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Abstract

The severe spectrum scarcity and the stringent requirements of Beyond 5G applications call for

an integrated use of low frequency Sub-6 GHz and high frequency millimeter Wave bands. Focusing

on future Internet of Things (IoT) Short-Packet Communications (SPC), this paper investigates the

optimized usage of such diverse wireless interfaces. We propose an unifying framework devoted to SPC

that jointly optimizes the user partitioning over each band, and the radio resource scheduling within each

band. Leveraging Deep Reinforcement Learning (DRL) tools, the proposed method enables to better

tackle the challenges imposed by dynamically varying mobile environments such as the Line-of-Sight

situations of each link, and the heterogeneity of individual Quality of Service (QoS) requirements, such as

rate, delay and reliability. Regarding the DRL-based user partitioning to each band, we have investigated

three different types of partitioning actions to obtain a high network performance as well as a rapid

convergence. Regarding the proposed sub-schedulers within each band, we designed two optimization

methods, i.e., one that leverages Difference of Convex Programming (DCP) technique, and the second

that accelerates convergence to a local optimum. Numerical evaluations show that the proposed methods

outperform conventional approaches in terms of sum-rate and QoS outage probabilities.

Index Terms

Beyond 5G, Sub-6 GHz, millimeter Wave, Short-Packet Communications, Deep Reinforcement

Learning, Resource Allocation Optimization
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I. INTRODUCTION

A. Background and Problem Definition

While 5G networks introduced use cases such as enhanced Mobile Broadband (eMBB), mas-

sive Machine Type Communications (mMTC) and Ultra-Reliable Low-Latency Communications

(URLLC), Beyond 5G (B5G) and 6G networks should cater for extreme Quality of Service

(QoS) demands including massive URLLC users or Mobile Broadband Reliable Low Latency

Communications (MBRLLC). Future applications will ask for ever more stringent QoS levels,

jointly in terms of rate, latency and reliability, including the Terabits-level data rates for Extreme

Reality or the acute reliability for remote surgery [1], [2]. Meeting such requirements will be

immensely challenging under the unprecedented increase of wireless devices and the lack of

available spectrum.

To mitigate the severe spectrum scarcity issue, many efforts have been devoted towards taming

the high frequency millimeter Wave (mmWave) band. However, the high path loss and sensitivity

to obstacles of mmWaves created a consensus on the need for an integrated network exploiting

both features of conventional Sub-6 GHz and mmWave bands [3]. In such B5G integrated

systems, each network entity would be equipped by multiple interfaces, thereby enabling the

seamless use of Sub-6 GHz and mmWave bands, and even Terahertz bands as we head towards

6G. To meet the demands of B5G applications, coordinated radio resource allocation optimization

and interference management over these multiple interfaces will be of paramount importance.

Furthermore, given the explosion of the number of IoT devices, more and more mMTC and

URLLC types of applications need to be accommodated. Unlike conventional mobile broadband

applications, such devices generate a large amount of small packets, entailing Short-Packet

Communications (SPC) [4]. The conventional achievable rate expression given by Shannon’s

theorem assumes infinite codebooks, making it unsuitable to characterize the rates of SPC.

However, recent advances in the field of finite blocklength information theory provided an

accurate achievable rate approximation for SPC, opening the road towards designing SPC-specific

resource allocation and inference management methods [5]. Although some solutions have been

proposed, many open research issues remain.

B. Related Work

To overcome the uncertainties of the wireless environment while satisfying different types

of requirements, many research works have focused on applying Deep Reinforcement Learning
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(DRL) methods for limited size problems [6]. A Model-free Reinforcement Learning method

was designed in [7] for Resource Block (RB) and power allocation. More recently, [8] and

[9] proposed a DRL-based algorithm to schedule eMBB and URLLC users dynamically. These

methods assign resources to URLLC users as soon as they try to send delay sensitive packets,

even if the resources are used by eMBB users. Similarly, [10] used DRL-based network slicing

methods to meet heterogeneous QoS requirements. In order to reduce the state-space complexity,

the authors proposed to integrate an action elimination technique to the DRL algorithm to remove

undesirable actions.

Leveraging finite blocklength information theory, the joint resource allocation problem for

eMBB and URLLC users has been addressed in several papers. In [11], the authors studied

energy efficiency optimization under a delay outage constraint. To optimize resource allocation

between URLLC and eMBB users, [12] and [13] used puncturing techniques so as to meet the

stringent QoS requirements of URLLC users while minimizing the throughput degradation of

eMBB users. However, these works only considered conventional Sub-6 GHz bands, and hence

are not applicable to integrated networks with multiple wireless interfaces.

Many recent works have focused on the joint use of the mmWave and the Sub-6 GHz bands.

Reference [14] proposed to assign the users with the tightest delay requirements to the Sub-6

GHz band, based on their QoS requirements under perfect Channel State Information (CSI).

The Line-of-Sight (LoS) of the remaining users is estimated by Q-Learning in order to optimize

their scheduling. In [15], centralized and distributed algorithms based on DRL were proposed.

The two approaches aimed at maximizing the number of satisfied users in terms of data rate,

by using both Sub-6 GHz and mmWave bands. Unlike these previous works, we target SPC

applications and aim at jointly exploiting the benefits of both Sub-6 GHz and mmWave bands to

maximize the global sum-rate while satisfying heterogeneous QoS requirements of rate, delay,

and reliability, by fully integrating users’ varying channel conditions and LoS situations.

C. Contributions

In this work, we propose a unified architecture for user partitioning and scheduling over

both Sub-6 GHz and mmWave bands specifically for SPC, with the goal of optimizing the

global sum-rate while satisfying stringent and heterogeneous requirements of rate, delay and

reliability across devices. Given the intractability of the optimization problem at hand, firstly, our

proposed method optimizes user partitioning over the two bands by using a DRL-based Partitioner
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which fully integrates users’ LoS situations as well as their delay and rate QoS requirements.

Secondly, resource allocation is solved within each band through dedicated sub-schedulers, given

the specificities of SPC. Unlike a preliminary work [16], we investigate different action spaces

for the DRL Partitioner and propose a new optimization method to reduce convergence time.

Our main contributions are detailed as follows:

1) We design a framework based on DRL and mathematical optimization for user partitioning

and scheduling of SPC which, unlike previous approaches, jointly learns, predicts, and

optimizes the interface and RB allocation by fully taking into account the varying users’

LoS conditions and heterogeneous QoS requirements.

