
Algorithmica (2024) 86:1830–1861
https://doi.org/10.1007/s00453-024-01209-4

The Time Complexity of Consensus Under Oblivious
Message Adversaries

Kyrill Winkler1 · Ami Paz2 · Hugo Rincon Galeana3 · Stefan Schmid4 ·
Ulrich Schmid3

Received: 11 August 2023 / Accepted: 12 January 2024 / Published online: 13 February 2024
© The Author(s) 2024

Abstract
Westudy the problemof solving consensus in synchronous directed dynamic networks,
in which communication is controlled by an oblivious message adversary that picks
the communication graph to be used in a round from a fixed set of graphsD arbitrarily.
In this fundamental model, determining consensus solvability and designing efficient
consensus algorithms is surprisingly difficult. Enabled by a decision procedure that is
derived from a well-established previous consensus solvability characterization for a
given set D, we study, for the first time, the time complexity of solving consensus in
this model:We provide both upper and lower bounds for this time complexity, and also
relate it to the number of iterations required by the decision procedure. Among other
results, we find that reaching consensus under an oblivious message adversary can
take exponentially longer than both deciding consensus solvability and broadcasting
the input value of some unknown process to all other processes.

This work was originally presented at ITCS’23 conference: Innovations in Theoretical Computer Science
2023.

B Stefan Schmid
stefan.schmid@tu-berlin.de

Kyrill Winkler
kyrill.winkler@itk-engineering.com

Ami Paz
ami.paz@lisn.fr

Hugo Rincon Galeana
hugorincongaleana@gmail.com

Ulrich Schmid
s@ecs.tuwien.ac.at

1 ITK Engineering, Vienna, Austria

2 LISN — CNRS & Paris-Saclay University, Paris, France

3 TU Wien, Vienna, Austria

4 TU Berlin & Fraunhofer SIT, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01209-4&domain=pdf

Algorithmica (2024) 86:1830–1861 1831

Keywords Dynamic networks · Oblivious message adversaries · Consensus · Time
complexity

1 Introduction

Consensus, the task in which multiple processes need to agree on some value, based
on local inputs, is a fundamental problem in distributed computing. At the heart of
this problem lies the question of whether and how it is possible for the processes
to exchange enough information with each other in order to reach agreement, e.g.,
on a numerical value or on performing a joint action. While deterministic consensus
has been studied intensively for several decades, it is still unknown whether and, in
particular, how quickly it can be achieved in fundamental models such as the one
we study here: synchronous dynamic directed networks controlled by an oblivious
message adversary.

The study of such dynamic networks is of both practical and theoretical interest: It is
of practical relevance, as the communication topology of many large-scale distributed
systems is dynamic (e.g., due to mobility, interference, or failures) and its links are
often asymmetric (e.g., in optical or in wireless networks) [1]. It is also of fundamental
theoretical interest, as solving consensus in dynamic directed networks is known to
be significantly more difficult [2, 3] than solving consensus in dynamic networks with
bidirectional links [4].

Focusing on theworst-case perspective, we consider a lock-step synchronousmodel
where a message adversary [5] may drop an arbitrary set of messages sent by some
processes in each round. This results in a sequence of directed communication graphs,
whose edges indicate which process can successfully send a message to which other
process in that round. We specifically consider the fundamental oblivious message
adversary model [6] introduced by Coulouma, Godard and Peters, which is specified
via a set D of allowed communication graphs from which the message adversary can
pick one arbitrarily in each round. Note that this model does not limit the adversary
to choose a communication graph based on the previously chosen graphs (e.g., if a
message failed on a link in some round, messages may still be sent on this link in
successive rounds).

The oblivious message adversary model is appealing because it is conceptually
simple and still provides a highly dynamic network model: The set of allowed graphs
can be arbitrary, and the nodes that can communicatewith one anothermay vary greatly
from one round to the next. It is hence also well-suited for settings where significant
transient message loss occurs, such as in wireless networks subject to interference.
Furthermore, this model includes as a special case the classic link failure model by
Santoro and Widmayer [7], where up to f links may fail in each round: the model is
equivalent to a set of allowed graphs which contains all communication graphs where
≤ f edges are missing.

Interestingly, determining consensus solvability for a given set of graphs D and, in
particular, designing a consensus algorithm which succeeds whenever this is possible,
is difficult [6]. For example, sometimes, a “weaker adversary”, i.e., an adversary that
allows for more communication overall (e.g., supporting a larger setD and failing less

123

1832 Algorithmica (2024) 86:1830–1861

links), may render consensus impossible, while it would be possible for a smaller set
D. However, to the best of our knowledge, nothing is known about the complexity
of deciding consensus solvability given D, i.e., using a centralized algorithm and, in
particular, about the time complexity of distributed consensus in the cases where it is
possible.
Contributions: In this paper, we present both a practical decision procedure for con-
sensus solvability, based on the beta-classes introduced in [6], and provide the first
study of the consensus time complexity in this model. In more detail:

• Weprovide a centralized decision procedure for determining consensus solvability
for a given oblivious message adversaryD and bound its complexity. Compared to
the beta class criterion proposed in [6], our decision procedure has the advantage
of being explicit, simple and early deciding.

• We provide both upper and lower bounds for the worst-case time complexity of
distributed consensus1 for oblivious message adversaries. Interestingly, this time
complexity may depend not only on the number of processes n and the number of
iterations TD required by our centralized decision procedure, but sometimes also
on the number of connected components in the outcome of the decision procedure
after TD iterations. Indeed, bymeans of two deliberately crafted examples of obliv-
ious message adversaries, we show that consensus termination times exponential
in n can happen whether or not TD is exponential in n. Note that the dependency
on the number of connected components could not be inferred from the existing
beta class results [6].

Our results also shed an interesting new light on the relationship between distributed
consensus and broadcasting: As the input value of some process is known to reach
all other processes in linear time under any oblivious message adversary [8–11], one
might be tempted to expect that consensus can also be achieved quickly. Our results
show that, quite to the contrary, reaching consensus can take exponential time, even
in cases where the decision procedure terminates in only a few iterations.
Paper organization: The remainder of this paper is organized as follows. After a brief
survey of related work in Sect. 2, we introduce our formal model and terminology
in Sect. 3. The description and analysis of our decision procedure and our consensus
algorithm are presented in Sects. 4 and 5, respectively, and our lower bound results are
presented in Sect. 6.A fullyworked out scenario showing constant iteration complexity
vs. exponential consensus termination time is provided in Sect. 7. We conclude our
contribution and discuss directions for future work in Sect. 8.

2 RelatedWork

Consensus is a fundamental task in distributed computing, and the question whether
and when consensus is possible has engaged researchers at least since the influential

1 We emphasize that worst-case time complexity of distributed consensus means that no correct consensus
algorithm can terminate faster than the lower bound in all possible runs, and that there is some consensus
algorithm that terminates within the upper bound in all runs. When we talk about the time complexity of
consensus in our paper, we always mean worst-case time complexity.

123

Algorithmica (2024) 86:1830–1861 1833

impossibility result by Fischer et al. [12] and its generalizations [13]. Consensus
problems come in different flavors and arise inmany settings, including sharedmemory
architectures, message-passing systems, and blockchains, among others [14–18].

Research on deterministic consensus in synchronousmessage-passing systems sub-
ject to link failures dates back to the seminal paper by Santoro andWidmayer [7], who
showed that consensus is impossible if up to n − 1 messages may be lost each round.
This result has later been generalized along many dimensions [3, 6, 19–23]. For exam-
ple, in [3], Schmid, Weiss and Keidar showed that consensus can even be solved when
a quadratic number of messages is lost per round, provided these losses do not isolate
the processes. Several generalized models have been proposed in the literature [20,
24, 25], like the heard-of model by Charron-Bost and Schiper [20], and also different
agreement problems like approximate and asymptotic consensus have been studied in
thesemodels [22, 23]. In many of these and similar works on consensus [2, 16, 26–30],
a model is considered in which, in each round, a digraph is picked from a set of pos-
sible communication graphs. Afek and Gafni coined the term message adversary for
this abstraction [5], and used it for relating problems solvable in wait-free read-write
shared memory systems to those solvable in message-passing systems. For a detailed
overview of the field, we refer to the recent survey by Winkler and Schmid [17].

An interesting alternative model for dynamic networks assumes a T -interval con-
nectivity guarantee, that is, a common subgraph in the communication graphs of
every T consecutive rounds [4, 31]. In contrast to our directional model, solving
consensus is relatively simple here, since the T -interval connectivity model relies
on bidirectional links and always connected communication graphs. For example,
1-interval-connectivity, the weakest form of T -interval connectivity, implies that all
nodes are able to reach all the other nodes in the system.

Another related model arises in the context of wait-free computation in shared
memory systems with immediate atomic snapshots. These systems can be roughly
described using one specific oblivious message adversary, containing all transitively
closed tournaments. Wait-free computation in this context is often studied using topo-
logical tools [32–36]. This line of work did not provide any time complexity bounds
for consensus in our model, however.

Closely related to our work is the paper by Coulouma et al. [6], who substantially
refined the results of [19]. The authors consider oblivious message adversaries and
identify an equivalence relation on the sets of communication graphs, which captures
the essence of consensus impossibility via non-broadcastability of one of the so-called
beta equivalence classes of this relation. The decision procedure from Sect. 4 can be
seen as an explicit computation of these beta-classes. Moreover, [6] also presents a
distributed consensus algorithm that, essentially, computes the beta classes. However,
in stark contrast to our paper, neither the iteration complexity of our decision procedure
nor the time complexity of distributed consensus has been studied in this or any other
paper we are aware of.

123

1834 Algorithmica (2024) 86:1830–1861

3 Model and Preliminaries

We assume a set � = {p1, . . . , pn} of n processes, which execute a deterministic
distributed protocol to reach consensus. Processes operate in lock-step synchronous
rounds, where each round consists of a phase of message exchanges among the pro-
cesses, followed by some local computation, whose execution time is assumed to be
negligible. We consider a full information protocol where, in each round, every pro-
cess broadcasts its complete local history (its view obtained at the end of the previous
round, or the initial state), and computes a deterministic choice function � based on
its current view, which also involves all views it received from other processes in this
round.

Each phase of message exchange is restricted by a (possibly different) directed
graph on �, called a communication graph, which is chosen by an oblivious message
adversary. A message from p to q is delivered in round r only if the communication
graph of round r contains the edge (p, q). Since every process knows its own current
view, we just assume that the communication graph always contains all the self-loops.
We use InG(v) to denote the in-neighborhood of process v in a graph G. Messages are
unacknowledged and rounds are communication-closed, i.e., messages that are sent
in round r arrive in round r or not at all.

A communication pattern is a sequence of communication graphs, which (along
with the initial views of all processes and the choice function �) will uniquely define
a run of the system. In the oblivious message adversary model, there is a set D of
allowed communication graphs, and the admissible communication patterns are all
infinite sequences of graphs from D. For brevity, we identify our message adversary
with its set of allowed communication graphs.

For a communication graph G, let Gr = (G)ri=1 denote the communication pattern
that consists of r repetitions of G. For a set of communication graphs G, let Gr =
{(Gi)

r
i=1 : Gi ∈ G} be the set of communication patterns of length r that consist only

of graphs from G. Given a set of allowed graphs D, the oblivious message adversary
generated by D may thus be written as Dω.

Let σ = (Gi)
r
i=1 be a communication pattern, where its length r ≥ 1 can be any

integer or infinite (denoted ω), and let � be a set of communication patterns. We use
σ |r ′ = (Gi)

r ′
i=1 to denote the r

′-round prefix of σ , which is only defined if the length
of σ is at least r ′, and �|r ′ = {σ |r ′ : σ ∈ �} to denote the set of all r ′-round prefixes
of �; by convention, σ |0 = ε, where ε is the empty word. We use σ(r ′) = Gr ′ to
denote the r ′th graph of σ and �(r ′) = {σ(r ′) : σ ∈ �} for the set of communication
patterns �. If σ has a finite length r and H is an arbitrary communication graph, we
write σ ′ = σ ◦H to denote σ extended by H , i.e., the communication pattern of length
r + 1 with σ ′(i) = σ(i) for i ≤ r and σ ′(r + 1) = H .

A root component of a graph is a strongly connected component that has no incom-
ing edge from a node outside of the component.

We call a graph G rooted if it has a single root component and write Root(G) for
the node set of the root component of G. Note that if a graph G is rooted then a node
(in our context: a process) p ∈ V (G) has a path to every other node (process) in G
if and only if p ∈ Root(G). In Claim 3 below, we show that consensus is trivially
impossible if the set of allowed graphs contains a graph that is not rooted, and for this

123

Algorithmica (2024) 86:1830–1861 1835

reason we consider adversaries whose set D consists of rooted graphs only. A set of
communication graphs S is root-compatible if all their root components

contain a common node, i.e.,
⋂

G∈S Root(G) �= ∅. We will show that root-
compatibility is a central concept when it comes to consensus solvability.

