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In an experimental context, the contamination of an air–liquid interface by ambient
pollutants can strongly affect the dynamics and the stability of a given flow. In some
configurations, the interfacial flow can even be blocked by surface tension effects. A
cylindrical free-surface flow driven by a slow rotating disc is considered here as a generic
example of such effects and is investigated both experimentally and numerically. We
suggest here a simple numerical model, without any superficial transport of the pollutants,
adaptable into any code for single-phase flows. For the stationary axisymmetric base flow,
the radial velocity at the interface is set to zero whereas the usual stress-free boundary
conditions are retained for the perturbations. The model does not feature any free
parameter. For a geometrical aspect ratio of 1/4, known to display ambiguous behaviour
regarding stability thresholds, the modal selection as well as a nonlinear stability island
found in the experiments are well reproduced by the model, both qualitatively and
quantitatively. The robustness of the model has also been validated by replacing the radial
velocity profile by a more accurate experimental fit, with very little influence on the
stability results.

Key words: rotating flows

1. Introduction

Flows featuring gas–liquid interfaces abound in all areas of fluid dynamics. When the
effects of impurities are neglected, the dynamics of these interfacial flows is reasonably
well understood. For low enough Froude numbers, the interface is flat. While the usual
no-slip condition holds near solid boundaries, for negligible gas viscosity, the dynamics
at the gas–liquid interface is usually modelled using a simple stress-free condition along
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a non-deformable surface. This ’stress-free’ interface condition expresses the nullity of
the gradient of the tangential velocity in the direction normal to the interface, whereas a
no-slip condition expresses the nullity of the velocity relative to the interface. Once the
boundary conditions are well chosen, solutions to the governing equations can be sought
either analytically or numerically.

This simple approach breaks down however in practice when the working fluid is
standard or demineralised water, as opposed to e.g. castor oil (Batchelor 2000). The
(unavoidable) presence of dust implies particles of various sizes adhere to the interface
via multiple forces such as van der Waals interactions, covalent bonds, dipolar interactions
and so forth. As it stands, for relatively low pollutant concentrations, a monomolecular
layer of particles forms by adsorption at the interface (Scriven 1960; Bernal et al. 1989;
Lopez & Hirsa 1998; Ponce-Torres & Vega 2016). The surface tension is locally lower
where the pollutants are present, which induces a heterogeneous distribution of surface
tension and hence tangential Marangoni stresses. This effect has been reported in various
interfacial flows including bubbles (see e.g. Batchelor 2000 or Magnaudet & Eames
2000) and Faraday experiments (Martín & Vega 2006). It is traditionally modelled using
boundary conditions that rely on a closure between the local concentration c and the
surface tension σ . Such models where σ = f (c) imply the calibration of many constants,
some of them possibly time-dependent (Ponce-Torres & Vega 2016), whereas the real
chemical composition and even the concentration of the pollutants are rarely known in
detail. A really simple phenomenological model is therefore called for to address most
polluted interfaces at once, irrespective of their exact composition and properties. The goal
of this paper, by considering a simple enough flow prototype, is to introduce and validate
such a phenomenological model by comparing its numerical prediction to experimental
results.

In this work, the free-surface flow spinning above a rotating disc is considered at
low rotation rates. The cylindrical sidewall is held at rest. This flow is characterised
geometrically by the aspect ratio G = H/R, where H is the undisturbed fluid height
and R the interior radius, and dynamically by a Reynolds number Re = ρΩR2/μ based
on the rotation rate Ω , the liquid density ρ and the dynamic viscosity μ (Hyun 1985;
Spohn & Daube 1991; Spohn, Mory & Hopfinger 1993; Lopez 1995; Iwatsu 2004,
2005; Piva & Meiburg 2005; Bouffanais & Lo Jacono 2009; Cogan, Ryan & Sheard
2011). The comparison performed by Spohn & Daube (1991) between experimental
and computational velocity profiles obtained using the free-slip boundary condition has
revealed that for G = 7/4, there is a mismatch in the tangential velocity profiles especially
near the liquid–air interface. The value of G that caught our attention is G = 1/4. In this
geometry, a mode m = 3 (where m is the dominant azimuthal wavenumber) was identified
experimentally as the first instability encountered when increasing Re (Miraghaie, Lopez
& Hirsa 2003; Lopez et al. 2004). Numerical simulations were also reported in the
same papers and summarised recently by Hirsa & Lopez (2021). A mode m = 3 was
also reported in this study as the most unstable mode. The numerical domain used
consisted however of two mirror-concatenated copies of the original domain, which has
the unphysical property of allowing for mass transfer through the mid-plane representing
the interface. To our knowledge, no simulation of the original geometry has been reported
using stress-free boundary conditions until the recent study of Faugaret (2020). In that
study, linear stability analysis based on the stress-free boundary condition leads to a
modal selection at odds with the experimental results reported earlier: the first unstable
mode occurs at higher Re than in the experiment and has the symmetry m = 2 rather than
m = 3. Thus G = 1/4 appears particularly demanding from a bifurcation point of view
and represents an interesting test for a modelling strategy.
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The first investigations to blame the presence of surfactant-like pollutants for the
observed mismatch were performed by Spohn & Daube (1991), as well as Lopez, Hirsa
and co-authors (Lopez & Chen 1998; Lopez & Hirsa 1998). A numerical investigation
of the same system with G = 1/4 was conducted by Kwan, Park & Shen (2010) by
assuming a finite concentration of a given surfactant at the interface rather than using
a stress-free boundary condition. A parabolic closure was used to link the surface tension
to the superficial concentration field. This work is useful as a confirmation of the modal
instability observed in experiments, yet it does not contain any parametric study nor
any bifurcation diagram. In general, the stability threshold values found in experiments
match those predicted in numerics using free-slip conditions, provided the aspect ratio
G is large enough, as in the case where G = 2 (Lopez et al. 2004; Serre & Bontoux
2007; Cogan et al. 2011; Faugaret 2020). The situation is entirely different for values
of G below unity. In a recent publication, Faugaret et al. (2020) carried out a joint
experimental/numerical study of the same flow for a smaller aspect ratio G = 1/14. This
aspect ratio is characterised by a much greater mismatch between thresholds in Re (Poncet
& Chauve 2007; Kahouadji, Martin Witkowski & Le Quéré 2010). A simple surfactant-free
model, initially suggested by Spohn & Daube (1991), was found to lower significantly
the stability threshold Rec without fully resolving the mismatch. In this model, the
radial velocity ur is assumed to be zero over the entire interface, whereas the azimuthal
component only has zero normal derivative. This approximation is known in other (often
two-dimensional) flow conditions as the ‘stagnant cap approximation’. We do not use this
denomination to emphasize that the condition holds here on the radial component only.
At the very end of the paper by Faugaret et al. (2020), a ‘mixed model’, intermediate
between the stress-free and the Spohn–Daube model, was suggested. It was analysed using
linear stability theory only. The values of Rec associated with this model are quantitatively
much closer to the experimental thresholds. This suggests a deeper analysis of the model
using a fully nonlinear methodology. The goal of the present investigation is first to justify
the model based on a new experimental campaign, then assess its ability to reproduce
the experimental dynamics qualitatively and quantitatively. The present study relies on
an experimental set-up, a linear stability solver and a direct numerical simulation code
with the mixed boundary condition implemented. This new study departs from the former
numerical investigation of Faugaret (2020) and Faugaret et al. (2020) by the use of fully
nonlinear simulations as well as the different physics associated with another value of G.

The plan of the paper is as follows: § 2 contains a description of the tools used in the
whole study. In § 3, the validity of the stress-free boundary conditions is questioned in
light of a new Lagrangian tracking experiment. The model is introduced both in stationary
and non-stationary flow conditions. The joint experimental/computational analysis of the
bifurcations resulting from the modified base flow is reported in § 4 before the conclusions
in § 5. The numerical methods and their validation are explained in the Appendices A
and B, while Appendix C details both experimental and numerical protocols followed to
highlight the hysteresis.