2) We propose three different partitioning methods for the DRL-based Partitioner. The first

proposed method achieves lower outage at the cost of computation time, while the second

one is faster but results in higher outage. Finally, we investigate a third partitioning

approach that strikes a trade-off between the low outage of the first approach and the

computation efficiency of the second one.

3) To reduce the time complexity of the resource allocation problem solved by each sub-

scheduler, we design a method leveraging both Difference of Convex Programming (DCP)

and regularization while guaranteeing convergence to a local optimum.

4) Extensive numerical evaluations show that our partitioning and scheduling methods out-

perform baseline algorithms in terms of QoS outage probabilities, while ensuring a high

global sum-rate. We also investigate and discuss the involved trade-offs between global

network performance, individual QoS satisfaction, and computation efficiency.

The remainder of this paper is organized as follows. Section II introduces the system model

and Section III formulates our problem. Section IV presents our proposed solution framework,

then the DRL-based Partitioner is described in Section V and the sub-schedulers in Section VI.

Numerical evaluations are conducted in Section VII. Finally, the conclusion and future works

are given in Section VIII.

II. SYSTEM MODEL

We consider a set of Base Stations (BS) distributed over a network area and the downlink

transmissions of K uniformly distributed users and associated to each BS through Voronoi

partitioning. All BSs and users can operate over both Sub-6 GHz and mmWave bands. Fig. 1

presents the network environment.
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Fig. 1: Integrated mmWave-Sub-6 GHz Network

We denote the set of users as K = {1, ..., K}. Let Ks6 ⊂ K be the set of users partitioned

into the Sub-6 GHz band and KmW ⊂ K the set of users partitioned into the mmWave band.

Fig. 2 illustrates the general episode and frame structure. The scheduling frame has a duration

of Tf and is divided into S time slots with duration Ts. Users assigned to the Sub-6 GHz

frequency are allocated over N time/frequency RBs in each time slot while users assigned to the

mmWave band are allocated over M beams in each time slot. Thus, during a scheduling frame

composed of S time slots, we can allocate N ×S resources in the Sub-6 GHz band and M ×S

resources in the mmWave band, where a user assigned to a beam can make use of the whole

mmWave bandwidth. BSs transmit power P s6 and PmW for each band, equally split among RBs

or beams, respectively. CSI feedback is performed per frame, hence each sub-scheduler makes

use of instantaneous SINR values per user and per RB/beam.

In the Sub-6 GHz band, the SINR of user k served by BS b on RB n is given as,

Γs6
bkn =

ps6bkng
s6
bkn

Is6bkn +N s6
0

, (1)

where ps6bkn is the transmit power and gs6bkn is the channel power (including small-scale fading and

path loss) from BS b to user k on RB n. N s6
0 is the noise power and Is6bkn is the interference power

towards user k served by BS b on RB n. Denoting B the set of operating BSs, the interference

is given as,

Is6bkn =
∑

b′∈B\{b}

∑
k′∈K′

ps6b′k′ng
s6
b′kn, (2)

where ps6b′k′n is the power allocated by BS b′ for user k′ ∈ K′ in surrounding cells, on RB n.

On the mmWave interface, we denote by βbkm and θbkm the beam direction and the beamwidth

from BS b to user k on beam m, respectively. βbkm takes continuous values in [0, 2π], whereas
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Fig. 2: Episode and Frame Structure

θbkm takes discrete values from the set of beamwidths Θ. With the rapid evolution of beamforming

techniques, we can assume that the time required to change the beamdirection from a user k

to another user k′ is negligible, i.e., much lower than a time slot. This assumption allows us

to change the beamdirection at the time slot level instead of frame level, so as to increase the

resource sharing efficiency among users. The SINR from BS b to user k on beam m is given as,

ΓmW
bkm =

pmW
bkm hmW

bkm(βbkm, θbkm)

ImW
bkm +NmW

0

, (3)

where pmW
bkm is the transmit power and NmW

0 is the noise power on mmWave band. hmW
bkm(βbkm, θbkm)

is the channel power from BS b to user k on beam m, given as,

hmW
bkm(βbkm, θbkm) = GTx

bkm(βbkm, θbkm)G
Rx
bk hbkmPLbk, (4)

where hbkm is the small-scale fading parameter, PLbk denotes the path loss between BS b and

user k. GTx
bkm(βbkm, θbkm) is the transmit beam gain of BS b to user k on beam m, defined as,

GTx
bkm(βbkm, θbkm) =

Gmain, if 0 < |βLoS
bk − βbkm| < θbkm

2

µ, otherwise
, (5)

where βLoS
bk is the LoS angle between BS b and user k, Gmain and µ are the gains of the mainlobe

and sidelobe with µ ≪ Gmain, given by Gmain = 2π−(2π−θ)µ
θ

. In (4), the receive beam gain GRx
bk

for BS b to user k is assumed fixed to Gmain for simplicity, as in [17]. Finally, in (3), ImW
bkm

denotes the interference power received by user k served by BS b on beam m expressed as,

ImW
bkm =

∑
b′∈B\{b}

∑
k′∈K′

∑
m′∈M

pmW
b′k′m′hmW

b′km′(βb′km′ , θb′km′) (6)

where, unlike in Eq. (2) for orthogonal RBs, the interference may come from any beam m′

allocated by any BS b′ ̸= b to a neighboring user k′ ∈ K′.
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Because the proposed framework is designed for SPC, the conventional Shannon capacity

expression is no longer valid as it considers infinite blocklengths. Instead, we adopt the approx-

imation for finite blocklength codes over N -parallel channels, defined in [5], Theorem (4.3.2).

Denoting by Γn the SNR of channel n, and given Γ = (Γ1, ...,ΓN ), the maximum number of

bits that can be sent with a packet of length l over N -parallel AWGN channels and a target

error probability ϵ is given as,

logM∗(l, ϵ,Γ) = lCN(Γ)−
√

lVN(Γ)Q
−1(ϵ) +O(log(l)), (7)

where CN(Γ) and VN(Γ) are the channel capacity and channel dispersion, respectively, and are

expressed as,

CN(Γ) =
N∑

n=1

C(Γn) =
N∑

n=1

log(1 + Γn), (8)

VN(Γ) =
N∑

n=1

V (Γn) =
N∑

n=1

log2(e)
Γn(Γn + 2)

2(Γn + 1)2
. (9)

For the Sub-6 GHz band, we define the binary RB allocation multidimensional array xs6 of

size K × N × S with element xs6
bkns. Similarly to [18], the achievable rate for a user k served

by BS b is given as

Rs6
bk(x

s6) =
S∑

s=1

N∑
n=1

xs6
bkns log(1+Γs6

bkn)−
Q−1(ϵk)√

ls6

√√√√ S∑
s=1

N∑
n=1

xs6
bkns log

2(e)

(
1− 1

(1 + Γs6
bkn)

2

)
,

(10)

where ls6 defines the packet blocklengths for the Sub-6 GHz band, ϵk the target error probability

for user k, namely the reliability metric, and Q−1 the inverse of the Q function.