In our full information protocol, the view of process p in σ at time (= end of round)
r ≥ 1 comprises the view of all the processes that p had in its in-neighborhood in
the round r communication graph σ(r), along with the round number r . The initial
view of process p consists of its input value xp (see the specification of the consensus
problem below) and the round number 0. Formally, views are recursively defined as
viewσ (p, 0) = {(p, 0, xp)} and, for r > 0, viewσ (p, r) = (p, r , Vσ (p, r−1)), where
Vσ (p, r − 1) = {viewσ (q, r − 1) : (q, p) ∈ σ(r)}.

For notational simplicity, we will subsequently use the tuple (p, r) to refer to the
view of process p at time r . We thus use (p, r ′) �σ (q, r) to denote that p at time
r ′ < r has influenced q at time r , which can be expressed formally by the existence of
a sequence of processes p = p1, . . . , pr−r ′+1 = q satisfying viewσ (pi , r ′ + i − 1) ∈
Vσ (pi+1, r ′ + i − 1) for 1 ≤ i ≤ r − r ′. We say that p is a broadcaster in σ (or
equivalently, that a communication pattern σ is broadcastable by p), if (p, 0) �σ

(q, r) for some time r , for all q ∈ �.
Two communication patterns σ and σ ′ of the same length are indistinguishable by a

process p, denoted σ ∼p σ ′, if this process has the same view inσ and in σ ′, eventually
or in each round r in case of infinite patterns. Formally, σ ∼p σ ′ ⇔ viewσ (p, r) =
viewσ ′(p, r) if σ and σ ′ are r -round patterns, and σ ∼p σ ′ ⇔ viewσ (p, r) =
viewσ ′(p, r) for all r if σ and σ ′ are infinite. We write σ ∼ σ ′ if σ ∼p σ ′ for some
p. We also use σ �p σ ′ ⇔ ¬(σ ∼p σ ′), and σ � σ ′ ⇔ (∀p ∈ � : σ �p σ ′).

Given a set � of communication patterns of the same length, we define its indis-
tinguishability graph I (�) as follows. The nodes of I (�) are the communication
patterns in �, and the two communication patterns σ, σ ′ ∈ � are connected by an
edge if σ ∼ σ ′, i.e., if they are indistinguishable for some process. We label each
edge with the set of processes defining it, that is, we define an edge labeling function
� : E(I (�)) → 2� by �((σ, σ ′)) = {p ∈ � : σ ∼p σ ′}.

Our first simple, yet important insight is that root components can preserve indistin-
guishability. Consider two communication patterns σ, σ ′ that are indistinguishable for
a set of processes �((σ, σ ′)), and assume that there is an allowed graphG ∈ D such that
Root(G) ⊆ �((σ, σ ′)). Then, the communication patterns σ ◦ G and σ ′ ◦ G are also
indistinguishable for the processes in Root(G): in G, these processes only receive
messages from other members of Root(G), and so these extended communication
patterns are still indistinguishable for them.

Claim 1 LetD be an oblivious message adversary, r be a round, and e = (σ, σ ′) be an
edge in I (Dr). For r > 1, the edge (σ |r−1, σ

′|r−1) is in I (Dr−1). Moreover, if there
is a graph G ∈ D such that Root(G) ⊆ �(e) then the edge e′ = (σ ◦ G, σ ′ ◦ G) is in
I (Dr+1) and its label �(e′) satisfies Root(G) ⊆ �(e′) ⊆ �(e).

Proof If r > 0, for every p ∈ �(e), the indistinguishability σ ∼p σ ′ also implies
σ |r−1 ∼p σ ′|r−1, so the edge (σ |r−1, σ

′|r−1) is indeed in I (Dr−1).
To prove the second part of our claim, consider any process p ∈ Root(G). By the

definition of a root component, we have InG(p) ⊆ Root(p), so each process q with

123

1836 Algorithmica (2024) 86:1830–1861

(q, r) ∈ viewσ◦G(p, r + 1), is in Root(G), and satisfies viewσ (q, r) = viewσ ′(q, r),
because Root(G) ⊆ �(e). This immediately implies that viewσ◦G(p, r + 1) =
viewσ ′◦G(p, r + 1) and thus the edge e′ exists and Root(G) ⊆ �(e′). The last
part, �(e′) ⊆ �(e), follows because if viewσ◦G(q, r + 1) = viewσ ′◦G(q, r + 1) =
(q, r + 1, Vσ (q, r)) for some process q then viewσ (q, r) = viewσ (q, r), as, by defi-
nition, viewσ (q, r) ∈ Vσ (q, r). ��

In the consensus problem, each process p has an input value xp ∈ V , taken from
some (usually finite) domain V , and an output value yp, initialized to ⊥, to which it
can write irrevocably, i.e., only once. An algorithm solves consensus in our setting if
it ensures that

• eventually, every process p decides, i.e., assigns yp �= ⊥ (termination),
• if yp �= ⊥ and yq �= ⊥ then yp = yq for all p, q ∈ � (agreement),
• if yp = v �= ⊥ then there is a process q ∈ � such that xq = v (validity).

Since we consider only full information protocols, our consensus algorithm is
actually a collection of choice functions. For every p ∈ �, the choice function
�p maps every possible viewσ (p, r) to a decision value yp ∈ V ∪ {⊥}, such that
�(viewσ (p, r)) �= ⊥ implies �(viewσ (p, r ′)) = �(viewσ (p, r)) for every r ′ ≥ r .
The configuration Cr

σ of our system at the end of round r in σ , is the vector of the
elements (viewσ (p, r),�(viewσ (p, r))), for all p, and the run (also called execution
in the literature) corresponding to σ is the sequence (Cr

σ)r≥0. In the oblivious mes-
sage adversary model, a run is uniquely determined by the input value assignment
contained in the initial views and the communication pattern since the algorithm is
deterministic.

With these definitions in mind, we now state two properties of consensus under
oblivious message-adversaries, which will be of central importance in this paper. We
first observe that any valid decision value must be the input value of a broadcaster.
The proof of the following claim uses the same argument as [37, Theorem 2].

Claim 2 Let D be an oblivious message adversary and let σ ∈ Dω. If in some correct
consensus algorithm, all processes decide v in a run with σ , then v is the input value
of a broadcaster in σ .

Proof By the termination condition, there is a round r such that in all runs with σ

all processes decide by this round when running a given correct consensus algorithm.
Suppose that there is a r -round runγ with communication patternσ where all processes
decide v even though no broadcaster in σ has input value v. We show that this leads
to a contradiction to the assumed correctness of the consensus algorithm.

Let P = {i1, . . . , ik} be the identifiers of those processes that start with input value
v in γ . By the valditiy condition, P �= ∅. Let γ j denote the run that is the same as γ ,
except that the processes with identifiers i1, . . . , i j have an input value �= v. We show
by induction that some process decides v in γ j for 0 ≤ j ≤ k. Thus in the run γk some
process decides v, even though no process has input v in this run, a contradiction to
the validity condition of consensus.

The base of the induction j = 0 follows immediately because γ ∼ γ0 = ε.
For the step from j to j + 1, where 0 ≤ j < k, we observe that, because σ is not

broadcastable for any process with an identifier from P , there is a process q such that

123

Algorithmica (2024) 86:1830–1861 1837

(pi j+1 , 0) �� (q, r). Since γ j is identical to γ j+1 except for the input of pi j+1 , we have
γ j ∼q γ j+1. As all processes decide by round r in γ j , and because they decide v by
hypothesis, q and, by agreement, all processes decide v in γ j+1. ��

Our second observation is that every communication graph in the set of allowed
graphs of an oblivious message adversary, under which consensus is solvable, must
be rooted.

Claim 3 If an oblivious message adversary contains, in its set of allowed graphs D, a
graph G that is not rooted, then consensus is impossible.

Proof The pattern σ = Gω may be played by the adversary even though it is not
broadcastable by any process, thus the claim follows from Claim 2. ��

4 A Decision Procedure for Consensus Solvability

In this section, we present a decision procedure for determining whether consensus
is solvable under an oblivious message adversary with a set D of allowed graphs. In
a nutshell, our procedure revolves around the (undirected) indistinguishability graph
I (D), constructed from thegiven input setD: the nodes of the indistinguishability graph
represent the graphs ofD and the edges represent indistinguishability. Given I (D), we
create a sequence N1 = I (D),N2, . . . of refinements of I (D), and use the last graph
NTD to decide if consensus is solvable under the obliviousmessage adversaryD. Here,
TD is the number of iterations of the decision procedure. Our decision procedure can
be viewed as an iterative computation of the beta classes introduced in [6], that is also
early-terminating: it may terminate early if broadcastability of the intermediate result
is already guaranteed. As an additional feature, it reveals a certain relation between
the number of iterations of the decision procedure under a given oblivious message
adversary and the time complexity of distributed consensus.

More concretely, our approach, summarized in algorithm 1, uses the fact that a
graph whose root component is a subset of �(e) is suitable for perpetuating the indis-
tinguishability for at least some of the processes of �(e) (according to Claim 1). The
algorithm starts from the indistinguishability graph N1 = I (D) of D, where D is
viewed as a set of 1-round communication patterns: the nodes of I (D) are the graphs
of D, and two graphs A, B ∈ D are connected by an edge if there is a process p that
has the same set of incoming edges in A and in B. The algorithm then computes a
sequence (Ni) of graphs, using iterative refinement. To refine fromNi−1 toNi , it keeps
all Ni−1’s nodes, but only a subset of its edges (Line 9): an edge e is kept (by adding
it to the set Ei) if the connected component of e in Ni−1 contains a communication
graph G such that Root(G) ⊆ �(e) (Line 8).

This procedure continues until the set of edges does not change for two successive
iterations, or until all remaining connected components are root-compatible, i.e., all its
communication graphs have a common member in their respective root components.
As we will see later in Theorems 2 and 1, the root-compatibility of the connected
components of the refined indistinguishability graph is precisely what is required to
make consensus solvable.

123

1838 Algorithmica (2024) 86:1830–1861

Whereas the number of iterations of our decision procedure could be exponential
(see Claim 5), every iteration can be performed efficiently, as its main components
require merely the computation of reachability in graphs: In each G ∈ D during the
initialization, and inNi in iteration i . The running time is hence polynomial in n and
|D| for both the initialization and for each iteration:

Claim 4 The initialization phase of algorithm 1 can be implemented in O(|D|2n3)
time, and each of its iterations can be implemented in O(|D|3n2) time.
Proof Recall that the transitive closure of a (directed or undirected) graphG = (V , E)

is a graph H = (V , Ê) such that (u, v) ∈ Ê if there is a (directed) path from u to
v in G. The transitive closure can be computed in O(|V |3) time using combinatorial
algorithms (e.g., the Floyd–Warshall algorithm), and slightly faster using fast matrix
multiplication.

For the initialization, compute for eachG ∈ D its transitive closure, and setRoot(G)

as the set of nodes that can reach all other nodes—we have seen that being in Root(G)

and being able to reach all other nodes are equivalent conditions. Overall, this takes
O(|D|n3) time. Then, build the graph I (D) and assign labels to its edges by going over
all pairs (A, B) ∈ D × D and checking for every p ∈ � whether InA(p) = InB(p),
which takes O(|D|2n2) time.

For iteration i , start by computing the transitive closure of Ni−1 (in fact, this is
done at the end of the previous iteration). For each edge (A, B) ∈ Ei−1, go over all
graphs G reachable from A to see if one of them satisfies Root(G) ⊆ �((A, B)).
This takes O(|D|3n2) time overall. To check the stopping condition, compare Ei and
Ei−1 (taking O(|D|2) time), compute the transitive closure ofNi to find its connected
components (taking O(|D|3) time), and finally, for each of the at most |D| connected
components, go over � and mark for each process p ∈ � if there is a graph in the
connected component (which has size at most |D|) that does not have p in its root.
Overall, this takes no more than O(|D|3n2) time. ��

For the algorithm, we assume that all graphs of D have a unique root component,
as consensus is trivially impossible otherwise (Claim 3). Note that, for two communi-
cation graphs A, B, we have �((A, B)) = {p ∈ � : A ∼p B} = {p ∈ � : InA(p) =
InB(p)}.

The following corollary provides a concise statement of the rule according to which
the decision procedure selects which edges to keepwhen refiningNi−1(D) intoNi (D).

Corollary 1 Let e = (A, B) be an edge of Ni (D), for i > 1. Then in Ni−1(D):

1. the edge e = (A, B) exists, and
2. there exists a graph Ge with Root(Ge) ⊆ �(e), such that A, B and Ge are in the

same connected component.