2. Experimental set-up and numerical tools

2.1. Experimental set-up
The experimental set-up is sketched in figure 1. It consisted of a cylindrical Plexiglas
cavity with an internal radius of R = 140.3 ± 0.05 mm. The cavity was closed at its
bottom to prevent any leak. A disc of radius Rd = 139.6 mm was mounted inside the
cavity. The gap between the disc and the cavity was filled with liquid. The angular
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Air–liquid interface

Air

LiquidSolid rotation

R

H

Rotating

disk

Ω

??

Figure 1. Sketch of the flow over a rotating disc with fixed cylindrical sidewall, with geometrical parameters
indicated. The exact boundary condition at the air–liquid interface in the presence of a polluted interface is
being questioned.

rotation Ω of the disc was accurately controlled using a closed-loop tachometer. The
liquids used in this experimental investigation were tap water, demineralised water and
a water–glycerol mixture with 60 % glycerol in terms of mass. Their temperature was
not controlled but was known with an accuracy of 0.1 K. The corresponding kinematic
viscosity was then evaluated using an empirical formula (Cheng 2008). Overall, the
experimental Reynolds number was known with an accuracy of the order of a percent
for the parameters investigated.

Pointwise velocity measurements were made using a one-component laser Doppler
velocimetry (LDV) device composed of a Dantec laser linked to a BSAFlow processor. The
liquid was seeded with Dantec 10 μm diameter silver-coated hollow glass spheres. Optical
deviation problems were fixed a posteriori using the method described by Huisman, van
Gils & Sun (2012). The standard deviation (urms

z ) of the instantaneous axial velocity
component was monitored at the location (r = 0.74 ± 0.01, z = 0.5G), at an azimuthal
position fixed in the laboratory frame. The choice of the axial component was dictated
by the ease of optical access. As for visualisations, non-axisymmetric flow patterns were
highlighted by injecting ink into the fluid. When a glycerol mixture was used as a working
fluid, ink of lighter density did not sink and stayed at the interface. The syringe used to
inject ink was carefully hung with the needle barely touching the fluid interface to avoid
disturbing the flow. A 26G (0.26–0.464 mm) inside–outside diameter needle proved to be
a good compromise for being small enough while injecting sufficient ink flow to be visible.

Lagrangian tracking of a small particle at the interface was also performed with the 60 %
glycerol mixture. The tracer in question was either ink (as mentioned above) or a solid
tracer consisting of a small portion (less than 1 mm in diameter) from the outer protective
sheath of an electric cable. In the latter case, the sheath could accommodate an air bubble,
which together with capillary effects ensured that it stayed at the liquid interface. The
respective trajectories of the ink and the tracer were monitored by filming at 30 f.p.s. using
an IDS UI 3370 CP camera (2048 × 2048 pixels) mounted above the liquid. Even though
each of them was intrusive, the use of two different measurement techniques allowed us
to cross-check and validate both trajectory and velocity. In particular, the good match
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A simple model for rotating free-surface flows

indicated that, despite the non-negligible size of the particle, its superficial trajectory could
be considered in a first approximation as non-inertial.

Whatever the liquid mixture used, no instability was detected below Re = 1500. Above
this value, the experimental protocol was to increase Re in steps by adjusting the rotation
speed. Several step values were investigated: 1/3, 1/2, 1 or 2 r.p.m.. Each step was then
observed and analysed over a time ranging from 20 to 90 min, which corresponded to at
least 35 disc revolutions for water and 62 disc revolutions for the 60 % glycerol mixture.
To improve the experimental reproducibility, the mixed up solution was stored for 1 to 3
days inside the vessel, with a cover plate on top to reduce contact between the air and the
interface.

2.2. Numerical tools
In all numerical approaches deployed here, only the liquid phase was simulated in
the non-deformable cylindrical domain {(r, θ, z) ∈ (0 : 1) × (0 : 2π) × (0 : G)}. The
height-to-radius ratio G was fixed to 1/4. After non-dimensionalisation by the angular
velocity Ω , the radius R, the liquid density ρ and the dynamic viscosity μ, the
incompressible Navier–Stokes equations in the bulk of the flow can be written as

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u, (2.2)

where Re = ρΩR2/μ. The boundary conditions which are not discussed in this work
concern the sidewall (r = 1) and the rotating bottom (z = 0), both characterised by no-slip.
By contrast, we have not yet specified the boundary conditions used at the liquid–gas
interface located at z = G. The several codes described below can deal with the classical
types of boundary conditions such as Neumann, Dirichlet or Robin. A given rotational
symmetry Rm, characterised by a fundamental azimuthal wavenumber m > 0, can be
imposed such that the velocity field verifies

(Rmu)(r, θ, z) = u
(

r, θ + 2π

m
, z
)

= u(r, θ, z). (2.3)

Steady states are defined by ∂tu = 0 in (2.2). They were identified numerically using
a Newton solver. The spatial discretisation in this solver is based on a Cartesian finite
difference representation in primitive variables using the exact same boundary conditions
as above. The code has been validated against the formulation used by Kahouadji (2011).
It yields a numerical estimation of the base flow whose associated velocity field can be
written (Ur, Uθ , Uz) and depends on r and z only. The stability analysis of the base flow
was carried out using an Arnoldi algorithm described in Appendix B.

As for the unsteady nonlinear simulations, we used the direct numerical simulation
(DNS) code Sunfluidh developed for incompressible flows, described in Appendix A. It
is based on a projection method to ensure a divergence-free velocity field. The governing
(2.1) and (2.2) were discretised on a staggered structured non-uniform grid using a
finite volume scheme with a second-order centred formulation in space. A second-order
Backward Euler Differentiation was used for time discretisation. The nonlinear simulations
were conducted without any azimuthal symmetry imposed.

The grid consisted of 160 × 180 × 160 cells in r, θ and z, respectively. The timestep was
set to Δt = 4 × 10−3 in units of �−1. In the radial direction, the grid cell size varied from
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8 × 10−3 at r = 0 to 1.2 × 10−3 at r = 1, and from 6 × 10−4 at z = 0 to 8 × 10−4 at z = G
with a maximum of 10−3 in the axial direction. The mesh was thus more refined near the
periphery r = 1, close to the rotating disc as well as near the interface. The discretisation
was uniform in the azimuthal direction.

3. Are free-slip boundary conditions appropriate?

3.1. Statement of the problem
As mentioned in § 1, determining an exact or at least effective boundary condition at
the liquid–gas interface is the main goal of this study. Although a derivation from first
principles is possible, it would invariably clash with the indetermination of the actual
experimental conditions. We adopt here first a purely phenomenological approach that
focuses on consequences rather than causes: instead of deriving the boundary conditions
analytically by assessing the underlying physical mechanisms at play, we choose to
simply gather experimental evidence as to how these interfacial conditions can be
approximated in practice. Importantly, we begin by considering the steady regime. This
regime is encountered experimentally for Re = 3300, the value at which these Lagrangian
experiments are reported.