In the mmWave band, we define the binary beam allocation multidimensional array xmW of

size K×M×S with element xmW
bkms, the beam direction vector βbk of size M and the beamwidth

vector θbk of size M . For a user k served by BS b, the achievable rate is:

RmW
bk (xmW,βbk,θbk) =

S∑
s=1

M∑
m=1

xmW
bkms log(1 + Γbkm(βbkm, θbkm))

− Q−1(ϵk)√
lmW

√√√√ S∑
s=1

M∑
m=1

xmW
bkms log

2(e)

(
1− 1

(1 + Γbkm(βbkm, θbkm)2

)
, (11)

where lmW defines the packet blocklengths for the mmWave band.
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Moreover, the delay Dk experienced by user k served by BS b during a scheduling frame f

is given as the last slot assigned to user k during this scheduling frame.

Finally, we adopt the LoS probability model detailed in [19] based on the distance dbk between

BS b and user k. If the distance dbk between user k and its serving BS is smaller than a threshold

∆, we consider that PLoS(dbk) = 1, i.e., user k is in LoS during his beam assignment, otherwise,

PLoS(dbk) = AeBdbk , i.e., it decreases exponentially when dbk increases. Landscape parameters

∆, A and B are fixed depending on urban, rural or industrial scenarios.

III. PROBLEM FORMULATION

In this section, we formulate the considered optimization problem. The goal is to optimize the

partitioning of users among the Sub-6 GHz and mmWave bands, as well as the RB and beam

allocation within each band. In this paper, we focus on maximizing the average sum-rate over

time at BS b, under its associated user QoS constraints pertaining to mission-critical or URLLC

types of SPC, namely a maximum delay requirement Dmax
k expressed in terms of number of

time slots, a data rate requirement breqk and finally a reliability requirement expressed in terms of

target Packet Error Rate (PER) ϵk. We define the set of possible interfaces, namely Sub-6 GHz

and mmWave, as I = {s6,mW}. The general optimization problem is over the binary allocation

matrix xσ(t) of size K × (N +M) × S, for σ ∈ I. The beamdirection vector β(t) is of size

K ×M and is defined in [0; 2π]M and the beamwidth vector θ(t) of size K ×M is defined in

ΘM , with Θ = {i× 5o, i ∈ [1, ..., 10]}, namely,

max
xσ(t),β(t),θ(t)

1

T

T∑
t=1

K∑
k=1

∑
σ∈{s6,mW}

Rσ
bk(x

σ(t),β(t),θ(t)) (12)

s.t. xσ
bkps = 0, s > Dmax

k , ∀b ∈ B, k ∈ K, p ∈ Pσ, σ ∈ I (12a)∑
σ∈{s6,mW}

Rσ
bk(x

σ(t),β(t),θ(t)) ≥ breqk , ∀k ∈ K, b ∈ B, σ ∈ I (12b)

K∑
k=1

xσ
bkps(t) ≤ 1, ∀p ∈ Pσ, σ ∈ I, b ∈ B, s ∈ St (12c)

K∑
k=1

Pσ∑
p=1

xσ
bkps(t) ≤ P σ, ∀σ ∈ I, b ∈ B, s ∈ St (12d)

xs6
bkns(t)x

mW
bkms(t) = 0, ∀b, k, n,m, s, (12e)
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where P σ is such that P s6 = N and PmW = M . In Problem (12), constraint (12a) ensures that

user k is assigned within Dmax
k slots while constraint (12b) sets the rate requirements of user k.

Eq. (12c) ensures that at most one user is allocated to each RB or beam during a time slot s, and

(12d) that at most N RBs (M beams) are allocated in each frame t and time slot s on Sub-6 GHz

(mmWave) band. Constraint (12e) prevents a given user to be allocated on both bands during

the same time frame. From (10)-(11), Problem (12) is a non-linear non-convex mixed integer

optimization problem which cannot be solved optimally as such. Even under fixed continuous

variables β and θ, it remains an intricate optimization problem. To solve this problem, we

propose the solution framework presented in the next sections.

IV. PROPOSED FRAMEWORK

The proposed framework is composed of two distinct parts: the DRL-based Partitioner used

to partition users among one of the two bands and the sub-schedulers used to allocate resources

to each user. Fig. 3 illustrates the proposed solution.

The first entity of the proposed framework is the DRL-based Partitioner. Its role is to distribute

the users among one of the two bands: the Sub-6 GHz band or the mmWave band. Due to the

complexity of the band assignment problem, we used a DRL method by exploiting a Deep Q-

network (DQN) that observes users’ mobile environments and predicts a band assignment action,

as detailed in Section V [20].

The second part of the proposed framework is composed of the two sub-schedulers: one

for the Sub-6 GHz band and one for the mmWave band. Each sub-scheduler receives the user

partitioning solution from the DRL-based Partitioner for their corresponding band and solves the

sum-rate maximization problem within its band, subject to user individual QoS constraints.

As users have slow mobility, the partitioning solution issued by the DRL Partitioner is fixed

during each learning episode of F frames, while the sub-schedulers will operate every frame to

cope with the rapid wireless channel fluctuations. Hence, the metrics fed back from users to the

Partitioner every F frames are averaged values over those F frames.

We next detail the mechanisms of each of the proposed entities.

V. DEEP LEARNING-BASED PARTITIONER

The considered DQN algorithm is defined by an action space A, a state-space S and a reward

function R. At every iteration, given state s(t) ∈ S, the DRL-based Partitioner takes an action

a(t) ∈ A that maximizes its approximated Q-value function [20]. After performing a(t), the
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Fig. 3: Proposed General Framework

partitioner computes its corresponding reward and transitions from state s(t) to state s(t+1) ∈ S.

In the following, we present the general structure of the considered DQN and propose three

different approaches: the Binary action space, the Ternary action space and the Repartition

approaches.1

A. General Structure

As shown in Fig. 2, each learning period lasts for F frames before a new feedback from each

user is received. At the beginning of a learning period, the DQN chooses an action and assigns

the users to one of the two bands. This assignment is then used by each sub-scheduler to allocate

the resources. At the end of a learning period, the DQN receives the users feedbacks: the rate and

delay sample outage probabilities for each user. These information are used to update the model

and to optimize the chosen partition at the next iteration to find an optimal band assignment for

each user. The ϵ-greedy DQN approach of [20] is taken, whereby the DQN performs exploration

with probability ϵ and exploitation with probability 1− ϵ and where ϵ decreases with time. Next,

we propose and discuss three action space proposals, each with their own pros and cons.

