massively separated flows. For this reason, flows over
periodic hills at distinct Reynolds numbers and geometries were selected to demonstrate
the potential gain of machine learning-augmented turbulence models.
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Turbulence modeling using CFD-driven symbolic identification

|. Ben Hassan Saidit, P. Cinnella?, and F. Grasso?®

Computational Fluid Dynamics (CFD) simulations of turbulent flows for industrial applcia-
tions largely rely on the Reynolds-Averaged navier-Stokes (RANS) equations supplemented
with linear eddy-viscosity models (LEVM) for the Reynolds stresses. RANS models have
a much lower computational costs than higher fidelity simulations (LES, DNS) but they
are generally inaccurate for non-equilibrium turbulent flows, e.g. flows with separations,
streamline curvature or strong pressure gradients.

In the attempt of overcoming the limitations of LEVM, more sophisticated formulations
have been proposed in the literature. Among them, Explicit Algebraic Reynolds Stress
Models (EARSM) generalize the linear eddy viscosity concept by expressing the Reynolds-
stress anisotropy as a function of both the mean strain rate S;; and the rotation rate €2;;
through a nonlinear relationship. The Reynolds-stress anisotropy can then be written as a
linear combination of a minimal integrity basis of tensors depending on S;; and €2;;. The
coefficients of the combination are unknown functions of tensors invariants, classically
derived from physical considerations.

Recently, many research efforts have addressed the development of flow-specific turbulence
models using data-driven methods. Among the possible strategies, a promising approach
consists in using machine learning algorithms to learn data-driven corrections to mechanistic
constitutive laws for the Reynolds stress tensor based on high fidelity data. The preceding
models are trained offline, i.e. outside the CFD models, and are subsequently propagated
through a flow solver to compute any other quantity of interest. Such approaches, referred
to as CFD-free, deliver data-driven EARSM models customized for a given class of flows,
with improved performances not only over the baseline LEVM but also EARSM derived
from purely physical arguments. However, due to the offline training, the learned model
may cause numerical stiffness once coupled with a mechanical energy. Most importantly,
the training necessarily required full-field high-fidelity data for the Reynolds stresses which
are not always promptly available.

In this contribution, we present a CFD-driven symbolic identification algorithm extending
the work of Schmeltzer et al. Candidate models are embedded with a RANS solver and
their fitness is obtained from a CFD solve. The CFD-driven approach is much more flexible
with respect to the kind, quality and quantity of high-fidelity data needed for training.
Moreover, candidate models preventing the solver to converge can be discarded during
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the optimization process, leading to numerically robust learned models. To drastically
reduce the number of CFD solves during model training and alleviate computational cost,
the underlying optimization problem is solved using the CORS (Constrained Optimization
using Response Surfaces) algorithm. Results are reported for data-driven corrections of
the well-known k — w SST model, showing significantly improved accuracy and good
generalization capabilities over a class of separated flows.
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Wall model for LES based on building-block flows

A. Lozano-Duran!, and H. Jane Bae? 3

The prediction of aircraft aerodynamic quantities of interest remains among the most
pressing challenges for computational fluid dynamics, and it has been highlighted as a
Critical Flow Phenomena in the NASA CFD Vision 2030. The aircraft aerodynamics are
inherently turbulent with mean-flow three-dimensionality, often accompanied by laminar-
to-turbulent transition, flow separation, secondary flow motions at corners, and shock
wave formation, to name a few. However, the most widespread wall models are built upon
the assumption of statistically-in-equilibrium wall-bounded turbulence and do not faithfully
account for the wide variety of flow conditions described above. This raises the question
of how to devise models capable of accounting for such a vast and rich collection of flow
physics in a robust and scalable manner.

We propose tackling the wall-modeling challenge by devising the flow as a collection
of building blocks, whose information enables the prediction of the stress as the wall.
The core assumption of the model is that simple canonical flows (such as turbulent
channel flows, boundary layers, pipes, ducts, speed bumps, etc) contain the essential
flow physics to devise accurate models. Three types of building block units are used to
train the model, namely, turbulent channel flows, turbulent ducts, and turbulent boundary
layers with separation. The approach is implemented using two interconnected artificial
neural networks: a classifier, which identifies the contribution of each building block in
the flow; and a predictor, which estimates the wall stress via non-linear combinations
of building-block units. The output of the model is accompanied by the confidence in
the prediction. The latter aids the detection of areas where the model underperforms,
such as flow regions that are not representative of the building blocks used to train the
model. The model is validated in a realistic aircraft geometry from NASA Juncture Flow
Experiment, which is representative of external aerodynamic applications with trailing-edge
separation.