Proof According to algorithm 1, an edge e = (A, B) can only persist in Ni if it was
alreadypresent inNi−1 and therewas a corresponding graphGe withRoot(Ge) ⊆ �(e)
connected to A and B in Ni−1. ��

We observe that, in order for an edge e of the indistinguishability graph to be
“protected” from being omitted by the decision procedure by Line 9 of algorithm 1,

123

Algorithmica (2024) 86:1830–1861 1839

Fig. 1 The decision procedure. It iteratively constructs the refined indistinguishability graphNTD for a set
of allowed graphs D

there must exist a communication graph whose root component is a subset of the label
of e. This motivates the following definition.

Definition 1 Given a set of allowed graphs D, let E be a set of edges of I (D) and
G ⊆ D be a set of communication graphs. We call E protected by G if for every
e ∈ E there is a graph Ge ∈ G such that Root(Ge) ⊆ �(e).

The following upper bound on the number of iterationsTDof the decision procedure
exploits the maximum number of different labels of the edges of I (D).

Claim 5 The number of iterations of the decision procedure, TD, satisfies TD < |D|
and TD < 2n.

Proof For a set of communication graphs G, let Ni [G] denote the subgraph of Ni

induced by G. According to algorithm 1, there must exist a set of communication
graphs G ⊆ D such that Ni [G] is connected and not root-compatible for all i < TD,
whereas all connected components ofNTD are root-compatible. That is,G constitutes
the last connected component of I (D) that had to be broken apart by the decision
procedure in order to arrive at a graph NTD where all connected components are
root-compatible.

Furthermore, for 1 < i < TD, the set Ci (G) of nodes reachable from G in Ni

satisfies |Ci (G)| < |Ci−1(G)|. This is because, if the (i−1)th iteration of the decision
procedure does not result in the removal of a node from Ci−1(G), then a set of edges
that connects Ci−1(G) in Ni−1 is protected by the communication graphs of Ci−1;
hence, no node will be removed from C j (G) for any j ≥ i . This cannot come to pass,
however, because then the decision procedure would already have terminated after
i < TD iterations. Hence, at least one graph of D get discinnected from G in each
round, and TD < |D|.

123

1840 Algorithmica (2024) 86:1830–1861

In addition, all edges e of the connected component of G inNi that have the same
label �(e) = λ are removed during a single iteration of the decision procedure: If e is
removed from the connected component of G in Ni , then there is no communication
graph in Ci (G) that protects e and so all edges with label λ are removed from the
connected component ofG. We recall that every label is a nonempty subset of �, thus
there are at most 2n −1 different labels. The claim follows because, as we have shown
above, |Ci (G)| < |Ci−1(G)|; hence at least one edge is removed from the connected
component of G in Ni during the i th iteration of the decision procedure. ��

Before lookingmore closely into the ramifications of a large number of iterationsTD
of the decision procedure of a given oblivious message adversaryD, it is instructive to
study a few “extreme” examples of such adversaries, and, in particular, how the number
of communication graphs |D| relates to TD. As we already know that TD < |D|, one
maywonder how large that gap between them can be. The following examples show an
exponential gap,with TD = 1 and |D| exponential in n.Wefirst present such a scenario
in which consensus is solvable: the set of all communication graphs that consist of
a single clique of a fixed size �n/c�, for a constant c, and all the edges from each
clique node to all other nodes (plus the self loops). There are exponentially many such
graphs, yet no two are indistinguishable to any of the nodes, so the decision procedure
already terminates after the first iteration because each connected component in I (D)

consists of a single communication graph. An example where the decision procedure
terminates quickly despite an exponentially sized D, where consensus is impossible,
is the set of all rooted trees for n > 2. In this case, there is a path in I (D) connecting
every two trees T1, T2. Also, every edge e in I (D) has a corresponding tree T ∈ D
that protects this edge, since there is a tree T with Root(T) ⊆ �(e).

On the other hand, the question arises whether there are examples where TD is
(almost) the same as |D|. This is of course the case if |D| is small, but we answer this
question affirmatively also for the case where TD is even exponential in n, by construc-
tiong an explicit example (Sect. 6). In a nutshell, we choose a set of communication
graphs D = {G1, . . . ,GTD}, where the root component of each graph consists of a
different set of processes of the same cardinality, i.e., for every G,G ′ ∈ D we have
|Root(G)| = |Root(G ′)|, but if G �= G ′ then Root(G) �= Root(G ′). Furthermore,
we let

G1 ∼R3 G2 ∼R4 G3 ∼R5 . . . ∼RTD GTD−1 ∼S GTD,

where Ri = Root(Gi) and S is a nonempty set such that no G ∈ D satisfies
Root(G) ⊆ S. Here, the decision procedure can remove only the rightmost edge
∼S in the first iteration, only the edge∼RTD in the second iteration, and so on, because
all the remaining edges are protected by one of the remaining graphs.

Also in this case, consensusmight be solvable (as in the example in Sect. 6 described
above), or it might be impossible, as in the instance

G ′
1 ∼R′

3
G ′

2 ∼R′
1
G ′

3 = G1 ∼R3 G2 ∼R4 . . . ∼RTD GTD−1 ∼S GTD

123

Algorithmica (2024) 86:1830–1861 1841

where we assume that G ′
1 and G ′

2 are chosen such that they are not root-compatible:
in this case, the indistinguishability G ′

1 ∼R′
3
G ′

2 will never break.
In view of the above results, it might be tempting to assume that it is TD that actually

determines the worst-case termination time of distributed consensus. Interestingly,
this is not the case. Complementing the result of Theorem 1 established in Sect. 5,
we show in Sect. 7 that there are instances of oblivious message adversaries where
the decision procedure terminates after a constant number of iterations, while the
consensus termination time is at least exponential in n. This example also reveals that
the time complexity of distributed consensus is not solely determined by the need to
compute (overapproximations of) the beta classes of [6].

5 Time Complexity of Consensus

In this section, we study the worst-case time complexity of consensus, and also ascer-
tain our claim fromSect. 4, namely, that the decision procedure of algorithm1 correctly
assesses oblivious message adversaries where consensus is solvable. Thus, throughout
this section, we consider an oblivious message adversary, where, after some number
TD of iterations, algorithm 1 determined that all connected components of the refined
indistinguishability graph NTD are root-compatible.

For solving consensus, we use the fact that non-connectivity in NTD implies non-
connectivity in I (D(n−1)TD+1), in the following sense: LetC1 andC2 be two different
connected components of NTD, and t > (n − 1)TD. Then, any two communication
patterns σ1 ∈ Ct

1 and σ2 ∈ Ct
2, consisting only of graphs of C1 and C2, respectively,

are not connected in the indistinguishability graph I (Dt).
We then apply a pigeon-hole argument to show that all connected components of

I (Dct) are broadcastable, where c is the number of connected components of NTD.
Note that this choice guarantees that graphs from at least one connected component
are used at least t times. From here, a choice function �p can be easily defined by (i)
for each connected component C of I (Dct), choosing one of its broadcasters, denoted
b(C), and (ii) if p’s view is consistent with a graph sequence σ , and σ belongs to a
connected component C of I (Dct), then p decides on the input xb(C) of b(C), for which
viewσ (b(C), 0, xb(C)) must already be present in p’s view.

It is rather immediate that such a procedure solves consensus, given the mapping
b(C) which we define in the remainder of this section: Termination follows from the
existence of the mapping b(C); validity follows because the decided value was some
process’ input value; agreement is a consequence of all pairwise indistinguishable
views lying in the same connected component C of I (Dct). Hence two different deci-
sions can only occur in runs that are distinguishable for everyone (and are thus distinct
runs).

A path π = (σ0, . . . , σs) in I (Dr) is a sequence of communication patterns such
that (σi , σi+1) ∈ E(I (Dr)) for all 0 ≤ i < s. Given such a path and r ′ ≤ r , we
write π |r ′ to denote the path (σ0|r ′ , . . . , σ�|r ′) in I (Dr ′

) of the r ′-round prefixes of the
communication patterns in π , which exists by Claim 1. Similarly, we denote by π(r ′)
the path (σ0(r ′), . . . , σ�(r ′)) in I (D) of the r ′th graphs of the communication patterns
in π . Both π |r ′ and π(r ′) are indeed paths in the corresponding indistinguishability

123

1842 Algorithmica (2024) 86:1830–1861

graphs, due to a more general claim: Removing an intermediate communication round
from all communication patterns in a path cannot disconnect it, as stated below.

For a communication pattern σ of length r , and some round r ′ ≤ r , let σ −r ′ denote
σ |r ′−1 ◦ σ(r ′ + 1) ◦ · · · ◦ σ(r), i.e., the communication pattern σ with the round r ′
communication graph omitted. Corollary 2 shows that edges, and hence paths, between
communication patterns in I (Dr) are preserved when omitting some round r ′.

Corollary 2 If the edge (σ, σ ′) is in I (Dr), then the edge (σ −r ′, σ ′ −r ′) is in I (Dr−1)

as well.

Proof Assume for contradiction that the edge is not preserved, i.e., σ ∼ σ ′ while
σ − r ′

� σ ′ − r ′. So, there is a process p such that σ ∼p σ ′ (this is true for at
least one process, p) while σ − r ′

�p σ ′ − r ′ (this is true for all processes, and
specifically for p). This implies that there exists a round r ′′ �= r ′ and a process q
with w.l.o.g. (q, r ′′) �σ−r ′ (p, r) but (q, r ′′) ��σ ′−r ′ (p, r) or viewσ−r ′(q, r ′′) �=
viewσ ′−r ′(q, r ′′): if no such q, r ′′ existed, we would have σ − r ′ ∼p σ ′ − r ′. Since
(q, r ′′) �σ−r ′ (p, r), we also have (q, r ′′) �σ (p, r), as the sequence of processes
causing (q, r ′′) to be in viewσ−r ′(p, r) also exists in σ and we just need to take path
where the process of round r ′ is the same as of round r ′ − 1. To finish, it suffices
to consider two cases: if (q, r ′′) ��σ ′ (p, r), then p distinguishes σ and σ ′ since
it has viewσ (q, r ′′) in its view in σ but does not have viewσ ′(q, r ′′) in its view in
σ ′; if (q, r ′′) �σ ′ (p, r), then p distinguishes σ and σ ′ by having viewσ (q, r ′′) �=
viewσ ′(q, r ′′) in its views. In both cases σ �p σ ′, a contradiction. ��

The following corollary relates the preservation of an edge in I (Dr) to the root
components of the communication graphs that occur in the communication patterns
of this edge.

Corollary 3 LetDbe a set of allowedgraphs and0 < r ′ < r integers. Consider an edge
e = (σ, σ ′) ∈ I (Dr) such that e′ = (σ |r ′ , σ ′|r ′) ∈ I (Dr ′

) satisfies σ |r ′ �= σ ′|r ′ . Then,
there are at most |�(e′)| − 1 rounds r j , r ′ < r j ≤ r , satisfying Root(σ (r j)) � �(e′).

Proof By Claim 1, we can be sure that e′ exists. For a contradiction, suppose that
there are |�(e′)| rounds r ′ < r1 < · · · < r|�(e′)| ≤ r such that each r j satisfies
Root(σ (r j)) � �(e′). Let

Uj = {p ∈ � : ∃q ∈ � \ �(e′) (q, r ′) �σ (p, r j)}

denote the set of processes that received a message by round r j , sent after round r ′,
from a process outside of �(e′). Let r0 = r ′ and U0 = �\�(e′). Note that from
σ |r ′ �= σ ′|r ′ it follows that ∅ �= �(e′) �= � and thus U0 �= ∅.

Let U j = � \ Uj and consider the cut (Uj ,U j) in σ(r j), the communica-
tion graph at round r j . Since we have Root(σ (r j)) � �(e′), there is a process
p′ ∈ Root(σ (r j))\�(e′). On the one hand, p′ ∈ Root(σ (r j))\�(e′) immediately
implies p′ ∈ Uj , since (p′, r ′) �σ (p′, r j). On the other hand, p′ ∈ Root(σ (r j))
implies that in σ(r j) there is a path from p′ to every node. Hence, if U j �= ∅, then
there is a node p′′ ∈ U j , and a path in σ(r j) from p′ to p′′; this path must cross an
edge ẽ j from Uj to U j .

123

Algorithmica (2024) 86:1830–1861 1843

We now use induction on j = 0, . . . , |�(e′)| to show that |Uj | ≥ n − |�(e′)| + j .
For the basis j = 0, we have already shown that |U0| = n − |�(e′)| > 0. In the
induction step, we prove that Uj grows by at least one (unless Uj = �) due to the
edge ẽ j = (q ′, q ′′) from Uj to U j . As, for every q ∈ � \ �(e′) in the definition if
Uj in Sect. 5, (q, r ′) �σ (q ′, r j) in conjunction with (q ′, r j) �σ (q ′′, r j+1) implies
(q, r ′) �σ (q ′′, r j+1), we obtain Uj+1 ⊇ Uj ∪ {q ′′} as required.