B. Binary Partitioner

The Binary Partitioner is designed to take binary actions of user partitioning over the two

bands and is defined as follows.

State Space: The state-space is composed of the parameters obtained from the users’ feedbacks

at the end of the scheduling, namely:

• The Rate reliability: γrate
k (t) = 1− Pr{Rach

k < breqk }

• The Delay reliability: γdelay
k (t) = 1− Pr{Dach

k > Dmax
k }

1It is worth noting that, although the DQN approach is taken here, the proposed DRL-based partitioner is applicable to other

DRL methods such as Double DQN.
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These two measures are known at the Partitioner by tracking the long-term average of Rach
k

and Dach
k via user feedback, the achieved rate and achieved delay of user k after scheduling,

respectively. The outage probability measures in terms of rate γrate
k and delay γdelay

k indicate the

current level of satisfaction of the rate and delay QoS constraints, for each user.

The state-space S is given as:

S = {(γrate
k , γdelay

k ), ∀k ∈ K}. (13)

Unlike our previous work [16], we only use the parameters which are modified after each

learning period to reduce the state-space complexity while ensuring the efficiency of the DQN.

The state-space is thus a multi-dimensional continuous state of size 2×K.

Action Space: At every iteration, the DQN tries to find the best band assignment for each user

in order to meet their QoS requirements. The action space is expressed as:

Abin = {ak,∀k ∈ K, ak ∈ {1, 2}} , where ak =

1 if Sub-6 GHz assignment

2 if mmWave assignment
. (14)

At the beginning of a scheduling period, users are assigned either to the Sub-6 GHz band with

action 1 or the mmWave band with action 2. Therefore, at each iteration all the users can

possibly meet their QoS constraints if the partition given by the DQN allows it, i.e., if the

available resources can be shared fairly and efficiently between all the users.

Every action of this Binary action space is a vector of size K composed of the assignment

for each user k ∈ K, there are thus 2K possible actions at each iteration.

Reward: Extending the reward model from [7] and given the two outage probability measures

γrate
k and γdelay

k for each user k, the instantaneous reward function is defined as:

R(a(t), s(t)) = −
∑
k∈K

(
ωrate
k (t)(1 − γrate

k (t)) + ωdelay
k (t)(1 − γdelay

k (t))
)

+ Λls, (15)

with

wrate
k (t+ 1) = max{wrate

k (t) + γrate,∗ − γrate
k (t), 0}, (16)

wdelay
k (t+ 1) = max{wdelay

k (t) + γdelay,∗ − γdelay
k (t), 0}, (17)

where γrate,∗ and γdelay,∗ are the rate and delay outage targets for all users. As the DQN strives

to maximize the reward, the time-varying weights (16), (17) will be increased if the achieved

outage probability measure is below the target, thereby ensuring that the system meets the outage
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target. Namely, after convergence, the achieved rate and delay of each user k is guaranteed to

fulfill Rach
k ≥ breqk and Dk ≤ Dmax

k under feasible conditions, which can be proven similarly to

[7, Th.1]. The last term in (15) is added to speed up the DQN to find a QoS-achieving action.

In the previous work, this last term was only added if the QoS constraints for all the users were

achieved. We propose a modification of this last term to accelerate the DQN convergence even

if there are users with unreachable QoS constraints, namely

ls =

1, if γrate ≥ γrate,∗ or γdelay ≤ γdelay,∗ ∀k ∈ K

0, otherwise.
(18)

In Eq. (15), Λ is a scalar parameter which increases with the number of users. γrate and γdelay

are the average over the rate and delay outage measures achieved by all users during a learning

period. This last term has the effect of rewarding the system for ending an epoch (i.e, learning

episode) earlier, as soon as the average of the delay or rate outage values are better than the

parameters γrate,∗ or γdelay,∗. To improve the trade-off between QoS fulfillment levels and DQN

convergence speed, these outage target measures may be tuned manually according to user

QoS requirements and amount of available resources. This would enable to accelerate DQN

convergence without stopping an epoch with an insufficient reliability. When the condition in

(18) is not reached, an epoch will go on until its maximum number of iterations (frames) is

reached.

The Binary Partitioner assigns all users to one of the two bands, regardless of their current

channel states, QoS requirements levels and available amount of resources. Such users may lead

to infeasible conditions for the sub-schedulers, thereby increasing the delays experienced by

users. Indeed, the complexity of the scheduling problem increases with the number of users

assigned to each band and, as we will show in the numerical evaluations part, the scheduling

computation is the most time consuming part in the proposed framework.

C. Ternary Partitioner

To tackle the above issues, we propose a Ternary Partitioner which strives to balance the

complexity-performance trade-off.

Using the same state space as for the Binary Partitioner, we propose to add a new action

where the users are assigned to neither the Sub-6 GHz band nor the mmWave band. The new

Ternary action space Ater is defined as:

August 17, 2022 DRAFT



Ater = {ak,∀k ∈ K, ak ∈ {0, 1, 2}} where ak =


0 if no band assignment

1 if Sub-6 GHz assignment

2 if mmWave assignment

. (19)

The unpartitioned users would not be able to reach their QoS requirements during the period

where they are unassigned to one of the two bands, however, this action may benefit to the

overall system by reducing the average outage probabilities across users.

With this method, similarly to the binary case, every action is a vector of size K but the number

of possible actions is now |Ater| = 3K . While the size of the action space is increased compared

to the Binary Partitioner, the scheduling problem becomes less complex thereby reducing its

required computation time. The impact of this partitioning choice on the performance-complexity

trade-off will be further discussed through the numerical evaluations.

Moreover, the same reward model as for the Binary Partitioner (see Section V-B) applies for

this case. By considering the average over users of the outage probability measures as a stopping

criteria for an epoch, condition (18) can be achieved even if there are unpartitioned users while

maintaining low levels of individual outage probabilities, as will be shown in the numerical

results.

D. Repartition Method

After convergence, the proposed DQN method predicts the action with the highest Q-value,

which fulfills the stopping criteria in (18). When the DQN reaches this state, the same action

will be predicted until a change of environment. With the Ternary Partitioner, this means that

some users may be unpartitioned for a long period of time, leading to an unequal situation.