3.2. A Lagrangian tracking experiment
The main idea behind the present Lagrangian tracking is to quantify one of the
macroscopic consequences of the interfacial boundary conditions, namely the radial drift
of non-inertial tracers. Two different experimental tracking techniques have been used,
one using ink and the other with a solid tracer (the sheath from an electric cable described
earlier). The respective trajectories of the ink and the tracer are displayed in a sequences
of superimposed images in figure 2. The trajectories of the ink and the sheath are
quantitatively similar after almost two revolutions of the bottom disc. This good match
ensures that both tracers, despite their differences in relative weight and the fact that one
diffuses while the other does not, behave almost as neutral fluid tracers and remain at the
interface. These experimental trajectories are compared with the numerical trajectories
predicted for a given set of boundary conditions. Because the dynamics is steady, these
numerical trajectories are evaluated by first determining the base flow U = (Ur, Uθ , Uz)
corresponding to the boundary conditions imposed, using the Newton solver mentioned
earlier. The trajectories are later integrated numerically from solving the two-dimensional
autonomous equation (ṙp, θ̇p) = (Ur, Uθ /rp), where (rp, θp) denotes the position of the
particle in the interface plane z = G. In particular, the numerical trajectory corresponding
to the free-slip conditions ∂zUr = 0 and ∂zUθ = 0 is shown in red in figure 2. This
trajectory circles inward until it saturates at a fixed radial location, at approximately
r = R/2. By contrast, the ink and the sheath trajectories (departing from the same initial
radius located near the periphery of the flow) also spiral in but they experience a much
shorter radial drift, approximately one tenth of a radius in one revolution. The fourth
trajectory displayed in figure 2 in green (labelled ‘Ur = 0’) corresponds to the trivial
integration, over the same duration, of a tracer without any radial drift, i.e. with Ur = 0
and ∂zUθ = 0 for all r. This last case corresponds also to the model of Spohn & Daube
(1991). One of the visual conclusions from figure 2 is that the small radial drift of the two
experimental trajectories (ink and sheath) is much closer quantitatively to the vanishing
radial drift of the new model than to the large radial drift of the stress-free model.
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A simple model for rotating free-surface flows

Ur = 0 Free slip

Figure 2. Lagrangian tracking experiment. Comparison between model and free-slip boundary condition, ink
injection and particle tracking for Re = 3300, and trajectories predicted by the numerical integration of the
tracer position for the stress-free model (∂zUr = 0, red) and the new model (Ur = 0, green). The liquid in the
experiment is a 60 % glycerol mixture. Photograph taken after the disc has achieved 1.94 revolutions after ink
injection.

The radial drift of the tracer makes it move along the planar interface. The tracer hence
visits the whole range of radius values from the periphery to the central zone. Both
radial and azimuthal position are monitored at every time. Given that the base flow is
axisymmetric and steady, the respective radial and azimuthal Eulerian velocity profiles can
easily be reconstructed using finite differences. They are respectively shown in figures 3(a)
and 3(b). The velocity profiles predicted for the base flow by either free-slip (red solid
line) or the present model (green solid line) have been added to the figure for comparison.
Compared with figure 2, figure 3(a) has the advantage of displaying the entire r-profile.
As indicated by the two velocity components, the flow is in solid body rotation for r < 0.4
in the models, whatever the boundary condition at the interface.

The comparison of azimuthal velocity profiles Uθ (r) in figure 3(b) shows a flawless
match between the experimental profile and the prediction by the new model. The free-slip
profile displays, in turn, a neat excess of azimuthal velocity in the interval 0.4 < r < 0.6
not compatible with the measurements. As for the radial component, for the free-slip
boundary condition, it departs from zero and reaches negative values down to −0.17 over
the range 0.6 < r < 0.8. This is to be compared with the radial tracer velocity measured
experimentally, which departs from zero only for r > 0.6 and does not exceed 0.03 in
magnitude. The experimental radial velocity profile is hence reasonably well approximated
by Ur = 0 for all 0 < r < 1, rather than by the free-slip profile. This highlights again the
limited relevance of the free-slip boundary condition in the steady regime.

The tracer has a finite size and cannot legitimately be considered non-inertial, which
suggests that the tracer drift velocity is not exactly the radial velocity of the fluid. As a
verification, the tracer is also tracked in a range of radii [0.14–0.2], where the velocity
field obeys solid body rotation (see figure 3b). The order of magnitude of the radial drift
velocity of the tracer in this region is a measure of the inertial effects (here only owing to
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Figure 3. Same conditions and parameters as in figure 2. Velocity profiles Ur(r) (a) and Uθ (r) (b) at the
interface z = G. The cyan solid line for the radial velocity profile is a fit of the experimental data using cubic
spline functions.

centrifugal acceleration). The mean value of the tracer drift velocity is 8.3 × 10−4, which
is barely visible on the scale of figure 3(a). It indicates that inertial effects have a weak
influence on the radial fluid velocity measurements.

The Dirichlet condition Ur = 0 is only an approximation, and it is a relatively strong
hypothesis. To better judge the quality of this approximation, an alternative radial velocity
profile is suggested as a boundary condition. This new data-driven profile is obtained in
figure 3(a) by simply fitting (rather than approximating) the experimental radial profile of
Ur for Re = 3300 using cubic spline functions. The new profile Uexp

r (r), compared with
its experimental counterpart, displays the same variations yet in a smoother way. It can
later be imposed directly in the numerical codes as another Dirichlet boundary condition
ur(z = G) = Uexp

r (r). As a rough model allowed only in the frame of a robustness test, the
same radial velocity profile is imposed independently of the value of Re.

3.3. Model boundary conditions for the steady base flow
The reasons why the usual free-slip boundary condition does not apply to the current set-up
have been discussed by Lopez & Chen (1998), Faugaret et al. (2020) and Faugaret (2020).
It is important to recall that the free-slip condition itself comes from an approximation
of the force balance between the liquid and the gas at the interface. As the viscosity and
surface tension of the gas phase are often neglected, the interfacial force balance reduces
to the steady balance between viscous stresses and Marangoni forces in the liquid at every
point of the interface.

Starting from the Boussinesq–Scriven surface fluid model for a Newtonian fluid–gas
interface (Scriven 1960), assuming that the interface remains flat at all times, and under the
hypothesis of negligible surface dilatational viscosity and surface shear viscosity (Hirsa,
Lopez & Miraghaie 2001), the force balance leads to the following boundary conditions:

∂ur

∂z
= 1

Ca
∂σ̄

∂r
,

∂uθ

∂z
= 1

Ca
1
r

∂σ̄

∂θ
, uz = 0, (3.1a–c)

where σ̄ = σ/σ0, with σ the surface tension of the liquid and σ0 the reference surface
tension. The capillary number is defined as Ca = μ�R/σ0, with μ the dynamic viscosity.
A closure σ = f (c) for the surface tension σ is necessary, here as a function of the
concentration c = c(r) only. The important physical property to capture in the closure is
the decrease of σ with increasing concentration, while the concentration c(r) is governed
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Figure 4. Radial velocity profiles at r = 0.55 (a), 0.70 (b), 0.85 (c) for the base flow at Re = 3300. Boundary
conditions: free-slip (red); Ur = 0 (green); radial profile fitted from experiments at the same value of Re (cyan).

by in-plane advection and diffusion only (Stone 1990; Kwan et al. 2010). It is also assumed
that surfactants remain at the interface at all times and that they neither sink towards the
bulk nor undergo desorption. This is justified for low enough pollutant concentrations
in the steady regime (Bandi et al. 2017). The effective radial velocity profile resulting
from this interplay is not trivial. Faugaret et al. (2020) have demonstrated for the base
flow for another value of G, in the limit of large concentrations, the radial profile evolves
non-uniformly towards Ur = 0. We assume that the same result also holds here for
G = 1/4. As for the azimuthal velocity profile, (3.1b) together with axisymmetry yields
∂zUθ = 0, like in the free-slip boundary conditions. This is perfectly consistent with the
findings of Miraghaie et al. (2003) in a related geometry. The impermeability condition
yields Uz = 0.

The suggested synthetic boundary conditions for the base flow hence write:

Ur = 0,
∂Uθ

∂z
= 0, Uz = 0. (3.2a–c)

3.4. Comparison of stationary velocity profiles
The steady base flow with either the free-slip, the new model or the fitted boundary
condition has been computed for Re = 3300 using the Newton solver. The corresponding
z-profiles for the radial component are shown in figure 4 for increasing values of r, i.e.
from the axis towards the sidewall. For all values of r, the three profiles match very well
from z = 0 up to a given value dependent on r. Above this value of z, the free-slip profile
deviates significantly from the two other base flow profiles. This r-dependent match is
consistent with the radial development of the Ekman-like boundary layer on the rotating
plate. Remarkably, the volumetric profile resulting from the fitted condition Ur = Uexp

r
differs very little from the one induced by Ur = 0, except very close to the interface.