It hence follows that |U|�(e′)|| = n, i.e., by round r ≥ r|�(e′)|, every process has
received amessage, sent after round r ′, fromaprocessq outside of �(e′). Consequently,
at time r , the view of every process contains the view of a process q that could
distinguish σ |r ′ and σ ′|r ′ , hence every process can also distinguish σ and σ ′. Formally,
∀p ∈ � ∃q ∈ �\�(e) : (q, r ′) �σ (p, r) and viewσ (q, r ′) �= viewσ ′(q, r ′), which
implies that viewσ (p, r) �= viewσ ′(p, r). That is, every process that can distinguish
σ |r ′ and σ ′|r ′ can also distinguish σ and σ ′, contradicting the existence of the edge
er = (σ, σ ′) in I (Dr). ��

We proceed with Lemma 1, which generalizes and formalizes chains like Sect. 4,
made up of connected subgraphs S1, . . . ,Si which are interconnected in a chain. It
uses protected edges in order to delay the separation of root-incompatible connected
components as much as possible, namely, by removing the interconnects between S j

and S j+1 in Ni− j , i.e., from right (i) to left (1).

Lemma 1 Given an oblivious message adversary D and i connected subgraphs
S1, . . . ,Si of I (D) such that for every 1 ≤ j < i , the edges of

⋃ j
j ′=1 S j ′ are protected

by the communication graphs of
⋃ j+1

j ′=1 S j ′ , and S j is connected to S j+1 in Ni− j , it
holds that S1 is a connected subgraph of Ni .

Proof We show that all edges of S1 are inNi . In order to do so, we prove by induction
on i ′ = 1, . . . , i , that all edges of

⋃i−i ′+1
j ′=1 S j ′ are in Ni ′ .

The base i ′ = 1 follows directly from the code of algorithm 1: N1 = I (D), and
each graph S j ′ is a subgraph of I (D), thus every edge of

⋃i
j ′=1 S j ′ is in N1.

For the inductive step from i ′ to i ′ + 1, assume that every edge of
⋃i−i ′+1

j ′=1 S j ′ is

present in Ni ′ . By assumption, every edge e of
⋃i−i ′

j ′=1 S j ′ is protected by a commu-

nication graph G of
⋃i−i ′+1

j ′=1 S j ′ , i.e., by Definition 1, Root(G) ⊆ �(e). As we also
assume that S j is connected to S j+1 in Ni− j for 1 ≤ j < i , we have that Si−i ′− j ′ is
connected to Si−i ′− j ′+1 inNi ′+ j ′ for 0 ≤ j ′ < i − i ′. SinceNi ′+ j ′ is a refinement of

Ni ′ , Si−i ′− j ′ is connected to Si−i ′− j ′+1 also inNi ′ . Hence
⋃i−i ′+1

j ′=1 S j ′ is a connected
subgraph of Ni ′ , and thus e is connected to G in Ni ′ .

Thus, inNi ′ , e is in the same connected component as a graph G with Root(G) ⊆
�(e) and, by Line 8 of algorithm 1, we have e ∈ Ni ′+1. ��

We are now ready to prove themain technical result of this section. For r = (n−1) ·
TD, we show how the connectivity of two r -round communication patterns in I (Dr),
consisting only of communication graphs from certain setsC1 andC2, respectively, is
related to the connectivity ofC1 andC2 in the refined indistinguishability graphNTD,
as computed by algorithm 1.

123

1844 Algorithmica (2024) 86:1830–1861

Lemma 2 Given an oblivious message adversaryD, letC constitute a connected com-
ponent of NTD and let C̄ = D\C. For r = (n − 1) · TD, there is no connection in
I (Dr) between any σ1 ∈ Cr and any σ2 ∈ C̄Dr−1. Herein, σ2 ∈ C̄Dr−1 denotes the
fact that σ2 is composed of one graph of C̄ and then r − 1 graphs of D.

Proof Assume for a contradiction that there exist σ1 ∈ Cr and σ2 ∈ C̄Dr−1 which
are connected in I (Dr). We show that C is connected to some node of C̄ in NTD,
contradicting the fact that C is a connected component of NTD. We do so by proving
that there are TD connected subgraphs π1, . . . , πTD in I (D), such that each of them
intersects C, π1 also intersects C̄, and, for every 1 ≤ j < i = T D, the edges of
⋃ j

j ′=1 π j ′ are protected by the communication graphs of
⋃ j+1

j ′=1 π j ′ . Moreover, π j is
connected to π j+1 in Ni− j : We have that π j and π j+1 both intersect C, and since C
is a connected component inNi andNi is a refinement ofNi− j , all nodes of C are in
the same connected component ofNi− j . We can hence apply Lemma 1, which reveals
that π1 is a connected subgraph of Ni . As π1 also intersects both C and C̄, however,
we have the required contradiction.

Let π̃ be a path that connectsσ1 andσ2 in I (Dr). Recall that, for a round r ′ ≤ r , π̃(r ′)
denotes the round r ′ communication graphs σ(r ′) for all communication patterns σ of
π̃ . By a repeated application of Corollary 2, we get that π̃(r ′) is a path that connects
σ1(r ′) ∈ C and σ2(r ′) ∈ D in I (D) where, in particular, π̃(1) connects σ1(1) ∈ C and
σ2(1) ∈ C̄.

We now construct each connected subgraph π j , 1 ≤ j ≤ i , as a union of paths
π̃(r ′). That is, for some set R j ⊆ {1, . . . , r} of rounds, which we will define below,
we set π j = ⋃

r ′∈R j
π̃(r ′). We denote the largest round of R j as r∗

j = max(R j).
For 1 ≤ m < i , we inductively construct Rm+1 from Rm , starting with R1 = {1},

i.e., setting π1 = π̃(1). We will assert that (1) r∗
m+1 ≤ r∗

m + n − 1 and (2) the
edges of πm = ⋃

r ′∈Rm
π̃(r ′) are protected by the communication graphs of πm+1 =⋃

r ′∈Rm+1
π̃(r ′). For 1 ≤ m ≤ TD, property (1) together with r∗

1 = 1 guarantees
r∗
m ≤ (n − 1)(m − 1) + 1 ≤ (n − 1) · TD = r , thus π̃(r ′) is well-defined for all
r ′ ∈ Rm .

Given Rm for 1 ≤ m < i , we construct Rm+1 as follows: By Corollary 3, for every
edge e ∈ πm , there is a round re ≤ r∗

m +n−1 such that π̃(re) contains a graph G with
Root(G) ⊆ �(e). Let Rm+1 be the set of all such rounds, i.e., Rm+1 = ⋃

e∈E(πm) π̃ (re).
This ensures (1) by construction and also (2), because every edge e of πm is protected
by a communication graph G of π̃(re) ⊆ πm+1. Hence, the edges of πm are protected
by the communication graphs of πm+1 and so the edges of

⋃m
k=1 πk are protected by

the communication graphs of
⋃m+1

k=1 πk . ��
We are now ready to state the main theorem of this section, namely, an upper bound

on the time complexity of consensus.

Theorem 1 Let D be the set of allowed communication graphs of an oblivious mes-
sage adversary. If the connected components of NTD(D) are root-compatible, then
consensus is solvable by round c(n − 1)(TD+1), where c is the number of connected
components in NTD.

123

Algorithmica (2024) 86:1830–1861 1845

Proof We show that every connected component of the indistinguishability graph
I (Dt) is broadcastable for t = c(n − 1)(TD+1). This implies the theorem, because
there exists a mapping for every connected component C of I (Dt) to a process p, such
that p is a broadcaster in every communication pattern of C. More specifically, as C is
an indistinguishability component, there is, for every process q and every σ ∈ Dt , a
map viewσ (q, t) �→ p such that p is a broadcaster in every communication pattern of
σ ’s connected component in I (Dt). In every run with a communication pattern from
C, every process has thus already learned the input xp of p, which is a valid decision
value. Our decision procedure hence defines a correct consensus algorithm.

It remains to show the broadcastability of the connected components of I (Dt).
Consider a run σ ∈ Dt , and all the communication patterns σ(i), i = 1 . . . , c(n −
1)(TD+1) appearing in it. By the pigeon-hole principle, at least one connected
component C of NTD must supply (n − 1)(TD+1) of these graphs, when counted
with repetitions. That is, there is a set R ⊆ {1, . . . , c(n − 1)(TD+1)}, with
|R| = (n − 1)(TD+1), such that every ri with i ∈ R satisfies σ(ri) ∈ C. Note
that the occurrence of n − 1 or more graphs from C in σ already suffices to ensure
that it is broadcastable by every process p ∈ ⋂

G∈C Root(G), i.e., that every process
q ∈ � has (p, 0, xp) ∈ viewσ (q, t).

Consider another run σ ′ ∈ Dt that is connected to σ in I (Dt), and the communica-
tion patterns σ ′(i) appearing in it. If n − 1 or more of the latter satisfied σ ′(ri) ∈ C,
σ ′ would also be broadcastable by

⋂
G∈C Root(G), so assume that this is not the case.

There are hence at most n − 2 indices r j ∈ R where σ ′(r j) ∈ C. Let R′ ⊆ R with
|R′| = (n − 1) · TD be the set of indices obtained by discarding all these indices
r j from R, in addition to discarding some additional indices �= 1 so as to match the
desired size of R′.

We now construct the ((n − 1)TD)-round communication patterns ρ, ρ′ defined
by ρ(j) = σ(r j), ρ′(j) = σ ′(r j) for each j ∈ R′. That is, starting out from σ and
σ ′, which are connected in I (Dt), we remove all communication rounds not in R′. By
Corollary 2,ρ andρ′ are connected in I (D(n−1)TD). This, however, contradicts Lemma
2, because ρ ∈ C(n−1)TD and ρ′ ∈ C̄(n−1)TD ⊆ C̄ × D(n−1)TD−1 by construction,
where C is a connected component in NTD and C̄ is its complement. ��

The result of Theorem 1 suggests that, besides the termination time TD of the
decision procedure (which can be attributed to the complexity of finding broadcastable
components) and the number of processes n − 1 (which accounts for the worst-case
information propagation time from root components to all other processes), the number
of connected components c inNTD might also cause exponential time complexity for
solving distributed consensus. And indeed, the scenarios presented in Sect. 7, where
TD is constant, prove this to be true.

6 Lower Bounds

This section complements our positive results above by studying lower bounds. In
the following, we first establish a relationship between the iteration complexity of
the decision procedure and the termination time of consensus. We then derive a time

123

1846 Algorithmica (2024) 86:1830–1861

complexity lower bound for the decision procedure, and combine it with the first result
to establish a consensus termination time lower bound.

6.1 Decision Complexity and Consensus Termination Time

First, we present a relationship (Theorem 2) between the number of iterations of
algorithm 1 and the time complexity of consensus. As before, let Ni = Ni (D) be
the refined indistinguishability graph Ni after i iterations according to algorithm 1,
with the set of allowed graphs D sometimes omitted for brevity. Our general strategy
is to establish that the impossibility of consensus after i rounds is equivalent to the
existence of a set of “broadcast-incompatible” communication patterns of length i ,
which are connected to each other in the indistinguishability graph I (Di). We ensure
broadcast-incompatibility by letting this set also contain communication patterns Gi ,
i.e., i repetitions of the same communication graph G, taken from a set of root-
incompatible graphs. Due to the requirement that every decision must be on the input
of some broadcaster whose input value has reached everyone (recall Claim 2), this
suffices: in Gi , the only processes that have reached everyone are the members of
Root(G), the root component of G. Thus, not all these communication patterns can
have led to the same decision value, which is a contradiction since all connected round-
i communication patterns must have led to the same decision value if consensus was
solved after i rounds.

The core of our proof is in Lemma 3. It shows that the connectivity of some commu-
nication graphs A, B inNi (D) implies the connectivity of the communication patterns
Ai , Bi in the indistinguishability graph I (Di). Informally speaking, it uses an induc-
tive construction for an arbitrary edge (A, B) of Ni to show how the corresponding
connectivity between Ai and Bi can be preserved for i rounds in I (Di). The proof
crucially relies on the fact that every Ni is a refinement of Ni−1, with N1 being a
refinement of I (D), which is due to the fact that algorithm 1 iteratively only removes
selected edges (Line 9) but never adds any edges.