To improve fairness among users, we propose a simple yet effective method that forces long-

term unpartitioned users to be assigned to a band. Algorithm 1 describes the main steps of this

Repartition Method. Namely, a random band assignment is applied to users being assigned action

0 (unpartitioned) during τ consecutive periods.

The same state space is used as the one in the Ternary and the Binary partitioners. Since

this method is a variant of the Ternary Partitioner, the same action space Ater is considered.

Hence, there are three possible actions for each user during each period and the number of

possible actions is 3K . By using this action space, the DQN can converge faster to an optimal

action than the Binary Partitioner due to the reduced number of users assigned to a band during

each period. After convergence, the long-term unpartitioned users are randomly reassigned to a
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Algorithm 1 Proposed General Framework (with Repartition Method)
1: Initialize DQN Q with random weights;

2: Set s1 = sinit;

3: Choose λ;

4: ϵ = 1;

5: for t = 1, 2, ..., T do

6: ϵ← ϵ× λ;

7: if random number p < ϵ then

8: Select action at randomly;

9: else

10: Select action at with max Q(st, at);

11: if at = at−i, ∀i ∈ [1, ..., τ ] then

12: Select random partitioning for unpartitioned users;

13: Send partitioning information of action at to the sub-schedulers;

14: for each σ ∈ {sub6GHz,mmWave} do

15: for p = 1, 2, ...ρ do

16: Schedule user assigned to σ’s band following Alg. 2;

17: Apply optimized schedule and receive feedback from each user k;

18: Aggregate ρ past feedbacks into outage probability measures for (15);

19: Calculate reward of action at by (15);

20: Update Q’s weights;

21: Update new state st+1 ← st;

band as described in Algorithm 1. This behavior can be regarded as adaptive switching from

ternary actions to binary actions which can better meet the QoS constraints of all the users,

while reducing time complexity as will be shown through the numerical results. Finally, the

same reward model is used as in the Binary and Ternary Partitioners.

VI. SUB-SCHEDULERS OPTIMIZATION

In this section, we present the mathematical optimization methods used by each sub-scheduler.

To solve the intricate optimization problem formulated in Section III, we propose two different

optimization approaches: the first one leveraging DCP (referred to as Optim-DCP), and the

second one based on DCP with Regularization (referred to as Optim-DCP-Reg).

At a given scheduling time frame t (index hereafter omitted for sake of clarity), Problem (12)

becomes:
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max
xσ

Kσ∑
k=1

Rσ
bk(x

σ) (20)

s.t xσ
bpks = 0, s > Dmax

k , ∀b ∈ B, p ∈ P , k ∈ K (20a)

Rσ
bk(x

σ) ≥ breqk , ∀k ∈ Kσ, b ∈ B (20b)

Kσ∑
k=1

xσ
bkps ≤ 1, ∀b ∈ B, p ∈ Pσ, s ∈ St (20c)

Kσ∑
k=1

Pσ∑
p=1

xσ
bkps ≤ P σ, ∀b ∈ B, s ∈ St, (20d)

with σ ∈ {s6,mW} and P sub6 = N and PmW = M . Thus, for the Sub-6 GHz band, the

allocation matrix xs6 is of size K×N×S and for the mmWave band the allocation matrix xmW

is of size K ×M × S.

It is worth mentioning that, given the difficulty of the initial problem (12) on the mmWave

band, we consider the beamforming parameters β and θ fixed given the assigned user. Namely,

the beamdirection is fixed towards the users’ LoS direction, βbkm = βLoS
bk , while the narrowest

beamwidth will be considered so as to maximize user rate, i.e., θbkm = θmin. The Sub-6 GHz

and the mmWave sub-problems both boil down to the binary user assignment problem of (20).

We next transform Problem (20) similarly to [18] by introducing

F (xσ) =
Kσ∑
k=1

Pσ∑
p=1

S∑
s=1

xσ
bkps log(1 + Γσ

bkp), (21)

V (xσ) =
Q−1(ϵk)√

lσ

√√√√ Kσ∑
k=1

Pσ∑
p=1

S∑
s=1

xσ
bkps log

2(e)

(
1− 1

(1 + Γσ
bkp)

2

)
. (22)

Finally, the general problem can be written as,

max
xσ

F (xσ)− V (xσ) (23)

s.t (20a), (20b), (20c), (20d). (23a)
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Furthermore, we define the capacity and dispersion achieved by a user k during a scheduling

time frame as,

Fk(x
σ) =

Pσ∑
p=1

S∑
s=1

xσ
bkps log(1 + Γσ

bkp) (24)

Vk(x
σ) =

Q−1(ϵk)√
lσ

√√√√ Pσ∑
p=1

S∑
s=1

xσ
bkps log

2(e)

(
1− 1

(1 + Γσ
bkp)

2

)
. (25)

Hereafter, we detail our proposed approaches for solving Problem (23).

A. Optimization based on Difference of Convex Programming (Optim-DCP)

The first proposed method is similar to that of [16]. Problem (20) can now be resolved through

the following steps:

Step 1: Integer Relaxation

The binary constraint xσ
bkps ∈ {0, 1} is first relaxed into an equivalent convex form as follows:

W (xσ)− E(xσ) ≤ 0 & 0 ≤ xσ
bkps ≤ 1, ∀b ∈ B, k ∈ K, p ∈ P , s ∈ St, (26)

where W (xσ) =
∑S

s=1

∑Kσ

k=1

∑Pσ

p=1 x
σ
bkps and E(xσ) =

∑S
s=1

∑Kσ

k=1

∑Pσ

p=1(x
σ
bkps)

2.

Step 2: Rewriting into a Difference of Convex (DC) problem

Rewriting the objective function as

U(xσ) = U1(x
σ)− U2(x

σ), (27)

where U1(x
σ) and U2(x

σ) are defined as

U1(x
σ) = −F (xσ) + βW (xσ) (28)

U2(x
σ) = −V (xσ) + βE(xσ), (29)

we can show, similarly to [18], that for a large value of β > 1, Problem (20) is equivalent to

Problem (30) below,

min
xσ

U(xσ) (30)

s.t (20a), (20c), (20d) (30a)

Fk(x
σ)− Vk(x

σ) ≥ breqk ,∀k ∈ Kσ (30b)

W (xσ)− E(xσ) ≤ 0 & 0 ≤ xσ
bkps ≤ 1, ∀b ∈ B, k ∈ K, p ∈ P , s ∈ St. (30c)
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Note that U is a DC function, as F and V are both concave and that both W and E are convex

(straightforward by definition). Indeed, F is by definition a weighted sum of concave functions

(logarithms), which conserves concavity so F is concave. Concavity of V can be shown by the

non-negativity of its second derivative.