A qualitative comparison of the global distribution of Ur in the meridian plane is
possible at that stage. The recirculation in the meridian (r, z) plane is known to be caused
by the axial gradients of uθ . These gradients primarily arise from the lack of azimuthal
entrainment at the interface, so that the flow entrained by the rotating disc is slowed down
by the friction at the sidewall. The recirculating meridian flow invariably takes, near the
rotating bottom wall at z = 0, the form of a radial flow outwards. Continuity imposes
the flow to loop and recirculate inwards near the upper interface at z = G, with the exact
profile in the upper half depending on whether free-slip or no-slip is imposed.
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3.5. Unsteady regime
It is known from former investigations that for Re large enough, the axisymmetric
base flow loses its stability. The resulting instability patterns are characterised by an
integer m, the leading azimuthal wavenumber selected by the instability. Structurally,
the corresponding modes display at saturation exactly m off-centred co-rotating vortices.
These vortices are clearly visible from above using ink in the experimental figures 5(a),
5(c), 5(d) and 5( f ). The approximately circular ink trajectories in the off-centred vortices
are a priori incompatible with the condition Ur = 0, because vortices need a genuinely
two-dimensional velocity field (note however that axial vorticity at the interface is
not excluded because ωz also contains, by definition, radial derivatives of uθ ). As a
consequence, the frozen model suggested by Spohn & Daube (1991) becomes ill-adapted
to unsteady simulations for which it requires a non-trivial generalisation.

New boundary conditions were suggested in the last part of the paper by Faugaret et al.
(2020) and used only in the context of linear stability analysis. This model assumes a
decomposition of the velocity field u = U + u′ into an axisymmetric part U with ∂θU =
0 and a residual perturbation u′. Faugaret et al. (2020) explicitly chose Ub as the base
flow solution of the steady (2.1) and (2.2) (with ∂t = 0) and computed with the boundary
condition Ur = 0 at z = G. Such a solution is found either using the Newton method or
by timestepping the unsteady equations under an axisymmetry assumption, because no
axisymmetric instability occurs for the range of Re investigated. The perturbation remains
subject to the classical stress-free boundary condition ∂zu′

r = 0. This is different from
the approach adopted by Miraghaie et al. (2003), where the doubt about the stress-free
boundary conditions is on the perturbations rather than on the base flow like in the present
model.

In the present study, we also perform unsteady nonlinear simulations based on a
pre-existing well-tested numerical code. For this purpose, another decomposition u =
Ū + ũ into mean flow Ū and fluctuation ũ is preferred for its computational simplicity.
The mean flow U(r, z, t) is defined as the instantaneous azimuthal average

Ū(r, z, t) = 1
2π

∫ 2π

0
u(r, θ, z, t) dθ. (3.3)

In practice, this average needs only be performed at the interface z = G. Mean flow
and base flow do not strictly coincide except in the linearised regime around the
steady axisymmetric solution Ub, where the velocity field can be written u(r, θ, z, t) =
Ub(r, z) + εũ(r, z, θ, t) + O(ε2). At order O(ε), because nonlinear interactions of the
perturbations to the base flow are neglected, Ū ≈ Ub because < ũ >= 0.

The suggested synthetic boundary conditions for the mean flow in the linear regime can
be written, as for the base flow, by

Ūr = 0,
∂Ūθ

∂z
= 0, Ūz = 0. (3.4a–c)

The fluctuating velocity field ũ(r, θ, t) is however subject to the regular stress-free
boundary conditions

∂ ũr

∂z
= 0,

∂ ũθ

∂z
= 0, ũz = 0. (3.5a–c)

This full model amounts to neglecting the effect of the surfactants on the fluctuations while
it is fully taken into account for the mean part.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 5. Instability observed for Re = 2100(a, d, g), Re = 3300 (b,e,h) and Re = 5545 (c, f ,i). (a,b,c) 60 %
glycerol experiment, short time after ink injection. (d,e, f ) Same experiment, long time after ink injection.
(g,h,i) Top view of three-dimensional axial vorticity isolevels. The four blue and the four red isosurfaces are
linearly spaced in [−0.016, −0.04] and [0.1,0.4], respectively.

4. Bifurcations

In this section, we present a joint experimental/numerical investigation of the onset of
unsteadiness. The numerical approach is based on the model suggested in § 3.5 and
detailed in Appendices A and B.

4.1. Modal selection in experiments
We begin by explaining the modal selection as observed in the experimental campaign.
The protocol was carefully designed with measurements as Re is increased in small steps.
We report here first only stable states that can be observed on long enough timescales
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from 1 to 3–4 days after the preparation of the solution. As Re is increased from rest, the
first instability is well identified. It corresponds to the instability of a mode with m = 3.
Its onset in Reynolds number Re(m=3)

c depends on the experimental details such as the
amount of glycerol in the solution: for a glycerol amount of 60 %, Re(m=3)

c ≈ 1550 ± 50,
while for no glycerol it lies in the range 1600–1700. This is to be compared with the value
of Re ≈ 2000 at which the instability was reported experimentally by Lopez et al. (2004)
and Vogel et al. (2004). The same instability was also identified numerically by Kwan
et al. (2010) using a quadratic surfactant model, although some parameters (which need to
be calibrated) have no equivalent in our study.

The exact threshold value turns out to be very sensitive to the experimental conditions.
The mode m = 3 is observed visually and attested in the LDV time series up to a second
critical value of Re ≈ 2500 for glycerol and 3100 for water. Above this threshold, the
axisymmetric base flow is recovered over a finite range of values of Re called a stability
island. Above a second onset value Re(m=2)

c , the base flow is again unstable, yet to a mode
with symmetry m = 2. This onset value varies within the Re-interval 3800–4800, and
depends on the direction in which Re is varied. This is a clear signature of hysteresis that
will be tackled later. Measurements were not attempted beyond Re = 5600 because for
the glycerol mixture, the Froude number (Ω2R/g, where g is gravity) is no longer small
and the validity of a flat free-surface approximation becomes questionable. A sequence
of flow visualisations covering the three main zones (m = 3, stability island, m = 2) is
shown in figure 5 for Re = 2100, 3300 and 5545. In the first row, the photographs are
taken a few revolutions after ink injection, but the number of peripheric vortices is already
well identified. In the second row, the photographs are taken at a later time at which the
ink patterns are only diffusing. At this later time, the ink ends up concentrated in the
core of these vortices which, as a consequence, appear thinner in figure 5(d) and 5( f ).
This introduces a qualitative distinction between short and long observation times, related
to the typical shearing timescale of the ink. Visualisations stemming from the nonlinear
simulations of the new model have been included in the last row for the exact same values
of Re. These visualisations will be discussed later.