To show that the connectivity of Ai and Bi is preserved, we use the path inNi from
A to �(e), respectively B to �(e), to extend the already constructed connected prefixes
Ai−1 and Bi−1. Note that this path also occurs inNi−1 due to Corollary 1. To illustrate
this, consider a (very simple) example, where we have that A ∼p B occurs inN2 and
furthermore p = Root(C) such that C ∼p′ A as well as C ∼p′′ B occur in N1. In
this case, we have the following indistinguishability relation between communication
patterns of length 2: A ◦ A ∼p′ A ◦ C ∼p B ◦ C ∼p′′ B ◦ B. This argument can
be applied inductively to establish the indistinguishability relation for communication
patterns Ai and Bi .

Lemma 3 Let Ci be a connected component ofNi (D) and let A, B be communication
graphs in Ci . Then Ai is connected to Bi in I (Di).

Proof The lemmaholds immediately for i = 1:As a one-round communication pattern
consists of only a single communication graph, A1 = A and B1 = B are both in the
connected component C1.

123

Algorithmica (2024) 86:1830–1861 1847

Thus, we henceforth assume that i > 1, and prove the following claim by induction
on k, for k = 1, . . . , i : For each edge (A, B) ∈ Ci there is a pathπk in I (Dk) connecting
Ak to Bk . In addition, for k < i , the connected component Ci−k of A and B in Ni−k

is such that, for every edge e = (σ, σ ′) ∈ πk , both the round k communication graphs
σ(k), σ ′(k) ∈ Ci−k

and there is a graph Ge ∈ Ci−k such that Root(Ge) ⊆ �(e).
The base, k = 1, follows because e = (A, B) ∈ Ci implies that (A1, B1) ∈ I (D1),

and by Corollary 1 there is Ge ∈ Ci−1 such that Root(Ge) ⊆ �(e).
For the step from k − 1 to k, k > 1, there exists a path πk−1 ∈ I (Dk−1) that

connects Ak−1 to Bk−1. Let e = (σ, σ ′) ∈ πk−1 be an arbitrary edge in πk−1. By the
induction hypothesis, σ(k − 1), σ ′(k − 1) ∈ Ci−k+1 and there is a graph Ge ∈ Ci−k+1
with Root(Ge) ⊆ �(e). Consequently, there exist paths π̃1 = (1, 2, . . . , m) and
π̃2 = (�1,�2, . . . , �m′) in Ci−k+1 that connect σ(k − 1) to Ge and Ge to σ ′(k − 1),
respectively.

Consider (j , j+1) ∈ π̃1 ⊆ Ci−k+1. FromCorollary 1,weknow that (j , j+1) ∈
I (D1), which implies σ ◦ j ∼ σ ◦ j+1. This enables us to prefix σ to each commu-
nication graph of π̃1, which makes σ ◦ π̃1 = (σ ◦ 1, σ ◦ 2, . . . , σ ◦ m) a path in
I (Dk). Following a symmetrical argument, σ ′ ◦ π̃2 = (σ ′ ◦�1, σ

′ ◦�2, . . . , σ
′ ◦�m′)

is also a path in I (Dk).
Moreover, since Root(Ge) ⊆ �(e), it follows from Claim 1 that e′ = (σ ◦ Ge, σ

′ ◦
Ge) ∈ I (Dk). Therefore, π̃e = (σ ◦ π̃1, e′, σ ′ ◦ π̃2) is a path from σ ◦ σ(k − 1) to
σ ′ ◦ σ ′(k − 1) in I (Dk). If we substitute each edge e ∈ πk−1 by π̃e, we thus obtain a
path πk that connects Ak to Bk in I (Dk).

Now, consider any edge e′ ∈ πk . By construction, e′ = (σ ◦ j , σ ◦ j+1), or
e′ = (σ ′ ◦ � j , σ

′ ◦ � j+1) or e′ = (σ ◦Ge, σ
′ ◦Ge). If e′ = (σ ◦ j , σ ◦ j+1), then

the round k communication graphs are j and j+1. Since π̃1 ∈ Ci−k+1, it follows
from Corollary 1 that (j , j+1) ∈ Ci−k , and there exists a communication graph
Ge′ ∈ Ci−k with Root(Ge′) ⊆ �((j , j+1)) = �(e′). A symmetrical argument holds
for the case where e′ = (σ ′ ◦ � j , σ

′ ◦ � j+1). Finally, if e′ = (σ ◦ Ge, σ
′ ◦ Ge), then

the round k communication graphs are both Ge, which is in Ci−k+1 by the induction
hypothesis. Corollary 1 guarantees Ge ∈ Ci−k , and since Root(Ge) ⊆ �(σ, σ ′), it
follows that Root(Ge) ⊆ �(σ ◦ Ge, σ

′ ◦ Ge). This shows that Ge is a suitable choice
for Ge′ , which completes the induction step. ��
Theorem 2 If Ni (D) contains a connected component Ci that is not root-compatible,
then not all processes in all runs of a correct consensus algorithm are able to decide
after i rounds under the oblivious message adversary represented by D.

Proof For the purpose of deriving a contradiction, suppose that the theorem does not
hold. Let S be a set of graphs from Ci that is not root-compatible. By Claim 2, for
each G ∈ S, the decision value in a run with communication pattern Gi that consists
of i repetitions of G must be a value v = xp for some p ∈ Root(G). Since S is root
incompatible, there exists some H ∈ S such that xp is not a root value of H .

It follows from Lemma 3 that Gi is connected to Hi in I (Di). Therefore, there
is a sequence of runs (σ1 = Gi , σ2, . . . , σm = Hi) such that σk is indistinguishable
from σk+1. Since all processes decided v = xp in Gi = σ1, by the validity condition
of consensus, σ2 and inductively all processes in the sequence including Hi should

123

1848 Algorithmica (2024) 86:1830–1861

also decide v = xp. Thus, Claim 2 yields the contradiction that Hi decided a non-
broadcasted value. ��

We conclude by explaining why Theorem 2 refines the lower bound from [6,
Theorem 4.10], which stated that consensus is impossible if some beta class is not
root-compatible, by making the round number i and hence a time complexity lower
bound explicit. In fact, in our terminology, the beta classes are the connected com-
ponents of NTD, where TD is the smallest round such that NTD = NTD−1. Thus,
the existence of a root-incompatible beta class is equivalent to NTD containing a
root-incompatible connected component. Note that, sinceNTD = NTD−1, even if we
remove the termination condition from Line 11 of algorithm 1, for all TD′ ≥ TD−1,
we still have that NTD′ = NTD, because, according to algorithm 1, if the set of edges
remains the same in an iteration of TD, then it will remain the same for all future itera-
tions as well. Thus we can apply Theorem 2 to show that, in this case, every consensus
algorithm has, for every round, a run where some process has not yet decided. As for
an oblivious message adversary with a set of allowed graphs D, it holds that every
infinite communication pattern σ with σ |r ∈ Dr for every round r satisfies σ ∈ Dω

(i.e., oblivious message adversaries are limit-closed, see [37] for details), this implies
that there is an infinite runwhere consensus is not achieved, that is, consensus is indeed
impossible.

6.2 Exponential Iteration Complexity of the Decision Procedure

As we have seen above, consensus termination time is related to the iterations of the
decision procedure. Informally, this is due to the fact that the information encoded
in the sequence N1, . . . ,Ni can be seen as a compact summary of the evolution of
the indistinguishability relation of the corresponding communication pattern prefixes.
Thus, a lower bound on the iteration complexity of the decision procedure immediately
gives us a lower bound for the round complexity of any consensus algorithm.

In this section, we show that the decision procedure may take an exponential (in n)
number of iterations until it terminates. This implies that there are oblivious message
adversaries under which consensus is achievable, but reaching it takes exponential
time. As already sketched at the end of Sect. 4, we show this by constructing a specific
instance of such an obliviousmessage adversary,with a set of N = 1.3n allowedgraphs
D = {G1, . . . ,GN }, whose indistinguishability graph I (D) contains the following
connected component:

G1 ∼R3 G2 ∼R4 G3 ∼R5 . . . ∼RN+1 GN

Herein, Ri = Root(Gi) for 1 ≤ i ≤ N , and RN+1 �= Root(G) for all G ∈ D.
Therefore, I (D) contains a path of length N − 1. Since all edges except the rightmost
one are protected, algorithm 1 only removes one edge per iteration, from right to left.
More precisely, it holds that G1 ∼R3 . . . ∼RN−i+1 GN−i ∈ Ni . Consequently, N
iterations are needed until all edges have disappeared, which establishes our claim.
Informal overview of the definition of D. First, we choose a sequence of sets
{R1, . . . , RN } that will play the role of root components of D. We will choose those

123

Algorithmica (2024) 86:1830–1861 1849

Fig. 2 A sketch of the lower bound graph Gi

from the first half {p1, . . . , pn/2} of the processes only. Each Ri is chosen to be unique,
of the same size n/12, and Ri , Ri+1 and Ri+2 must be be mutually disjoint. Note that
we need N , i.e., exponentially many such Ri .

The first step in the definition of the graph Gi is to make Ri its root component,
which is done by fully connecting its members to form a clique and ensuring a path to
every other process. However, when doing so, we also need to guarantee thatGi ∼Ri+2

Gi+1 are the only indistinguishability relations in I (D). We secure this bymaking sure
that every process except for the ones in Ri+1 and Ri+2 can distinguish Gi from any
other graph G j , j �= i . This is accomplished by adding an outgoing edge from every
member of Ri to every process in �\(Ri+1 ∪ Ri+2), and no other outgoing edge from
members of {p1, . . . , pn/2}. Since Ri is unique, any process in �\(Ri+1 ∪ Ri+2) will
know if graph Gi is being played: This is immediately obvious for every process p in
the second half B == {pn/2+1, . . . , pN }, as InGi (p) ∩ {p1, . . . , pn/2} = Ri . For a
process p in the “leftover set” Li = �\(B∪ Ri ∪ Ri+1 ∪ Ri+2) ⊆ {p1, . . . , pn/2}, we
have InGi (p) ∩ {p1, . . . , pn/2} = Ri ∪ {p}. Since Ri ∪ {p} is larger than the size of
the root components, p knows that it is not part of the root component, and can hence
also uniquely determine Ri and hence the graph Gi being played. Figure2 illustrates
this construction.

However,wemust alsomake sure that all themembers of Ri+1 (resp. Ri+2) consider
only Gi and Gi−1 (resp. Gi and Gi+1) as possibilities for the actually played graph.
This means that the in-neighborhood of any process in Ri+1 (resp. Ri+2) must be
the same in Gi and Gi−1 (resp. Gi and Gi+1). So far, the processes in Ri+1 or
Ri+2 do not receive any message from {p1, . . . , pn}, i.e., the only know that they
are either in Ri+1 or in Ri+2. To tell them apart, we will connect some processes in
B = {pn/2+1, . . . , pN } to themembers of Ri+1∪Ri+2, in a way that encodes i+1 (for
the members of Ri+1) or i + 2 (for the members of Ri+2). A process in Ri+1 ∪ Ri+2
can hence tell from its in-neighborhood whether it belongs to Ri+1 or Ri+2. More
specifically, abbreviating B[i] = {b ∈ B | ib−(n/2+1) = 1}, where i� is the �th bit
in the binary expansion of i , we just make sure that InGi (p) = B[i + 1] for every
p ∈ Ri+1 and InGi (p) = B[i + 2] for every p ∈ Ri+2. This construction satisfies our
indistinguishability requirements: Each process in Ri+1 (resp. Ri+2) can tell where it
belongs to, but do not know whether Gi or Gi−1 (resp. Gi or Gi+1) is played.

123

1850 Algorithmica (2024) 86:1830–1861

Formal definition of the root components Ri . We define the sets Ri by split-
ting {p1, . . . , pn/2} into {p1, . . . , pn/4} and {pn/4+1, . . . , pn/2}, and construct the
sequence R1, R2, . . . of root components from partitions of these ranges alternat-
ingly: Consider all the partitions of {p1, . . . , pn/4} into three sets of size n/12 each.
Partition number � + 1 constitutes the root components R6�+1, R6�+2, R6�+3. Simi-
larly, consider consider all the partitions of {pn/4+1, . . . , pn/2} into three sets of size
n/12 each. Set partition � + 1 constitutes the root components R6�+4, R6�+5, R6�+6.

The sequence clearly satisfies, by construction, the following properties:

1. |Ri | = n/12, since we are considering equal-sized partitions of n/4 processes into
3 disjoint sets.