Acknowledgements A.L.-D. acknowledges the support of NASA under grant No.
NNX15AU93A and the MIT Supercloud and Lincoln Laboratory Supercomputing Cen-
ter for providing HPC resources that have contributed to the research results reported
within this work. The authors also acknowledge use of computational resources from the
Yellowstone cluster awarded by the National Science Foundation to the CTR.
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Developing generalizable data-driven model augmentation using learn-
ing and inference assisted by feature-space engineering

V. Srivastava!, and K. Duraisamy?!

This work presents a formalism to improve the predictive accuracy of physical models by
learning generaliz- able augmentations from sparse data. Building on recent advances
in data-driven turbulence modeling, the present approach, referred to as Learning and
Inference assisted by Feature-space Engineering (LIFE), is based on the hypothesis that
robustness and generalizability demand a meticulously designed feature space that is
informed by the underlying physics, and a carefully constructed features-to-augmentation
map. The critical components of this approach are:

1. Identification of relevant physics-informed features in appropriate functional forms
to enable significant overlap in feature space for a wide variety of cases to promote
generalizability

2. Explicit control over feature space to locally infer the augmentation without affecting
other feature space regions, especially when limited data is available

3. Maintaining consistency across the learning and prediction environments to make
the augmentation case-agnostic

4. Tightly-coupled inference and learning by constraining the augmentation to be
learnable throughout the inference process to avoid significant loss of information
(and hence accuracy)

To demonstrate the viability of this approach, it is used in the modeling of bypass transition.
The augmenta- tion is developed on skin friction data from two flat plate cases from the
ERCOFTAC dataset. The augmented model is then applied to a variety of flat plate cases
which are characterized by different freestream turbulence intensities, pressure gradients,
and Reynolds numbers. The predictive capability of the augmented model is also tested on
single-stage high-pressure-turbine cascade cases, and the model performance is analyzed
from the perspective of information contained in the feature space. The results show
consistent improvements across these cases, as long as the physical phenomena in question
are well-represented in the training.
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Machine-learned invariant map for turbulent flow analysis and mod-
eling

K. Fukami!, and K. Taira?

In machine learning, it is difficult to distinguish “seen” and “unseen” fluid flow data. In
addition, applications of machine-learning based techniques to “unseen” situations result in
dangerous extrapolation. Hence, identifying the borderline of such data sets is important
towards practical applications of machine learning to fluid flow analyses and modeling.
Furthermore, what may appear as extrapolation in a traditional sense may not be the
case due to scale invariance with turbulence. In response, we propose a novel data
scaling method for incompressible turbulent flows through sparse regression analysis that
reveals the likeliness of data to have been “seen.” To analyze the topological similarity
among turbulent flow data, we consider the deviation of an invariant map constructed
from characteristic equation for the velocity gradient tensor. Axes on the invariant map
constructed by fluid flow data are scaled by a non-dimensional scaling factor identified
with sparse regression analysis capitalizing on the generalization of the Buckingham
Pi theorem . The present method is tested with two and three- dimensional decaying
homogeneous isotropic turbulence. We find that the present data-driven scaling is able
to identify structural similarities of turbulence beyond the size of scales. The present
approach enables the transfer of machine-learned knowledge to support a wide range
of fluid flow data analyses by clarifying the process of inter- and extrapolation with
data-driven modeling.
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N Useful Information

Talks will be held at the Amphitheatre Fabry-Perot of CNAM, indicated with an orange
circle on the map next page.

Coffee breaks and lunches will be offered at Bistrot de la Gaité situated in front
CNAM'’s main entrance (292 rue St Martin).

Wi-Fi will be available during the conference. CNAM also provides access to an eduroam
network.

How to get to CNAM?

The Conservatoire National des Arts et Métiers (CNAM), founded in 1794 during the
French Revolution, is located at 292 rue Saint Martin, in the 3™ arrondissement of Paris,
in the historical area of the city named Le Marais. It can easily be reached using the
Parisian public transportation system, either by bus or metro.

e Metro: Arts-et-Métiers (line 3 and 11), Réaumur-Sébastopol (line 3 and 4).
e Bus: lines 20, 38 and 47.

A handful of Velib’ stations (bicycle sharing system) are also situated around CNAM.
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