Step 3: Transformation into a convex problem

Using the first order approximations for convex function E and concave function V , we can

have an upper bound for U as follows,

U(xσ) ≤ U1(x
σ)− (U2(x

σ,(j))−∇xU2(x
σ,(j))T (xσ − xσ,(j))) = Ū(xσ,xσ,(j)), (31)

where xσ,(j) is some iterate of the algorithm. Thus, using this bound, and once again the

approximation of V , we obtain the following problem,

min
xσ

Ū(xσ,xσ,(j)) (32)

s.t (20a), (20c), (20d) (32a)

Fk(x
σ)− Vk(x

σ,(j))−∇xVk(x
σ,(j))T (xσ − xσ,(j))) ≥ breqk ,∀k ∈ Kσ (32b)

W (xσ)− E(xσ) ≤ 0 & 0 ≤ xσ
bkps ≤ 1, ∀b ∈ B, k ∈ K, p ∈ P , s ∈ St. (32c)

Problem (32) is now convex and can be easily solved by a standard convex optimization toolbox.

The overall scheduling problem may thus be solved using Algorithm 2 based on [18], [21].

Algorithm 2 Sub-Schedulers Optimization, Optim-DCP
Result: a local optimum solution for Problem (32)

Initialization: Set j = 1 the iteration index, Jmax the maximum number of iterations, β > 1 the penalty factor, the initial

schedule xσ,(1), δ > 0 the optimal tolerance, Vk(x
σ,(1)), Fk(x

σ,(1)), ∀k ∈ Kσ .

while j < Jmax do
Solve optimization problem (32) for a given point xσ,(j) using a convex solver. Get solution xσ,∗

Update Vk(x
σ,(j+1)) = Vk(x

σ,∗), Fk(x
σ,(j+1)) = Fk(x

σ,∗)

if ||xσ,∗ − xσ,(j)|| ≤ δ then
Return: xσ,∗

end

update xσ,(j+1) = xσ,∗

Set j = j + 1

end

Return: xσ,(j)

Each iteration solves Problem (32) and then uses the previous iteration’s solution to solve it

again. If the gap between two consecutive solutions is smaller than a given δ, we consider that
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we are close enough to a local minimum and we stop the algorithm. Otherwise, it stops when

the maximum number of iterations is reached. This methodology is shown in [22] to converge

globally with linear rate.

B. Optimization based on DCP with Regularization (Optim-DCP-Reg)

To reduce the computation time of the sub-schedulers, which will be shown in Section VII

to be much higher than that of the DRL Partitioners, we have investigated the regularized DCP

approach, by adding a regularization term to the objective function of Problem (32), thereby

giving:

min
xσ

Ū(xσ,xσ,(j)) +
ρj
2
||Aj(x

σ − xσ,(j))||2 (33)

s.t (20a), (20c), (20d), (32b), (32c). (33a)

Here, it is assumed that Aj is a given full rank matrix, ρj > 0, lim
j→∞

ρj = 0,
∑∞

j=1 ρj = ∞.

Note that the constraints remain unchanged as to Problem (32). Problem (33) is proved to have

global convergence and can be solved using a generic convex solver. Similarly to Algorithm 2,

Algorithm 3 describes the main steps for the resolution of Problem (33). In particular, Algorithm

3 uses the previous iteration’s solution to find a local minimum. The main difference with

Algorithm 2 is the addition of the regularization term and the updates of ρj and Aj . At each

iteration j, Algorithm 3 can ensure that lim
j→∞

ρj = 0 and
∑∞

j=0 ρj = ∞ by taking ρj =
1

j+1
.

Algorithm 3 Sub-Schedulers Optimization, Optim-DCP-Reg
Result: a local optimum solution for Problem (33)

Initialization: Set j = 1 the iteration index, Jmax the maximum number of iterations, β > 1 the penalty factor, the initial

schedule xσ,(1), δ > 0 the optimal tolerance, ρ0 > 0, A0 the identity matrix, Vk(x
σ,(1)), Fk(x

σ,(1)), ∀k ∈ Kσ .

while j < Jmax do
Solve optimization problem (33) for a given point xσ,(j) using a convex solver. Get solution xσ,∗

Update Vk(x
σ,(j+1)) = Vk(x

σ,∗), Fk(x
σ,(j+1)) = Fk(x

σ,∗)

if ||xσ,∗ − xσ,(j)|| ≤ δ then
Return: xσ,∗

end

update xσ,(j+1) = xσ,∗

update ρj

update Aj

Set j = j + 1

end

Return: xσ,(j)
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Notation Parameter Value Notation Parameter Value

Tf Scheduling time frame 1 ms N0 Noise power spectral density −174 dBm/Hz

Ts Time slot duration 0.2 ms θ Beamwidth 15◦

P1, P2 Sub-6 and mmW BS transmit power 30 dBm, 30 dBm µ Sidelobe gain 0.1

Ω1, Ω2 Sub-6 and mmW available Bandwidth 100 MHz, 1 GHz ∆ Distance threshold for LoS prob. 25.5m [23]

Σ Standard deviation of mmW path loss 5.8 A, B Scenario parameters for LoS prob. 1.283, −0.009808 [23]

α1, α2 Sub-6 and mmW path loss exponent 3.0, 2.0 Λ Success reward scalar 1000

S Sched. frame size (in time slots) 5 E Sched. period (in scheduling frames) 10

T Number of epochs 200 λ Exploration Rate Decay factor 0.99, 0.995, ...

TABLE I: Simulation parameters based on [14], [23]

VII. NUMERICAL EVALUATIONS

A. Simulation Settings

We consider a 300 × 300 m2 network area with 9 cells containing a central BS each and

uniformly distributed users. The evaluations will focus on the central BS, while the surrounding

BSs will generate interference. The parameters used for our simulations are described in Table

I.

For each proposed approach, we compared two different scenarios as follows,

• Scenario 1: Some users require a high data rate but a looser delay while other users demand

a stringent delay but a small data rate.

• Scenario 2: Most users do not require a high data rate but a stringent delay.

Each scenario is evaluated for parameter values (K,N,M) = (8, 3, 3) and (K,N,M) = (10, 4, 4).

The QoS requirements for K = 8 and K = 10 users are presented in Tables II and III,

respectively. For each scenario, we used a maximum error probability ϵk = 10−5 to compute the

achievable rate (Eqs. (10), (11)) in a scheduling period. The outage probabilities are computed

during each frame, whereby the delay outage probability uses the instantaneous delay reached

during frame i while the rate outage probability uses the average achieved rates since the start

of a learning period.