We briefly comment on the robustness of these results with respect to experimental
conditions, especially the age of the aqueous preparation. Two extreme situations can
occur if the preparation is either too young or too old. If the measurements are performed
on the same day as the preparation, the variability of the results is much higher and the
modal selection is impacted in a way inconsistent with the tracing of a reproducible
bifurcation diagram. Instead of the first unstable mode m = 3, LDV measurements as
well as visualisations indicate the occurrence of modes m = 2 in water, or even m = 4 in
glycerol mixtures (the latter with amplitudes barely higher than the noise level). The higher
variability and the possible occurrence of an m = 4 mode were confirmed experimentally
for lower glycerol contents of 20 % and 40 %. The dependence of the modal selection on
the quality of water has been raised by Lopez et al. (2004). Indeed, if the preparation is left
at rest in the laboratory for longer than a day, the modal selection favours the appearance
of an m = 3 mode at onset, whatever the fluid. The protocol of waiting for 1 day to obtain
a contaminated surface is consistent with that of Bernal et al. (1989). Fluid ageing also
impacts the selection of the second unstable mode, especially the hysteresis: beyond 3–4
days, in glycerol experiments with descending Re (see Appendix C), a mode m = 2 has
been identified to persist down to values of Re for which a stable base flow is expected.
This mode m = 2 may even overlap completely with the stability island. This confirms that
the instantaneous chemistry of the interface does influence crucial stability characteristics
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such as the modal selection. The difficulties associated with the accurate tracking in time
of the chemical composition reinforce the need for a simple model. In the remainder of
this article, to avoid the complications associated with multistability, we only focus on the
time window between 1 and 3 days where the experimental variability is minimal and the
results are self-consistent.

4.2. Linear stability analysis
The linear stability analysis (LSA) of the base flow is the classical numerical way to
predict the modal selection from the governing equations, at least in the presence of
supercritical bifurcations. Assuming a perturbation to the base flow in the form eλt+imθ , a
mode is unstable if the real part Re(λ) of the complex associated eigenvalue λ is strictly
positive, else it is linearly stable. LSA parametrised by Re was performed for the two
main models, respectively free-slip and the model with Ur = 0. Re(λ) is shown versus Re
in figures 6(a) and 6(b). Only the modes with m = 2, 3 and 4 were considered. For the
free-slip model, the first unstable mode is the mode m = 2 above Re = 3505. No branch
of m = 3 is unstable before Re = 4755. In contrast, for the new model, a branch of m = 3
modes destabilises somewhere between Re = 1580 and 2650. The next instability involves
a mode m = 2 from Re = 3635 on. All critical Reynolds numbers are given rounded by
±5, with an accuracy of a few percent (see Appendix B). They have been computed
using a grid of 160 × 160 cells in r and z like in the nonlinear simulations. The curve
Re(λ) = f (Re) for the m = 2 mode appears in figures 6(a) and 6(b), common to the two
models. However, the most unstable m = 3 branch seems specific to the new model and
has no obvious stress-free counterpart. Additionally, the experimental selection mimics
qualitatively the stability of the base flow for the new model, whereas the instabilities of
the stress-free model are not consistent with the experimental observations. In particular,
the stress-free model does not predict the first m = 3 instability and, as a consequence,
misses the instability island altogether.

Eventually, the robustness of the bifurcation diagram in figure 6(b) was investigated
by considering, instead of the base flow predicted by the exact model with Ur = 0,
the base flow reconstructed from the fitted experimental profile at the interface (see
§ 3.3). Although the reconstructed velocity fields differ (see figure 4), their stability
characteristics for m = 2 and 3 are very similar, as shown in figure 6(b). In particular, the
modal selection m = 3, 0 and 2 obtained as Re increases is common to both new models
whereas it is missed by the free-slip model.

4.3. Quantitative bifurcation diagrams
If the modal selection process can be well explained and predicted by linear theory,
quantitative bifurcation diagrams demand nonlinear simulations. We demonstrate below
that nonlinear simulations of the suggested model respect the modal selection predicted
by LSA, but also match well the amplitude levels measured experimentally.

The main quantity measured experimentally using LDV is the pointwise axial velocity
at a given location in the fixed laboratory frame. In such a frame, the saturation of a mode
with both Im(λ) and m non-zero leads in the simplest scenario to a rotating wave with
angular phase velocity Im(−λ)/m. The amplitude of the associated time oscillations is
characterised by the standard mean deviation of the measured velocity probe, denoted
urms

z . This quantity is depicted in figure 7. Two different campaigns corresponding to
two different fluids are reported: water as well as a water–glycerol mixture with 60 %
glycerol in mass. The same quantity urms

z was measured in the nonlinear simulations
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Figure 6. Growth rate Re(λ) of the least damped eigenmodes versus Re (blue, m = 2; red, m = 3; green,
m = 4). (a) Stress-free boundary condition; (b) new boundary condition (open symbols) and fitted boundary
condition (closed symbols). The thick red dots correspond to the values of Re with visualisations in figure 5.

at essentially the same measurement station (r, z) = (0.8, 0.125G). For both fluids and
for values of Re around 3000, the experimental noise represents less than 0.5 % of the
amplitude. Both experiments as well as the DNS display a clear bump in their bifurcation
diagram corresponding to the occurrence of the saturated m = 3 mode. All three datasets
predict a maximum amplitude of approximately 0.0097–0.012 located in the Re-interval
2000–2400. The maximum amplitude obtained for water occurs at the larger Reynolds
number. Considering the differences between the experimental fluids and the crudeness
of the model, this appears hence as a quantitatively decent comparison, especially when
compared with the stress-free model which does not capture the instability with m = 3.
The stability island is also well captured by the nonlinear simulations, although they tend
to overpredict its width in the case of water.

The occurrence of the m = 2 instability is harder to quantify because of the presence of
a hysteresis zone. The bounds of this hysteresis zone have been estimated experimentally
by raising Re up to 5600, and decreasing Re from there in steps of 100 to 200. The DNS
data confirms this hysteresis by revealing the existence of two different amplitude levels,
the lower one with urms

z ≈ 5 × 10−3 and the higher one with amplitudes closer to 3 ×
10−2. Such a distinction is not possible in the present experiment, because the level 5 ×
10−3 appears comparable to the noise level. The details of the experimental and numerical
protocols are given in Appendix C.
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1000
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Stable Stability island Hysteresism = 3 m = 2

2000 2500 3000 3500

Re
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0.035
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Glycerol (exp)
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uz
rms

Figure 7. Amplitude bifurcation diagram. Temporal standard deviation urms
z versus Re. Experimental LDV

measurements at location (r, z) = (0.74 ± 0.01, 0.5G) with water (blue dots) or 60 % glycerol–water mixture
(red dots) versus DNS using the new model (black lines) at location (r, z) = (0.8, 0.5G). The blue and red
solid lines correspond to local second-order polynomial fits. A hysteresis area has been indicated symbolically
in grey.

The angular phase velocities for the rotating wave, estimated from experiments, DNS
and LSA, compare very well. In the experiments at Re = 2100 and Re = 5545, the modal
structure (respectively m = 3 and m = 2) precesses in the prograde direction with a lag,
as it propagates at angular velocity 0.65 (respectively 0.55). The corresponding values
are 0.63 (respectively 0.54) in DNS and 0.64 (respectively 0.54) in LSA, which suggests
that the angular phase velocity is weakly affected by nonlinearity. Further analysis of the
spectrum at Re = 5545 shows that in addition to the dominant modes m = 2 and m =
3, only few harmonics are of significant energy level. These values also compare well
with the angular velocity of 0.62 reported by Miraghaie et al. (2003) for Re = 2000. We
are confident that the structures identified both experimentally and using the new model
correspond to the same mode.

Furthermore, the location of the vortical structures can be compared between
experiments and numerics by monitoring respectively the location where the ink
(respectively a passive tracer) concentrates (figures 5d and 5f ). In the rotating frame of the
wave, the numerical velocity field at the interface is steady but not incompressible in the
plane. The vortex centres in this plane stand here as stable fixed points for the Lagrangian
motion of passive tracers. These points are located at a radius 0.62 for Re = 2100 and 0.65
for Re = 5545, whereas experiments with ink suggest the respective values of 0.64 and
0.68. These values are consistent with the location of the extrema of axial vorticity below
the interface (see figures 5g and 5i). Despite a small shift in the radial position, the match
is fair given the experimental uncertainty.