2. Ri �= R j for i �= j , since all sets of the partitions are unique.
3. Ri , Ri+1, Ri+2 are pairwise disjoint, since they are either members of the same

partition and thus disjoint, or one belongs to segment {p1, . . . , pn/4} and another
to segment {pn/4+1, . . . , pn/2}.
The length N of the sequence is dominated asymptotically by the number of parti-

tions of {p1, . . . , pn/4} into three equisized sets, which is 1
6

(n/4
n/12

)(n/6
n/12

)
. The definition

of the binomial coefficients, along with simple bounds on the factorial function, give

1

6

(n
4
n
12

)(n
6
n
12

)

=
(n
4

)!
6
((n

12

)!)3
≥ c

3n/4

n
> 1.3n

where c is a constant and n is sufficiently large. It follows that N is exponential in n.
Formal definition of Gi . We are now ready to define the graphs Gi , recall also Fig. 2.
Let B = {pn/2 + 1, . . . , pn}. For each 1 ≤ i ≤ N , the graph Gi is composed
of disjoint 5 node sets: B, Ri , Ri+1, Ri+2, where Ri , Ri+1, Ri+2 ⊆ {p1, . . . , pn/2},
B = {pn/2 + 1, . . . , pn}, and Li = � \ (B ∪ Ri ∪ Ri+1 ∪ Ri+2).

Connect every two nodes in Ri by bi-directional edges, forming a clique. From
each node in Ri , add a directed edge to each node in B ∪ Li . Finally, for an index i ,
let B[i] = {b ∈ B | ib−(n/2+1) = 1}, where i� is the �th bit in the binary expansion
of i . Add an edge from each node of B[i] to each node of Ri+1, and similarly, from
each node of B[i + 1] to each node of Ri+2.

We are now ready to show that the so-constructed graphs form an indistinguisha-
bility chain according to Sect. 6.2.

Claim 6 For 1 ≤ i ≤ N, we have B[i] �= ∅, and for 1 ≤ i < j ≤ N, we have
B[i] �= B[j].
Proof As N = 1.3n , we find log2(N) < n/2, so each 1-bit of i is represented by a
process in B, which ends up being in B[i]. This establishes the second assertion. The
first one is now trivial, as i ≥ 1. ��
Claim 7 For 1 ≤ i ≤ N, we have Root(Gi) = Ri .

Proof This is immediate from the graph’s definition. In Gi , all nodes in Ri are con-
nected to one another and have no incoming edges from any node not in Ri . From
each of them, there is a direct edge to all nodes of B∪ Li . Moreover, by Claim 6, there

123

Algorithmica (2024) 86:1830–1861 1851

is at least one process b ∈ B[i], so there is a path from each node in Ri , through b, to
each node in Ri+1 ∪ Ri+2. ��
Claim 8 We have Gi ∼Ri+2 Gi+1 for 1 ≤ i ≤ N − 1, and these are the only indistin-
guishability relations in the graph.

Proof As we have already explained in the informal overview, in Gi , every process
that is not in Ri+1∪ Ri+2 can determine that the graph isGi from its in-neighborhood.
This is immediately obvious for processes in B, and also possible for a process p ∈ Li

by observing | InGi (p)| = n/12 + 1 and removing itself from it for determining Ri .
For a process p ∈ Ri+1 (resp. Ri+2), it holds by construction that InGi (p) =

B[i +1] = InGi−1(p) (resp. InGi−1(p) = B[i +2] = InGi+1(p)), and that Gi−1 (resp.
Gi+1) is the only other graph besides Gi where the in-neighborhood of p is the same.

��
Our lower bound is now easy to prove.

Theorem 3 There is an oblivious message adversary under which consensus is solv-
able, but for which the decision procedure takes time exponential in n to terminate.

Proof Let D = {Gi | 1 ≤ i ≤ N }, where N = 1.3n for n begin sufficiently large
for Sect. 6.2 to hold. We consider algorithm 1, and show, by induction on the itera-
tion number i , that after iteration i the graphs G1, . . . ,GN−i+1 constitute the only
nontrivial connected component in Ni .

The base case is N1 = I (D), where the graphs G1, . . . ,GN are connected by
Claim 8. For the inductive step i − 1 → i , i > 1, assume G1, . . . ,GN−i+2 is the only
nontrivial connected component in Ni−1, and consider iteration i .

ForG1, . . . ,GN−i+1, every two consecutive graphsG j ,G j+1 with 1 ≤ j ≤ N − i
are indistinguishable for a set R j+2 by Claim 8, which is the root component of G j+2
by Claim 7. SinceG j+2 is in the same connected component asG j andG j+1 inNi−1,
the edge G j ∼R j+2 G j+1 is incorporated by the algorithm in Ni .

On the other hand, the edge GN−i+1 ∼RN−i+3 GN−i+2 of Ni−1 is not added to
Ni . This is since RN−i+3 is the root component of GN−i+3, which is not in the
nontrivial connected component ofNi . Since all the root components have equal sizes
and are distinct, RN−i+3 cannot be contained in any other root component either. This
completes the induction step.

It follows that the algorithm takes N = 1.3n iterations to complete. Upon comple-
tion, each connected component ofNN is a single, root-compatible graph, so consensus
is solvable under D. ��

6.3 Exponential Termination Time of Consensus

From Theorem 2, we immediately obtain a termination time lower bound of �(TD)

for solving consensus. Consequently, the oblivious message adversary used in (the
proof of) Theorem 3, where TD = N = 1.3n for sufficiently large n, reveals a lower
bound that is exponential in n.

We now adapt the oblivious message adversary from Theorem 3 (Sect. 6.2) to get
consensus termination time of �(n1.3n); that is, we show that the termination time of

123

1852 Algorithmica (2024) 86:1830–1861

Fig. 3 A sketch of the extended lower bound graph Gi

consensus may be �(n) times larger than TD even when TD is exponential. To this
end, in the graph Gi shown in Fig. 2, we replace the direct edges from Ri to B by a
path consisting of processes taken from a set P ⊆ {pn/2+1, . . . , pn} with |P| = �(n)

(i.e., taken away from the original B), as illustrated in Fig. 3.
In more detail, we change the graph construction from Sect. 6.2 as follows:

• B = {n/2 + 1, . . . , 0.9n} and P = {0.9n + 1, . . . , n};
• Add the directed edges (p, p + 1) for all p ∈ P\{n};
• Instead of an edge from each node of Ri to each node of B, add an edge from each
node of Ri to h = 0.9n + 1, and from n to each node of B.

Let h = 0.9n be the first node on the inserted path. Whereas our new construction
introduced the additional indistinguishability Gi ∼p G j for all p ∈ (B ∪ P)\{h} for
any Gi ,G j ∈ D, it does not affect the iteration complexity of the decision procedure,
since no R ⊆ (B∪ P) ever occurs as a root component in a graph ofD. Thus, all edges
e with �(e) ⊆ (B ∪ P) are removed in the first iteration of the decision procedure,
according to Corollary 1.

It is easy to see that Claim 6 still holds, as we have log2(N) < 0.4n, and Claim
7 holds by construction. Regarding Claim 8, the original indistinguishability rela-
tions still hold, but are now expanded by additional indistinguishabilities labeled by
a process p ∈ (P ∪ B) \ {h}, which are removed in the first iteration of the decision
procedure.

The crucial property of our new construction is that any Gi ,Gi+1, when repeated
for 0.1n rounds, yield indistinguishable communication patterns.

Claim 9 Gr
i ∼p Gr

i+1 for all r ≤ 0.1n and all p ∈ Ri+2.

Proof Observe that, by construction, we have InGi (p) = InGi+1(p) for all p ∈ X =
P\{h}∪ B∪ Ri+2. The claim follows, because every path from a process outside X to
a process in Ri+2 has length at least |P| + 1. It thus takes at least |P| + 1 repetitions
of Gi , respectively Gi+1, until a process of � \ X reached a process of Ri+2. Since
|P| = 0.1n, in a round r ≤ 0.1n, the nodes of Ri+2 have hence the same view in both
Gr

i and Gr
i+1. ��

The following Lemma 4 shows that we can even “inflate” arbitrary communication
patterns of the oblivious message adversary from Sect. 6.2:

123

Algorithmica (2024) 86:1830–1861 1853

Lemma 4 Consider (σ, σ ′) ∈ I (Dk), where D is the oblivious message adversary of
Sect.6.2. Let D̃ be the modified oblivious message adversary of Sect.6.3, and σ̃ resp.
σ̃ ′ in D̃(k0.1n) be the communication pattern obtained from replacing every round i
graph σ(i) resp. σ ′(i) according to Fig.2 by 0.1n instances of the corresponding
graph according to Fig.3. Then, (σ̃ , σ̃ ′) ∈ I (D̃0.1nk).

Proof Weprove, by induction over k ≥ 1, that (i) the 0.1nk prefixes σ̃ |0.1nk and σ̃ ′|0.1nk
satisfy σ̃ |0.1nk ∼R σ̃ ′|0.1nk for R = �(σ, σ ′) �= ∅, and (ii) that σ̃ |0.1nk ∼B σ̃ ′|0.1nk
if and only if σ |k ∼B σ ′|k for the processes B = {pn/2+1, . . . , pn}. Note carefully
that σ ∼R σ ′ also implies σ |k ∼R σ ′|k , as well as σ(k) ∼R σ ′(k). As a consequence,
there is some i such that, for every k, either σ(k) = Gi and σ ′(k) = Gi+1 (or vice
versa), with R = Ri+2, or else σ(k) = σ ′(k).

For the induction basis k = 1, the only non-trivial case isσ |1 = σ(1) = Gi ∈ D and
σ ′|1 = σ ′(1) = Gi+1 ∈ D, and R = Ri+2. From Claim 9, we get σ̃ |0.1n ∼R σ̃ ′|0.1n
as needed for (i). As for (ii), the lenght 0.1n of the path P in Fig. 3 ensures that all
processes in B have the same distinguishing power in both the original and in the
inflated prefix.

For the induction step k − 1 → k, k > 1, we assume for our hypothesis that
σ̃ |0.1n(k−1) ∼R σ̃ ′|0.1n(k−1) and that all processes in B have the same distinguishing
power. Assume for a contradiction for (i) that σ̃ |0.1nk �R σ̃ ′|0.1nk , i.e., some process
p ∈ R can distinguish the two prefixes. Consider the round k graphs σ(k) and σ ′(k).
If σ(k) = σ ′(k) = G j ∈ D, we immediately get a contradiction, since appending
0.1n instances Ĝ0.1n

j of the corresponding Ĝ j ∈ D̃ to both σ̃ |0.1n(k−1) and σ̃ ′|0.1n(k−1)
cannot break their indistinguishability for p.

So let us assume w.l.o.g. Gi = σ(k) and Gi+1 = σ ′(k) with R = Ri+2. Since
we know from Claim 9 that the corresponding graphs in D̃ ensure Ĝ0.1n

i ∼p Ĝ0.1n
i+1 ,

the information that allows p to distinguish σ̃ |0.1nk and σ̃ ′|0.1nk was relayed to it
from some informed process q ′ during the last 0.1n rounds. Since Ri+2 only has
incoming edges from B in Fig. 3, there exists an informed process q ∈ B that relayed
this information to p by the last of these rounds. This q must have been informed at
the latest in round 0.1nk − 1. Since the path P in Fig. 3 has length 0.1n, however, Ri

(resp. Ri+1) cannot be the source of information that allows q to distinguish σ̃ |0.1nk and
σ̃ ′|0.1nk . Consequently, q must already have had information to distinguish σ̃ |0.1n(k−1)
and σ̃ ′|0.1n(k−1). From (ii) of our induction hypothesis, we can infer that this is also
true in the original σ |k−1 and σ ′|k−1. Since q sends a message to Ri+2 in round k here,
this would contradict σ |k ∼R σ ′|k , and therefore completes the induction step for (i).

The induction step for (ii) ist trivial, as the processes in B only get information from
the respective root component, either directly (in the original prefix) or delayed via
the path P (in the inflated one). The induction hypothesis hence immediately carries
over from k − 1 to k. ��

Lemma 4 immediately gives the consensus termination time for our new oblivious
message adversary:

Theorem 4 There is an obliviousmessage adversary forwhich solving consensus takes
�(n1.3n) rounds.

123

1854 Algorithmica (2024) 86:1830–1861

Proof Consider any two indistinguishable communication patterns σ, σ ′ of the mes-
sage adversary of Theorem 3 on the path between GN−1

1 and GN−1
2 in I (D)N−1. As

TD = N = 1.3n , Lemma 3 guarantees that this path exists. Lemma 4 immediately
provides us with inflated communication patterns μ,μ′ ∈ I (D)0.1n(N−1) for our new
oblivious message adversary, which are also indistinguishable. Together, they form a
path between G0.1n(N−1)

1 andG0.1n(N−1)
2 in I (D)0.1n(N−1). Since the root components

R1 = Root(G1) and R2 = Root(G2) are disjoint, not all processes can have decided
by round 0.1n(N − 1), as claimed. ��

7 Another Source of Consensus Time Complexity

In this section, we investigate whether the number of iterations TD of the decision
procedure is the sole cause for a large time complexity of consensus under an oblivious
message adversary. Before we do so, however, let us briefly reiterate what we have
achieved so far. In Theorem 1, we have established that consensus can be solved
after c(n − 1)TD rounds, whereas Theorem 4 revealed that there are in fact oblivious
message adversaries where consensus takes up to n TD rounds to terminate and TD
may be exponential in n. Thus, in this case, a time complexity exponential in n is
asymptotically tight for solving consensus under an oblivious message adversary. As
we know that the consensus time complexity is always at most c(n−1)TD, and since
we have examples where it is at least n TD, it might hence be tempting to assume
that TD also determines the termination time of consensus in all cases. In this section,
we will see that this is not the case, as, to the contrary, there are instances where the
decision procedure terminates after a constant number of iterationswhile the consensus
time complexity is still exponential in n, i.e., where c is exponentially large. We now
proceed to show how to derive such an instance.