The learning parameters are also given in Table I. The simulations are run over 200 episodes

as shown in Fig. 2, where each episode is composed of a maximum of 40 learning periods, each

consisting of 40 actions. Each learning period lasts for 10 scheduling frames.

As an epoch stops when the rate outage probability averaged over users is lower than γrate,∗

or the delay outage probability averaged over users is lower than γdelay,∗, these terms are chosen

smaller for the Ternary Partitioner than for the Binary Partitioner. This allows the Ternary
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User1 User2 User3 User4 User5 User6 User7 User8

Scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Rate Required (Mbit/s) 500 250 50 30 1 50 150 30 25 1 1 20 250 300 250 50

Max Delay 5 5 5 4 3 5 5 3 4 2 4 4 4 5 5 4

LoS probability 1 0.885 0.856 0.844 0.787 0.875 1 0.917

TABLE II: QoS requirements for K = 8, N = 3 and M = 3, Scenarios 1 and 2

Partitioner to stop an epoch with unpartitioned users while the Binary Partitioner must fulfill the

users requirements before stopping an epoch. Namely, we chose γrate,∗
ter = γdelay,∗

ter = 0.2 for the

Ternary Partitioner and γrate,∗
bin = γdelay,∗

bin = 0.15 for the Binary Partitioner, for all scenarios.

B. Benchmark Methods

The performance of our proposed framework is compared to three reference partitioning

methods:

• Conventional Highest LoS partitioning (Conv. HLoS): Users are split in half, those with the

highest LoS probability are assigned to mmWave while the other half is assigned to Sub-6

GHz.

• Conventional Highest Requirement partitioning (Conv. HReq): Users are split in half, those

with the highest required rate are assigned to mmWave while the other half is assigned to

Sub-6 GHz.

• Conventional Threshold LoS partitioning (Conv. ThresLoS): Given a LoS probability thresh-

old ζLoS, users that satisfy LoSk > ζLoS are assigned to mmWave while the rest is assigned

to Sub-6 GHz. As mmWaves require sufficient LoS, the LoS threshold is chosen close to

one, with ζLoS = 0.9.

The sub-schedulers of the reference methods operate similarly as our proposed one, as existing

heuristic sub-schedulers would perform worse. The results of the baseline methods are averaged

over 10000 scheduling frames, using the same randomly generated set of channels as for the

proposed methods.

User1 User2 User3 User4 User5 User6 User7 User8 User9 User10

Rate Required (Mbit/s) 500 50 1 25 150 100 250 1 25 20

Max Delay 5 4 5 3 3 4 5 4 5 5

LoS Probability 1 0.885 0.856 0.844 0.868 1 0.933 0.876 0.816 0.918

TABLE III: QoS requirements for K=10, N=4 and M=4, Scenario 1
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(a) Number of Actions per Episode, Scenario 1, K = 8 (b) Reward per Episode, Scenario 1, K = 8

Fig. 4: Learning Behavior for Scenario 1 with K = 8 users

We first compare the proposed Binary and Ternary Partitioners with the baseline methods,

and then we evaluate the proposed Repartition Method. Finally, we provide a detailed analysis

of the performance of the proposed sub-schedulers’ optimization methods.

C. Binary and Ternary Partitioning

In this section, we compare the Binary and Ternary Partitioners against the baselines by using

the first optimization method.

Learning Behavior: In Fig. 4, we show the learning behavior of the proposed DRL-based Parti-

tioner in terms of the number of actions and immediate reward per episode, for Scenario 1 with

K = 8. As we can see, the Binary approach requires more episodes than the Ternary approach

to converge to a feasible action, given by the stopping criteria defined in Eq. (18).

Performance Evaluation: We compare the rate and delay outage probabilities of the Ternary and

Binary proposed methods as opposed to the benchmarks algorithms, for both scenarios and for

K = 8 users.

In Figs. 5 and 6, we observe the rate and delay outage probabilities after convergence for

all algorithms. We can see that, in both scenarios, the proposed approaches outperform clearly

the baselines and, as expected, the Binary method performs better than the Ternary one. Due to

the binary action, all users are assigned to one of the two bands and strive to meet their QoS

requirements while the Ternary Partitioner may not assign any band to some users, which will be

unable to reach their QoS. In Fig. 6(b), we show the rate outage probability per user for Scenario

2 where we clearly see the effect of the ternary action space: user 5 is often unpartitioned and has

a rate outage probability close to 0.8, allowing other users to meet their QoS requirements and

experience a low rate outage probability. Despite that, the average rate outage probability for this
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(a) Delay Outage Proba. per User (b) Rate Outage Proba. per User

(c) Delay Outage Proba. per User (d) Rate Outage Proba. per User

Fig. 5: Outage Probability Performances for Scenario 1, K = 8

scenario is significantly lower than the one of the baseline methods, even with an unpartitioned

user. Conv. HLoS and Conv. HReq assign the users equally between Sub-6 and the mmWave

frequency bands. Clearly, users partitioned into the Sub-6 GHz band reach outage probabilities

close to 1, as there are not enough resources to fulfill their QoS requirements. Similarly, Conv.

ThresLoS assigns in these scenarios most of the users to Sub-6 GHz and these users cannot

fairly share the resources and reach their QoS targets.

In Table IV, we show the average sum-rate after convergence for scenarios 1 and 2 with 8

users. We can observe that the average sum-rate of Conv. ThresLoS is by far higher than that

reached by the other methods, but in return, results in the worst outage probabilities as shown

in Figs. 5 and 6. Conv. ThresLoS assigns only users with a LoS probability greater than the

threshold ζLoS = 0.9 to mmWave, given the high LoS conditions required for mmWave, and the

rest to Sub-6 GHz. This creates an unbalanced environment with too many users assigned to

Method Prop. Bin Prop. Ter Conv. HLoS Conv. HReq Conv.ThresLoS

Scenario 1 2.009 2.838 4.281 3.775 7.265

Scenario 2 2.470 3.094 4.928 4.771 7.710

TABLE IV: Average Sum-Rate (Gbit/s) after Convergence for Scenarios 1 and 2, K = 8 users
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(a) Delay Outage Proba. per User (b) Rate Outage Proba. per User

(c) Delay Outage Proba. per User (d) Rate Outage Proba. per User

Fig. 6: Outage Probability performances for Scenario 2, K = 8

Sub-6 GHz in these scenarios. Moreover, Conv. HLoS and Conv. HReq reach a higher sum-rate

than the proposed methods. In particular, the Binary Partitioner has clearly the lower average

sum-rate after convergence but the resources are more equally shared and, as shown in Figs.