We define next the instantaneous flow rate Q(t) through any meridian cross-section by

Q =
∫ G

0

∫ 1

0
uθ dr dz. (4.1)

In practice, we use a normalised form of Q, namely Q∗ = Q/Q0, where Q0 = ∫∫
r dr dz

is the flow rate corresponding to the equivalent solid body rotation flow with the same
angular velocity. Because the present flow is entrained only by the rotating disc, less fluid
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1000 2000 3000 4000 5000 6000

Re

Q*

0.670

0.665

0.660

0.655

0.650

Base flow

Rotating wave

Modulated rotating wave

Figure 8. Normalised azimuthal flow rate Q∗ versus Re (DNS). Stable steady axisymmetric base flow
(solid green), unstable axisymmetric base flow (dashed green), rotating wave m = 3 or lower/upper branch
m = 2 mode (blue dots) and time-modulated m = 2 mode (red dots). The vertical bars indicate the temporal
fluctuations.

is entrained compared to solid-body rotation, and hence 0 < Q∗ < 1. Here, Q∗ can not
be estimated experimentally, but its estimates from DNS are reported in figure 8 versus
Re. One advantage of the quantity Q∗ over the variance of uz is that rotating waves are
associated with fixed points of Q∗ rather than limit cycles, while unsteady time series
of Q∗(t) are the signature of temporally modulated rotating waves. Two supplementary
modulational instabilities of the rotating wave with m = 2 have been identified in figure 8,
one with very small modulational amplitude and another one (which we refer to as ‘lower
branch’) with larger amplitudes, bifurcating from a new (disconnected) branch of rotating
waves. The existence of several such branches is consistent with the hysteresis mentioned
in the description of figure 7. Figure 9 contains an additional characterisation of the states
found along the lower branch of figure 8, extracted from the times series of Q∗(t). It
contains notably the modulation amplitude AQ∗ versus Re, extracted from the min–max
extrema and the main modulation frequency f0(Re) deduced from the frequency spectrum.
The continuous growth of the amplitude versus Re in panel (a) and the almost constant
frequency in panel (b) both support the emergence of this branch via a supercritical
Neimark–Säcker bifurcation. Characteristics of the modulational states found along the
lower branch, such as their amplitude and temporal frequency, are reported in figure 9.
The onset of the modulation for m = 2 lies at Re = Re(m=2)

M between 4250 and 4400.
The modulation amplitude increases apparently with Re but was not monitored beyond
Re = 5500 (note that the snapshot displayed in figure 5(i) corresponds to a time prior to
the development of the temporal modulation). The experimental measurements are not
accurate enough to reveal whether this modulation is present or not, at least when Re is
sufficiently low. Interestingly, preliminary nonlinear simulations of the stress-free model
with similar resolution have indicated a similar modulational instability (Faugaret 2020).
The modulation of the saturated mode m = 2 seems thus to be common to both models,
although a deeper investigation of the limitations of the model would be necessary to
conclude.
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(a) (b)
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Figure 9. Characteristics of modulated states along the lower branch of figure 8 as a function of Re: (a)
amplitude AQ∗ (Re); (b) frequency f0(Re).

5. Conclusions

The present experimental and numerical study sheds light on the effect of arbitrary
pollutants on the stability of a model swirling flow. This flow is generated by a rotating
bottom lid and open at the top. It was originally selected because of previously ambiguous
conclusions about the selection of the most unstable modes at least for small aspect ratios.
The modal mismatch, as in Faugaret et al. (2020), is attributed to the small but unavoidable
presence of pollutants on the free surface. Although small and poorly measurable in
practice, these pollutants turn out to have a strong influence on the stability of the flow.
Simulating the whole system of equations together with the transport of the pollutants
(modelled as simple-species surfactants) should include the precise knowledge of the
chemical composition of the interface, a Marangoni closure and many physical constants to
be determined. We circumvent this complexity by assuming a parameter-free description
both easily accessible and easy to implement in a numerical code. We suggest hence a
Dirichlet boundary condition for the radial velocity field alone. The steady base flow and
the perturbation are treated separately: the radial velocity is assumed to vanish for the
base flow while for the perturbation, the usual stress-free conditions are retained. This
paper explores the nonlinear dynamics of the flow for an aspect ratio of G = 1/4, as in
Hirsa et al. (2001), both using an experimental set-up and an adapted DNS code with
the aforementioned boundary condition. The stability thresholds for modes with different
rotational symmetries are well reproduced by the model, where the stress-free boundary
conditions fails quantitatively as well as qualitatively. The experimental bifurcation
diagram, including as Re increases a saturated m = 3 mode followed by a stability
island and the emergence of an m = 2 mode, are all well reproduced quantitatively by
the nonlinear simulations. Both models predict a modulational instability of the m = 2
wave, a result yet to be verified experimentally. The different modal selections and the
associated nonlinear dynamics result from subtle changes in the structure of the base flow.
The instability of the m = 3 mode and the stability island are both absent in the more
common stress-free model. This emphasizes the relevance of the new model. However,
the applicability of this new model has also limitations revealed by the comparison with
experiments. Aqueous solutions either too fresh (yet unaffected by the adsorption of
pollution) or too old possess instability features not captured by the model. For a too
young liquid mixture, the modal selection is no longer predicted by the model, with
modes m = 2 and m = 4 replacing the mode m = 3 for the same parameters. For a too old
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liquid mixture instead, the width of the hysteresis zone overlaps with the stability island
and the bifurcation diagram of figure 7 becomes invalid. The experimental variability
appears also less pronounced for tap water than for the water–glycerol mixtures. This
suggests, for the present experimental water set-up, a need to select a specific temporal
window from one to 3–4 days such that experimental variability is minimised. This result
is experiment-dependent but has proven robust regardless of the exact water mixture
considered. Future desirable developments of this modelling approach include non-flat
interfaces when the Froude number increases (Kahouadji & Martin Witkowski 2014;
Carrión et al. 2017; Tasaka & Iima 2017) and possible dewetting regimes (Jansson et al.
2006; Mougel et al. 2017; Yang et al. 2019, 2020; Rashkovan et al. 2021). Using a
multiphase formalism, Yang et al. (2020) have shown that the motion in the gas phase
above the interface is not relevant. However, the influence of denser fluids, as in the recent
numerical simulations of Carrión et al. (2020), should be investigated. Two-dimensional
particle image velocimetry, as used in the same flow set-up by Miraghaie et al. (2003) in
horizontal planes or by Carrión et al. (2020) in meridian planes, could be a complementary
way of analysing experiments. The approach developed in the present paper should also
be generalised to non-axisymmetric geometries.
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Appendix A. Numerical methods for nonlinear simulations

We present in this appendix the main features of the numerical methods used in the code
called Sunfluidh to solve the incompressible Navier–Stokes equations in 3-D cylindrical
geometry. We first detail the time-marching procedure to estimate the velocity field at each
time step (here, for simplicity Δt is assumed constant). We then present the projection
method used to ensure a divergence-free velocity field. We conclude with the discrete
operators involved in the Navier–Stokes equations in a 3-D cylindrical geometry.

A.1. Time-marching procedure
The time-marching procedure is based on the second-order backward differentiation
formula. The viscous terms are treated implicitly to increase the numerical stability with
respect to the timestep. We obtain the time-discrete system:

3un+1,∗ − 4un + un−1

2Δt
+ F n,n−1

u = −Gn
p + Lun+1, (A1)

where the superscripts n + 1, n and n − 1 denote successive time steps, Gn
p is the discrete

pressure gradient at nΔt, Lun+1 is the viscous term and F (n,n−1)
u is the discrete convection
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flux estimated at time (n + 1)Δt from the linear extrapolation

F n,n−1
u = 2F n

u − F n−1
u . (A2)

The system is rearranged in an incremental form

Huδu =
(
1 − 2Δt

3
· L
)

δu = Sn,n−1 · 2Δt
3

, (A3)

δu = un+1,∗ − un and Sn,n−1 is the right-hand side term which gathers all explicit
contributions from the time discretisation, the convection terms and the explicit
contributions of the viscous terms. We specify each velocity component is solved
separately what leads to the resolution of three independent systems Hiδui = 2

3Δt · Sn,n−1
i

with i = r, θ, z.
As the spatial discretisation is carried out using a second-order centred scheme (see

§ A.3.2), Hi can be approximated by means of a factorisation procedure that leads to the
resolution of three tridiagonal systems (one per direction). This technique is based on
the work of Peaceman & Rachford (1955) that has been then adapted and largely used
for different applications (see for instance Beam & Warming 1976; Kim & Moin 1985;
Verzicco & Orlandi 1996). At the end of this step, the velocity field un+1,∗ is not yet
divergence-free.