7.1 A Partition of an Oblivious Message Adversary

Before going into the details of how to construct an oblivious message adversary
with the desired property of incurring a large time complexity of consensus while
maintaining a low TD, we define an abstract property that, if satisfied by an oblivious
message adversary D for a parameter t , leads to a consensus time complexity in the
order of t . Informally, this property is that there exists a partition S1, . . . ,St ofD such
that S1 is connected in the indistinguishability graph I (D) and all the edges that make
up this connection are protected by the communication graphs of S2. Similarly, S2 is
connected in I (D) and all of the edges in this connection, along with the ones from
S1, are protected by the communication graphs of S3 and so on. Our claim is that
if there exist t-round communication pattern that have no common broadcaster and
whose round 1 ≤ r ≤ t communication graphs are picked from Sr , then consensus is
impossible by round t . The reason for this, as shown inmore detail below, is that the set
of communication patterns S1 ◦ . . . ◦ St is connected in the indistinguishability graph
I (Dt), because each Sr can maintain the connectivity of S1 ◦ . . . ◦ Sr−1 in I (Dr−1) as

123

Algorithmica (2024) 86:1830–1861 1855

all the edges relevant for this connectivity are protected by the communication graphs
of Sr .

Formally, we express this property as follows:

Definition 2 Let S1, . . . ,St be a partition of D with the following properties, for
1 ≤ i ≤ t :

(i) Each Si is connected. That is, for each G,G ′ in Si , there is a path from G to G ′
in the indistinguishability graph I (D) that consists only of elements from Si .

(ii) The edges of the subgraph of I (D), induced by
⋃i−1

j=1 S j , are protected by the
communication graphs of Si .

(iii) There is no process p such that every communication pattern of� = S1 ◦ . . .◦St
is broadcastable by p.

Given this partition, we show in Claim 10 below that � is connected in I (Dt),
which shows that consensus is impossible after t rounds: If all processes do decide
after t rounds in all runs with a communication pattern of �, they all decide the same
value because� is connected in I (Dt). Thus, in some run with communication pattern
σ ∈ �, the decision is on an input of a process p even though σ is not broadcastable
by p, which contradicts Claim 2.

Claim 10 The communication patterns of �t = S1 ◦ . . . ◦ St are pairwise connected
to each other in I (Dt).

Proof Throughout this proof, let I (D)[S] denote the subgraph of I (D), induced by the
set of communication graphs S.

We show an even stronger claim, namely that there is a set of edges Et that connects
�t in I (Dt) such that for each e ∈ Et there is an e′ ∈ I (D)[⋃ j≤t S j] with the same
label �(e) = �(e′). We show this by induction on k with �k = S1 ◦ . . . ◦ Sk .

The base of the induction k = 1 follows directly from property (i) of Definition 2,
as S1 is connected in I (D).

For the step from k to k + 1, the induction hypothesis is that there are edges Ek

that connect �k such that for every e ∈ Ek there is an e′ ∈ I (D)[⋃ j≤k S j] with
�(e) = �(e′). We use the graphs of Sk+1 to extend �k to �k+1 while maintaining the
connectivity of �k+1 as follows.

For every σ1, σ2 ∈ �k with e = (σ1, σ2) ∈ Ek , we add to �k+1 the extensions
σ1 ◦ G and σ2 ◦ G such that G ∈ Sk+1 and G protects e. Such a communication
graph G exists because of property (ii) of Definition 2 and because there is an edge
e′ ∈ I (D)[⋃ j≤k S j] with �(e) = �(e′) by hypothesis.

Finally, for all extensions σ1 ◦ G, σ2 ◦ G and σ2 ◦ G ′, σ3 ◦ G ′ added to �k+1 in
this way, by property (i) of Definition 2, there is a path π from G to G ′ in I (D) that
consists only of graphs G ′′ ∈ Sk+1. We can thus add all the communication patterns
{σ2 ◦ G ′′ : G ′′ ∈ π} to �k+1 as well: This maintains the connectivity of �k+1 and
ensures the induction hypothesis as the path π lies entirely in I (D)[Sk+1] by property
(i) of Definition 2. ��

123

1856 Algorithmica (2024) 86:1830–1861

7.2 An Example: Choosing the Processes

We now construct a set of communication graphs that can be partitioned in accordance
with Definition 2, into t = 1.07n sets. For a set � of n processes, let m = � n

10�. We
construct an oblivious message adversary with a partition on it, D = ⋃t

i=1 Si , where
each Si is a set of 2i + 1 graphs, denoted Si = {Gi, j | 1 ≤ j ≤ 2i + 1}. Each graph
Gi, j is defined by a partition of the process set � as

� =

⎧
⎪⎨

⎪⎩

B ∪ R j ∪Ui ∪U ′
i ∪ Li, j for j = 1,

B ∪ R j ∪Ui ∪ Li, j for j even ,

B ∪ R j ∪U ′
i ∪ Li, j for j ≥ 3 odd .

The process sets are B = [5m + 1, n], which is fixed for all i, j ; R j with |R j | = m,
which constitutes the members of the root components of all the graphs Gi, j ; Ui ,U ′

i ,
with |Ui | = |U ′

i | = m; and finally Li, j , which is the set of all the remaining processes.
We choose processes for these sets inductively on i as follows: For the base i = 1, we
just list the appropriate sets for the communication graphs of S1 = {G1,1,G1,2,G1,3}:
(b1) R1 = [4m + 1, 5m]
(b2) R2 ⊆ [1, 2m], |R2| = m, chosen arbitrarily
(b3) R3 ⊆ [2m + 1, 4m], |R3| = m, chosen arbitrarily
(b4) U1 ⊆ [2m + 1, 4m] \ R3
(b5) U ′

1 ⊆ [1, 2m] \ R2

We proceed with the inductive step of our construction. For this we assume that
we are given R1, . . . , R2i+1 andUi ,U ′

i , and show how to construct R2i+2, R2i+3 and
Ui+1,U ′

i+1.

(s1) We let R2i+2 = U ′
i

(s2) We let R2i+3 = Ui

(s3) We let Ui+1 be an arbitrary subset of [2m + 1, 4m] of size m, different (but not
necessarily disjoint) from R2, R4 . . . R2i+2

(s4) We let U ′
i+1 be an arbitrary subset of [1, 2m] of size m, different (but not neces-

sarily disjoint) from R3, R5 . . . R2i+3

Note that steps (s1) and (s2) are always possible, as long as the sets Ui and U ′
i are

defined. To see that we can repeat step (s3) for t times, note that there are
(2m
m

)
many

ways to choose a set Ui+1 ⊆ [2m + 1, 4m] of size m. We have

(
2m

m

)

≥ (2m)m

mm
= 2m ≥ 2n/10 > 1.07n

and the claim follows. The claim for (s4) is analogous.

7.3 An Example: The Graph Structure

We now show how to combine the sets R j ,Ui ,U ′
i , B, and Li, j in Gi, j to obtain an

oblivious message adversary that has a partition as described in Definition 2 for t =

123

Algorithmica (2024) 86:1830–1861 1857

Fig. 4 Topology of Gi, j for even j , used to establish an exponential consensus time complexity in spite of
a constant TD

1.07n (for an illustration, see Fig. 4). While the choice processes of R j is independent
of i , the edges between them in Gi, j will be different and depend crucially on i .

More specifically, the graphGi, j always contains a directed cycle in R j in increasing
order of the process identifiers. Since |R j | = m and each process already has one
incoming edge from the preceding process, there are m − 2 other potential incoming
edges we can choose to add for every member. Hence, there are m · 2m−2 > t (for n
large enough) possible interconnects for R j , and for each i we choose a different one.

We define the other edges of Gi, j as follows. Each graph contains edges from all
process of R j to all processes of B and Li, j . For an index i , let B[i] = {b ∈ B |
ib−(5m+1) = 1}, where ih is the hth bit in the binary expansion of i . Note that for
i �= i ′, 1 ≤ i, i ′ ≤ t we have B[i] �= B[i ′], i.e. all the bits of i are represented in B[i],
since log2 t < 0.1n < |B|.

The rest of the edges depend on j , as follows.

• For j = 1, add an edge from each node of B[i] to each node of Ui ∪U ′
i ∪ Li, j .

• For j even, add an edge from each node of B[i] to each node of Ui ∪ Li, j .
• For j ≥ 3 odd, add an edge from each node of B[i] to each node of U ′

i ∪ Li, j .

7.4 An Example: Properties of the Adversary

Finally, let us establish our main claim, namely that the above construction indeed
yields an obliviousmessage adversarywhere the consensus time complexity t = 1.07n

grows exponentially with n, yet TD = 2, a constant. In the remainder of this section,
we show these properties for the oblivious message adversary D constructed above.
First, we prove that D partitions as described in Definition 2.

Claim 11 The sets S1, . . . ,St are a partition according to Definition 2.

Proof First, since all Gi, j are different, S1, . . . , St is indeed a partition of D. For
property (i), the connectivity of Si , pick any Gi, j ∈ Si . We show that this graph is

123

1858 Algorithmica (2024) 86:1830–1861

indistinguishable to some processes from Gi,1, and thus the graph is connected by an
edge to Gi,1 in I (D). If j is odd, the in-neighborhood of every process of U ′

i is the
same in Gi, j and in Gi,1, namely B[i]. Similarly, if j is even, every process ofUi has
B[i] as its in-neighborhood in Gi, j , and this is also the case for Gi,1.

To prove property (ii), which states that the communication graphs of Si protect
the edges that were used to connect S1, . . . ,Si−1, it suffices to show that for every
1 ≤ i ′ < i , there are communication graphs G,G ′ ∈ Si such that Root(G) ⊆ Ui ′ and
Root(G ′) ⊆ U ′

i ′ . For a given 1 ≤ i ′ < i , note that the graphs Gi,2i ′+2,Gi,2i ′+3 ∈ Si
satisfy R2i ′+2 = Ui ′ and R2i ′+3 = U ′

i ′ by construction.
For property (iii), which states that there is no process by which all communication

patterns of � = S1 ◦ · · · ◦ St are broadcastable, let us investigate the processes that
were able to broadcast in (Gi,2)

t
i=1 ∈ � and (Gi,3)

t
i=1 ∈ �. We observe that, by (b2)

and (b3), for all 1 ≤ i ≤ t , Root(Gi,2) = R2 ⊆ [1, 2m] and Root(Gi,3) = R3 ⊆
[2m + 1, 4m] and thus R2 ∩ R3 = ∅. As the broadcasters of (Gi,2)

t
i=1 are R2 and the

broadcasters of (Gi,3)
t
i=1 are R3, property (iii) holds. ��

Claim 12 The decision procedure terminates after TD = 2 iterations on D.

Proof First, note that all the roots R j are contained in [1, 5m], while B = [m5+1, n],
hence no edge of I (D) labeled only by processes of B will be preserved after the first
iteration. Similarly, we can ignore processes of B in the labels, when considering the
preservation of the edges.

Now, we show that in the first iteration of the decision procedure, none of the edges
of I (D) that connect graphs from different sets in the partition D = ⋃t

i=1 Si are
preserved. Consider Gi, j ∈ Si , Gi ′, j ′ ∈ Si ′ , i �= i ′, such that Gi, j ∼� Gi ′, j ′ . Note that
in Gi, j , the processes of Ui (or U ′

i if j is odd) and Li, j have B[i] as their incoming
edges, while the corresponding processes in Gi ′, j ′ have B[i ′], and B[i] �= B[i ′], so
none of Ui (or U ′

i), Ui ′ (or U ′
i ′), Li, j and Li ′, j ′ could intersect �.

Hence, the only processes in � that can occur in a root component of a graph in D
are processes of R j and R j ′ . Let us study |R j ∩ R j ′ ∩ �|: if j �= j ′ then R j �= R j ′ so
|R j ∩ R j ′ ∩�| < |R j | = m; if j = j ′, then the fact that the choice of interconnects for
R j in Gi, j depends on i guarantees that at least one process of R j is not in in � and
hence not in R j ∩ R j ′ ∩ �, and again |R j ∩ R j ′ ∩ �| < m. As any root component R j ′′
of a graph in D has |R j ′′ | = m, no such root component satisfies R j ′′ ⊆ R j ∩ R j ′ ∩ �,
and the edge � is not being preserved in the first iteration.