A.2. Projection method
The divergence-free velocity field un+1 is obtained by means of a projection method
(Guermond, Minev & Shen 2006) used in an incremental form proposed by Goda (1979).
This consists in solving the Poisson equation

∇2φ = ∇ · un+1,∗

Δt
, (A4)

with zero normal derivative as boundary condition. The pressure and the velocity fields
are thus updated between time n and n + 1 according to

pn+1 = pn + φ, (A5)

un+1 = un − 2Δt
3

∇φ − 1
Re

∇ · un+1,∗. (A6)

The resolution of the Poisson equation is performed using a direct method based on a
Fourier expansion along the azimuthal direction coupled with a partial diagonalisation
technique. This method is based on the work of Haidvogel & Zang (1979) and has been
used for instance by Barbosa & Daube (2005).

A.3. Spatial discretisation

A.3.1. Grid and coordinates
The Navier–Stokes equations are discretised on a staggered grid in cylindrical geometry.
The indexation is defined as ri, θj and zk for the radial, azimuthal and axial coordinates,
respectively. For each cell C(i, j, k), the scalar quantities (i.e. the pressure P) are evaluated
at the cell centre whereas the velocity components (ur, uθ , uz) are evaluated at the centre
of cell faces, see figure 10(a). For the cells adjacent to the axis, only the radial velocity
component is evaluated at the axis (see figure 10b).
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Figure 10. Coordinate location and positions of the physical quantities evaluated in the cells C(i, j, k) (black
tag, scalar quantities; red tags, velocity components). Cells away from the axis (a). Cells adjacent to the axis
(b).

The relations between the radial coordinate sets are given by

ri = 1
2 (ri+1/2 + ri−1/2), (A7)

Δri = ri+1/2 − ri−1/2, (A8)

Δri+1/2 = ri+1 − ri. (A9)

For the sake of simplicity, we suppose a regular distribution along the radius. We thus have
Δri,j,k = Δri+1/2,j,k = Δr. The same convention is considered to define the azimuthal (θ )
and axial (z) coordinates along the j and k directions, respectively.

A.3.2. Discrete operators
The operators applied to the pressure P and velocity components (ur, uθ , uz) are discretised
using a second-order centred scheme. For the sake of clarity, only the varying index
is written down. We also define the space averaging operator in the l-direction for any
quantity φ as

φ̄l = 1
2 (φl+1 + φl). (A10)

• The pressure gradient operator GP :
• in the ur equation along the radial direction, Gi+1/2( p) = (pi+1 − pi)/Δr;
• in the uθ equation along the azimuthal direction, Gj+1/2( p) =(pj+1−pj)/(riΔθ);
• in the uz equation along the axial direction, Gk+1/2( p) = (pk+1 − pk)/Δz.

• The velocity divergence operator (in the source term of the Poisson equation):

∇ · u = 1
riΔr

(ri+1/2ur,i+1/2 − ri−1/2ur,i−1/2)

+ 1
riΔθ

(uθ,j+1/2 − uθ,j−1/2)

+ 1
Δz

(uz,k+1/2 − uz,k−1/2). (A11)
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• The convective flux balance in a conservative form Fu = ∇ · (tu ⊗ u):
• for ur at (i + 1

2 , j, k),

F(ur) = 1
ri+1/2Δr

(ri+1ur
i
i+1ur

i
i+1 − riur

i
iur

i
i)

+ 1
ri+1/2Δθ

(ur
j
j+1/2uθ

i
j+1/2 − ur

j
j−1/2uθ

i
j−1/2)

+ 1
Δz

(ur
k
k+1/2uz

i
k+1/2 − ur

k
k−1/2uz

i
k−1/2)

−
u2

r,i+1/2,j,k

ri+1/2
; (A12)

• for uθ at (i, j + 1
2 , k),

F(uθ ) = 1
riΔr

(ri+1/2uθ
i
i+1/2ur

j
i+1/2 − ri−1/2uθ

i
i−1/2ur

j
i−1/2)

+ 1
riΔθ

(uθ
j
j+1uθ

j
j+1 − uθ

j
j uθ

j
j )

+ 1
Δz

(uθ
k
k+1/2uz

j
k+1/2 − uθ

k
k−1/2uz

j
k−1/2)

+
1
2 (ur

j
i+1/2 + ur

j
i−1/2)uθ,i,j+1/2,k

ri
; (A13)

• for uz at (i, j, k + 1
2),

F(uz) = 1
riΔr

(ri+1/2uz
i
i+1/2ur

k
i+1/2 − ri−1/2uz

i
i−1/2ur

k
i−1/2)

+ 1
riΔθ

(uz
j
j+1/2uθ

k
j+1/2 − uz

j
j−1/2uθ

k
j−1/2)

+ 1
Δz

(uz
k
k+1uz

k
k+1 − uz

k
kuz

k
k). (A14)

• The viscous terms (Laplacian operator) :
• for ur at (i + 1

2 , j, k),

L(ur) = 1
ri+1/2Δr

(ri+1
ur,i+3/2 − ur,i+1/2

Δr
− ri

ur,i+1/2 − ur,i− 1
2

Δr
)

+ 1
r2

i+1/2Δθ

(
ur,j+1 − ur,j

Δθ
− ur,j − ur,j−1

Δθ

)
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+ 1
Δz

(
ur,k+1 − ur,k

Δz
− ur,k − ur,k−1

Δz

)

− 2
r2

i+1/2

(
uθ

i
j+1/2 − uθ

i
j−1/2

Δθ

)

− ur,i+1/2,j,k

r2
i+1/2

; (A15)

• for uθ at (i, j + 1
2 , k),

L(uθ ) = 1
riΔr

(
ri+1/2

uθ,i+1 − uθ,i

Δr
− ri−1/2

uθ,i − uθ,i−1

Δr

)
+ 1

r2
i Δθ

(
uθ,j+3/2 − uθ,j+1/2

Δθ
− uθ,j+1/2 − uθ,j−1/2

Δθ

)
+ 1

Δz

(
uθ,k+1 − uθ,k

Δz
− uθ,k − uθ,k−1

Δz

)

+ 2
r2

i

(
ur

i
j+1 − ur

i
j

Δθ

)

−
u
θ,i,j+ 1

2 ,k

r2
i

; (A16)

• for uz at (i, j, k + 1
2),

L(uz) = 1
ri

(
1

Δr

(
ri+1/2

uz,i+1 − uz,i

Δr
− ri−1/2

uz,i − uz,i−1

Δr

))
+ 1

r2
i Δθ

(
uz,j+1 − ur,j

Δθ
− uz,j − uz,j−1

Δθ

)
+ 1

Δz

(
uz,k+3/2 − uz,k+1/2

Δz
− uz,k+1/2 − uz,k−1/2

Δz

)
. (A17)

A.4. Estimation of the radial velocity at the axis
Consistently with the numerical scheme detailed above, we need to estimate the radial
velocity component ur at the axis (see figure 10b). We rely on results from Lewis & Bellan
(1990), where non-zero values of ur and uθ at the axis are only related to the first (complex)
azimuthal Fourier mode (ûr

(1), ûθ
(1)), for any z plane. They showed that

ûr
(1) = −i · ûθ

(1) (with i2 = −1), (A18)

with

ûθ
(1) = lim

r→0

1
2π

∫ 2π

0
uθ (r, θ) e−i·θ dθ. (A19)

Thanks to (A18) and (A19), we can estimate the values of ur at the axis as a function of θ ,
for any z plane,

ur(0, θ) = ûr
(1)e−i·θ = u0

x cos θ + u0
y sin θ, (A20)
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linked to the Cartesian velocity components u0
x and u0

y . The latter are easily evaluated as

u0
x = lim

r→0
− 1

2π

∫ 2π

0
uθ (r, θ) sin θ dθ ≈ − 1

2π

∑
j

ũθ j+1/2 · sin θj+1/2 · Δθ, (A21)

u0
y = lim

r→0

1
2π

∫ 2π

0
uθ (r, θ) cos θ dθ ≈ 1

2π

∑
j

ũθ j+1/2 · cos θj+1/2 · Δθ, (A22)

where ũθ j+1/2 is an extrapolation of uθ to the axis along the radial direction.

Appendix B. Numerical methods for the linear stability analysis (LSA)

The numerical linear stability analysis is a two-step process. The first step consists in
computing the nonlinear steady axisymmetric base flow for a given Reynolds number. The
second step consists in finding the eigenmodes (eigenvalues and eigenvectors) associated
with the Navier–Stokes equations linearised around the base flow for a given azimuthal
mode m. In our approach, we solve all the equations coupled as a large-size sparse linear
system arising from the spatial discretisation. The choice of an efficient linear solver for
non-Hermitian matrices is crucial for good performances.

B.1. Base flow computations
In the radial and axial directions, we have used the same spatial discretisation as for
the nonlinear code Sunfluidh (cf. Appendix A). There is no temporal discretisation as
only steady-state solutions are sought. Instead of solving a Poisson equation for the
pressure, the divergence-free velocity field is obtained by solving the genuine velocity
divergence operator on pressure grid nodes. This equation is coupled with the momentum
equations. To avoid indeterminacy, a reference value for the pressure is imposed at an
arbitrary grid point. The large algebraic nonlinear system of equations is solved using
a Newton–Raphson algorithm. In the present configuration, five iterations are typically
enough to obtain convergence to machine precision when starting from a well-chosen
initial guess. This guess is either a zero velocity field if Re is small enough (typically
Re = 500) or a solution already computed for a near Reynolds number value. For each
Newton–Raphson iteration, the algebraic system is solved owing to a direct sparse solver
provided by common scientific packages, like Pardiso (Bollhöfer et al. 2020) or Umfpack
(Davis 2004).

To validate the axisymmetric base flow, we also ran the three-dimensional Sunfluidh
code at values of Re for which the flow is stable. At steady state and using the same grid
in the meridional plane, both velocity fields match within 10−7. An alternate formulation,
namely a vorticity-stream function, (in fact a third code detailed by Kahouadji, Houchens
& Martin Witkowski 2011) has been used for cross-checking purposes. In this latter
comparison, the same results are obtained below 1 %, which is consistent with the
second-order finite difference discretisation used for both approaches.

B.2. Linear stability analysis
Once the base flow is obtained, the linearised Navier–Stokes equations together with the
boundary conditions yield a generalised eigenvalue problem. To compute simultaneously
a few selected eigenvalues, we use the implicit restarted Arnoldi method implemented in
the Arpack library (Lehoucq, Sorensen & Yang 1998). We focus on the eigenvalues that
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Grid size Re(m=3)
c Re(m=0)

c Re(m=2)
c

160 × 160 1582.46 2648.76 3636.83
320 × 320 1583.63 2640.25 3626.00
640 × 640 1583.92 2638.17 3623.34

Table 1. Critical Reynolds number values Rec: Re(m=3)
c for the transition from mode 0 to 3, Re(m=0)

c from 3 to
0 and Re(m=2)

c from 0 to 2 for three different grid resolutions. The cell size is halved every time the number of
cells is doubled.

have the largest real part by selecting the shift-and-invert strategy in Arpack. In addition
to the tolerance on the computed eigenvalues, set to machine accuracy, other choices must
be prescribed: the shift value, the number of eigenvalues sought around the shift and the
maximal dimension of the Krylov subspace. The shift value is chosen along the imaginary
axis and should ideally be close to the imaginary part of the most unstable eigenmode.
Experimental observations are a useful guide, we chose −0.6 m where m is the azimuthal
mode. Forty eigenvalues are computed for a Krylov subspace dimension of 100. The most
unstable eigenvalue can be overlooked if inappropriate choices are made for the shift and
the number of eigenvalues. However, in addition to experimental evidence, a posteriori
checks with the nonlinear code Sunfluidh show consistency between all approaches, as
detailed below.

B.3. Validations
The adequacy of the 160 × 160 grid in (r, z) was checked in a spatial resolution
convergence study for the three Reynolds numbers where there is a transition from (or to)
an axisymmetric base flow in figure 6(b). The critical values Rec of the Reynolds number
are given in table 1 for the new model (open symbols).

The results obtained using LSA shows variations of Rec of less than 1 % as the grid size
varies. This yields an estimate on the relative error for Rec in numerical simulations. We
can also be confident that a 160 × 160 grid resolution in the meridional plane for Sunfluidh
is a good compromise between accuracy and computational cost.

Further validation is given by comparing the value of Rec obtained by LSA and
Sunfluidh using the following technique. With Sunfluidh, once the axisymmetric steady
state is reached with machine accuracy in a stable region, a perturbation is applied to the
velocity field with random noise, with an amplitude of 1 % of the maximum velocity. As
seen in figure 6(b), the real parts of the eigenvalues are well separated, so that there is
eventually a clear oscillatory exponential decay of the least unstable mode. Two decay
rates have been estimated in the stability island for Re = 2700 and Re = 2800, with a fit
in a logarithmic scale on the temporal series of any probe. Linear extrapolation of the two
decay rates yields Rec = 2652.55 with Δt = 4 × 10−3 and using the same meridional grid
resolution as in LSA. This value compares favourably with the value 2648.76 in table 1.
The spatial structure of the mode m = 3 is also recovered when subtracting the base flow.
This last test validates the choice of the azimuthal mode and of the shift for the LSA.

Appendix C. Experimental/numerical protocol for the investigation of hysteresis

In this section, we detail the exact protocol followed in parameter space to highlight
hysteresis as a function of Re. In addition to the threshold detection experiments detailed
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in § 2.1, several other experiments were performed to estimate the bounds of the hysteresis
zone. These experiments consist in starting from Re = 5600, with a fully established mode
m = 2, and then to decrease the Reynolds number in steps of 100 or 200. With the 60 %
glycerol mixture, the Reynolds number was dropped to 2500. The decay of the mode
m = 2 was observed for Re in [3800 : 4200]. The number of disc rotations at these steps
was at least 80. With water, the return from the mode m = 2 to the axisymmetric case
was observed for Re in [4300 : 4400]. Because of the lower kinematic viscosity of water
and despite a two-to-four times longer time span per step compared with the glycerol
experiments, the minimum number of disc rotations was only 45 for these values of Re.
Yet, even with a number of disc rotations almost divided by two, transition happened at
higher Re for water.

Hysteresis is also verified numerically for the same range of values of Re. A first set of
DNSs was initialised by a zero velocity field for different values of Re in [4400 : 5545],
and a second set by decreasing Re from 4500 to 3600. Each new case had started from
the last temporal solution calculated at the previous Re. Similarly, a third set was carried
out by increasing Re from 3600 to 4100. For each set, the steps in Re were fixed to values
between 100 and 200. In each case, the observation time considered was chosen at least
1000 time units after reaching the established flow state.
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