Second, we show that in the second iteration of the decision procedure, none of the
edges in I (D) that is within a set Si is preserved. Assume for contradiction that for
some i , there are graphs Gi, j ,Gi, j ′ ,Gi, j ′′ ∈ Si , j �= j ′ such that Gi, j ∼� Gi, j ′ and
R j ′′ ⊆ �. All the processes of B, Li, j and Li, j ′ have incoming edges from R j (or R j ′),
and since R j �= R j ′ none of these processes appear in �. Note that 1 ≤ j ′′ ≤ 2i + 1,
and the sets Ui and U ′

i are chosen to be different from R1, . . . , R2i+1, which implies
R j ′′ �= Ui ,U ′

i .
If j = 1, then the only processes that can appear in � are those of Ui ∪ U ′

i .
This is because, in Gi,1, processes of R1 do not have any incoming edge from B,
which they have in all other graphs of Si , and processes of Li,1 have incoming edges
from R1, which no process has in any other graphs of Si . Therefore R j ′′ ⊆ � ⊆
Ui ∪U ′

i , where Ui ⊆ [2m + 1, 4m] and U ′
i ⊆ [1, 2m]. But either R j ′′ ⊆ [1, 2m] or

123

Algorithmica (2024) 86:1830–1861 1859

R j ′′ ⊆ [2m + 1, 4m], and |R j ′′ | = |Ui = |U ′
i |, so either R j ′′ = Ui or R j ′′ = U ′

i , a
contradiction.

If j is even, R j ′′ ⊆ � ⊆ R j ∪ Ui , as any process not in R j ∪ Ui has incoming
edges from all processes of R j in Gi, j , which it does not have in Gi, j ′ . We have
R j ⊆ [1, 2m] (as j is even) and Ui ⊆ [2m + 1, 4m], while either R j ′′ ⊆ [1, 2m] or
R j ′′ ⊆ [2m+1, 4m]. So, either R j ′′ = R j or R j ′′ = Ui . This can only occur if j = j ′′:
the sets Rk are different for different indices k, and Ui is chosen to be different from
R1, . . . , R2i+1. The case of j > 1 odd is analogous, and we conclude that j = j ′′
in both cases. The same analysis applies for j ′, and so we have j = j ′′ = j ′, a
contradiction. ��

From this, we conclude the main theorem of this section.

Theorem 5 There exists an oblivious message adversary with a consensus time com-
plexity exponential in n in spite of a constant iteration complexity TD of the decision
procedure.

8 Conclusions

We presented a simple procedure for deciding whether consensus is solvable under a
given oblivious message adversary. Whereas it can be viewed as an early terminating
version of the abstract beta class characterization by Couloma, Godard, and Peters [6],
our formulation turned out to be instrumental for characterizing the, to the best of our
knowledge, previously unknown worst-case termination time of distributed consensus
under a given oblivious message adversary. We discovered a relation between the
number of iterations of the decision procedure and the consensus termination time, and
the importance of the existence and number of root-compatible connected components
in the refined indistinguishability graph.

Our work opens several interesting avenues for future work. For example, while
we have pursued a combinatorial approach, it would be interesting to study the time
complexity of the consensus and other agreement prototols from a topological per-
spective as well. It would further be interesting to fully understand the implications of
our approach on distributed information dissemination problems such as broadcast,
and explore alternative adversarial models. Another interesting avenue of research is a
possible algorithmic and/or engineering improvement of our decision procedure, and
to empirically evaluate its performance for different oblivious message adversaries.

Author Contributions All authors contributed equally to the concepts, results and the writing of the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed
in this manuscript. The authors have no financial or proprietary interests in any material discussed in this
article.

123

1860 Algorithmica (2024) 86:1830–1861

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Newport, C., Kotz, D., Yuan, Y., Gray, R.S., Liu, J., Elliott, C.: Experimental evaluation of wireless
simulation assumptions. SIMULATION: Trans. Soc.Model. Simul. Int. 83(9), 643–661 (2007). https://
doi.org/10.1177/0037549707085632

2. Schwarz, M., Winkler, K., Schmid, U.: Fast consensus under eventually stabilizing message adver-
saries. In: Proceedings of the 17th International Conference onDistributedComputing andNetworking.
ICDCN ’16, pp. 7–1710. ACM, New York, NY, USA (2016) . https://doi.org/10.1145/2833312.
2833323

3. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for consensus under link
failures. SIAM J. Comput. 38(5), 1912–1951 (2009). https://doi.org/10.1137/S009753970443999X

4. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: Proceedings of
the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. PODC
’11. ACM (2011)

5. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Distributed Computing and Networking. Lecture
Notes in Computer Science, vol. 7730, pp. 225–239. Springer (2013). https://doi.org/10.1007/978-3-
642-35668-1_16

6. Coulouma, É., Godard, E., Peters, J.G.: A characterization of oblivious message adversaries for which
consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015). https://doi.org/10.1016/j.tcs.2015.01.
024

7. Santoro,N.,Widmayer, P.: Time is not a healer. In: Proceeding of 6thAnnual SymposiumonTheoretical
Aspects of Computer Science (STACS’89). LNCS 349, pp. 304–313. Springer, Paderborn (1989)

8. El-Hayek, A., Henzinger, M., Schmid, S.: Brief announcement: broadcasting time in dynamic rooted
trees is linear. In: PODC, pp. 54–56. ACM (2022)

9. El-Hayek, A., Henzinger, M., Schmid, S.: Asymptotically tight bounds on the time complexity of
broadcast and its variants in dynamic networks. In: 14th Innovations in Theoretical Computer Science
(ITCS) (2023)

10. Zeiner, M., Schwarz, M., Schmid, U.: On linear-time data dissemination in dynamic rooted trees.
Discrete Appl. Math. 255, 307–319 (2019). https://doi.org/10.1016/j.dam.2018.08.015

11. Függer, M., Nowak, T., Winkler, K.: On the radius of nonsplit graphs and information dissemination
in dynamic networks. Discrete Appl. Math. 282, 257–264 (2020). https://doi.org/10.1016/j.dam.2020.
02.013

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty
process. J. ACM 32(2), 374–382 (1985)

13. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed 1-solvable tasks. J.
Algorithms 11(3), 420–440 (1990)

14. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: Proc. USENIX
Annual Technical Conference (ATC), pp. 305–319 (2014)

15. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACTNews 42(1), 82–96 (2011)
16. Castañeda, A., Fraigniaud, P., Paz, A., Rajsbaum, S., Roy, M., Travers, C.: A topological perspective

on distributed network algorithms. In: Structural Information and Communication Complexity - 26th
InternationalColloquium, SIROCCO, pp. 3–18 (2019). https://doi.org/10.1007/978-3-030-24922-9_1

17. Winkler, K., Schmid, U.: An overview of recent results for consensus in directed dynamic networks.
Bull. EATCS 128 (2019)

18. Abraham, I., Malkhi, D., et al.: The blockchain consensus layer and BFT. Bull. EATCS 3(123) (2017)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0037549707085632
https://doi.org/10.1177/0037549707085632
https://doi.org/10.1145/2833312.2833323
https://doi.org/10.1145/2833312.2833323
https://doi.org/10.1137/S009753970443999X
https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1016/j.dam.2018.08.015
https://doi.org/10.1016/j.dam.2020.02.013
https://doi.org/10.1016/j.dam.2020.02.013
https://doi.org/10.1007/978-3-030-24922-9_1

Algorithmica (2024) 86:1830–1861 1861

19. Santoro, N.,Widmayer, P.: Agreement in synchronous networkswith ubiquitous faults. Theor. Comput.
Sci. 384(2–3), 232–249 (2007)

20. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed systems with benign
faults. Distrib. Comput. 22(1), 49–71 (2009). https://doi.org/10.1007/s00446-009-0084-6

21. Biely,M., Schmid, U.,Weiss, B.: Synchronous consensus under hybrid process and link failures. Theor.
Comput. Sci. 412(40), 5602–5630 (2011). https://doi.org/10.1016/j.tcs.2010.09.032

22. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly dynamic networks: The
role of averaging algorithms. In: Halldòrsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 9135, pp. 528–539.
Springer, ??? (2015). https://doi.org/10.1007/978-3-662-47666-6_42

23. Függer, M., Nowak, T., Schwarz, M.: Tight bounds for asymptotic and approximate consensus. In:
Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing. PODC ’18, pp.
325–334. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3212734.3212762

24. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony.
In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
pp. 143–152. ACM Press, Puerto Vallarta, Mexico (1998). https://doi.org/10.1145/277697.277724

25. Keidar, I., Shraer, A.: Timeliness, failure detectors, and consensus performance. In: Proceedings of
the Twenty-fifth Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC’06), pp. 169–178. ACM Press, New York (2006)

26. Fevat, T., Godard, E.: Minimal obstructions for the coordinated attack problem and beyond. In: 25th
IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage,
Alaska, USA, 16–20 May, 2011 - Conference Proceedings, pp. 1001–1011 (2011). https://doi.org/
10.1109/IPDPS.2011.96

27. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In: Proceedings 19th
International Colloquium on Structural Information and Communication Complexity (SIROCCO’12).
LNCS 7355, pp. 73–84. Springer (2012). https://doi.org/10.1007/978-3-642-31104-8_7

28. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and
k-set agreement in directed dynamic networks. Theor. Comput. Sci. 726, 41–77 (2018). https://doi.
org/10.1016/j.tcs.2018.02.019

29. Winkler, K., Schwarz, M., Schmid, U.: Consensus in directed dynamic networks with short-lived
stability. Distrib. Comput. 32(5), 443–458 (2019). https://doi.org/10.1007/s00446-019-00348-0

30. Nowak, T., Schmid, U., Winkler, K.: Topological characterization of consensus under general message
adversaries. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29–August 2, 2019, pp. 218–227 (2019) (Full version: http://
arxiv.org/abs/1905.09590). https://doi.org/10.1145/3293611.3331624

31. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: STOC, pp.
513–522 (2010)

32. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology.
Morgan Kaufmann (2013). https://store.elsevier.com/product.jsp?isbn=9780124045781

33. Attiya, H., Castañeda, A.: A non-topological proof for the impossibility of k-set agreement. Theor.
Comput. Sci. 512, 41–48 (2013)

34. Attiya, H., Castañeda, A., Herlihy, M., Paz, A.: Bounds on the step and namespace complexity of
renaming. SIAM J. Comput. 48(1), 1–32 (2019). https://doi.org/10.1137/16M1081439

35. Kozlov, D.N.: Structure theory of flip graphs with applications to weak symmetry breaking. CoRR
http://arxiv.org/1511.00457 (2015)

36. Kozlov, D.N.: Combinatorial Topology of the Standard Chromatic Subdivision and Weak Symmetry
Breaking for Six Processes, pp. 155–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31580-5_7

37. Winkler, K., Schmid, U., Moses, Y.: A characterization of consensus solvability for closed message
adversaries. In: 23rd International Conference on Principles of Distributed Systems, OPODIS 2019,
December 17–19, 2019, Neuchâtel, Switzerland. LIPIcs, vol. 153, pp. 17–11716. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, ??? (2019). https://doi.org/10.4230/LIPIcs.OPODIS.2019.17

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1016/j.tcs.2010.09.032
https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1145/3212734.3212762
https://doi.org/10.1145/277697.277724
https://doi.org/10.1109/IPDPS.2011.96
https://doi.org/10.1109/IPDPS.2011.96
https://doi.org/10.1007/978-3-642-31104-8_7
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1007/s00446-019-00348-0
http://arxiv.org/abs/1905.09590
http://arxiv.org/abs/1905.09590
https://doi.org/10.1145/3293611.3331624
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://doi.org/10.1137/16M1081439
http://arxiv.org/1511.00457
https://doi.org/10.1007/978-3-319-31580-5_7
https://doi.org/10.1007/978-3-319-31580-5_7
https://doi.org/10.4230/LIPIcs.OPODIS.2019.17

	The Time Complexity of Consensus Under Oblivious Message Adversaries
	Abstract
	1 Introduction
	2 Related Work
	3 Model and Preliminaries
	4 A Decision Procedure for Consensus Solvability
	5 Time Complexity of Consensus
	6 Lower Bounds
	6.1 Decision Complexity and Consensus Termination Time
	6.2 Exponential Iteration Complexity of the Decision Procedure
	6.3 Exponential Termination Time of Consensus

	7 Another Source of Consensus Time Complexity
	7.1 A Partition of an Oblivious Message Adversary
	7.2 An Example: Choosing the Processes
	7.3 An Example: The Graph Structure
	7.4 An Example: Properties of the Adversary

	8 Conclusions
	References