5(d) and 6(d), enables minimum rate outage probabilities.

Fig. 7 shows the Cumulative Distribution Function (CDF) of rate and delay for Scenario 1

with 8 users for all methods, namely Fig. 7(a) for the delay CDF and Fig. 7(b) for the rate CDF.

When a user reaches a delay of 6 slots, it means that there are no resources allocated to this

user, as each scheduling frame is composed of 5 time slots. We can see on these figures that the

probability to have a delay lower than 6 is much smaller with the baselines methods than with

the proposed approaches. As Conv. ThresLoS assigns a majority of users to Sub-6 GHz, they

cannot share properly the resources thereby inducing the highest probability of having a delay

equal to 6.

In Fig. 7(b) we show the rate CDF where the region between 0 and 150 Mbit/s is zoomed.

Similarly to the case of outage probabilities, the probability for Conv. ThresLoS to reach a data

rate equal to 0 is very high. In general, the baseline methods entail a higher probability to achieve

August 17, 2022 DRAFT



(a) Delay CDF, Scenario 1 (b) Rate CDF, Scenario 1

Fig. 7: CDFs of Delay (left) and Rate (right), Scenario 1, K = 8

high data rates, compared to our proposed methods, as they advantage data rate against fairness

and user satisfaction. However, our proposed approaches outperform the baselines for small data

rates lower than 50 Mbit/s, indicating a better rate fairness. The probability to have a rate equal

to 0 is significantly reduced with the proposed approaches and, even if the rates are in general

lower, this enables to significantly improve rate outage probabilities.

Execution Time: Due to the larger number of users to schedule, the execution time of the Binary

Partitioner is by far higher than that of the Ternary Partitioner. Fig. 8 shows the computation time

comparison between the sub-schedulers and the DRL algorithm for both the Binary (Fig. 8(a))

and Ternary (Fig. 8(b)) methods for Scenario 1. We can observe that the DQN computation time

shows an almost constant behavior while the computation time of the sub-schedulers increases

during the learning time before gradually decreasing. We can also see that the computation times

of the sub-schedulers are much higher than the learning computation time and greatly influence

the overall computation time.

(a) DQN vs Optim, Binary, Scenario 1 (b) DQN vs Optim., Ternary, Scenario 1

Fig. 8: Execution time DQN vs Sub-schedulers, Scenario 1, K = 8

August 17, 2022 DRAFT



(a) Number of Actions per Episode, K = 10 (b) Reward per Episode, K = 10

Fig. 9: Learning Behavior for the Repartition Method, K = 10

From these results, we can conclude that, compared to the Binary approach, the ternary action

space allows to reduce the sub-schedulers optimization time complexity at the expense of outage.

In the next section, we show the performance of the proposed Repartition Method whose aim is to

reduce the computation time of the Binary Partitioner while trying to approach its performance.

D. Repartition Method

Learning Behavior: Fig. 9 depicts the learning behavior of the proposed Repartition Method

for K = 10 users. The global learning behavior of this method is close to that of the Ternary

approach. This method converges faster than the Binary approach but needs more episodes than

the Ternary one due to the Repartition algorithm. As this method is designed to first use a

ternary action and then to repartition users, the stopping criteria here is the same as the Ternary

approach, but the final predicted action is a binary partition where every user is assigned to a

band.

Performance Evaluation: We present in Fig. 10 the rate and delay outage probabilities of the

Ternary, Binary and Repartition approaches for K = 10 users. The outage performance achieved

by the Repartition approach is lying between the Binary and Ternary methods. In Figs. 10(a),

10(b) we clearly see that the Ternary method does not assign users 5 and 8, resulting in their

high outage probabilities, while other users can share the available resources more fairly and

reach a low outage. We also observe the behavior of the Repartition Method: user 5 has been

unpartitioned for some time but, he is reassigned to a frequency band and benefits from reduced

rate and delay outage probabilities (lower than 0.8). In Figs. 10(c), 10(d) we show the average

delay and rate outage probabilities after convergence. As we expected, the outage probabilities
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(a) Delay Outage Proba. per User (b) Rate Outage Proba. per User

(c) Average Delay Outage Proba. (d) Average Rate Outage Proba.

Fig. 10: Outage Probability Performance for K = 10

obtained with the Repartition approach are comprised between those of the Ternary and Binary

methods.

Due to the above-mentioned behavior, the Binary method reaches the lowest average sum-rate

(2.085 Gbit/s). The proposed Ternary method has the highest average sum-rate (3.889 Gbit/s)

while the proposed Repartition Method achieves an intermediate performance with a sum-rate

of 2.735 Gbit/s. The proposed Ternary approach unpartitions some users who cannot send any

packets, allowing the partitioned users to reach a high data rate resulting in a larger sum-rate.

On the other hand, the Binary and Repartition methods share the resources more fairly between

all users and obtain a lower sum-rate, but at the same time lower outage probabilities.

Execution Time: In Fig. 11, we compare the execution time of all methods for K = 10 users.

After convergence, the Binary method shows the highest average execution time. During the

first episodes, the Repartition Method tries to find the best action and assigns unpartitioned

users to one of the two bands, resulting in a longer execution time than the Ternary method

and a close one to the Binary approach. After convergence, the Repartition Method predicts a

potential binary action that satisfies the stopping criteria.

August 17, 2022 DRAFT



Fig. 11: Average execution time over episodes, K = 10

The execution time with the Repartition Method is longer than with the Ternary approach

mainly due to the complexity of the predicted actions but it remains faster than that of the

Binary approach. Even after convergence, the Binary method takes more time before stopping

an episode but as discussed above, this solution outperforms the two other approaches in terms

of outage probabilities and fairness among all users.

E. Optimization Methods

As shown in Fig. 8, the resource allocation optimization at the sub-schedulers is by far the most

time-consuming part of the proposed framework. To reduce the scheduling time, we proposed

in Section VI-B a second optimization method by leveraging regularized DCP. In the following

evaluations, as the Repartition algorithm takes more random actions than the Ternary and Binary

methods, we chose to compare only the Ternary and Binary approaches to avoid the randomness

of the Repartition Method and to have a more accurate comparison between the two optimization

methods. Furthermore, we fixed Aj as the identity matrix and ρj =
1

j+1
, therefore we respect all

the required assumptions for convergence. We set the optimal tolerance as δ = 0.01.

Fig. 12 illustrates the results obtained by using Optim-DCP-Reg for K = 10 users. As we

can see, the average outage probabilities over users are similar for both optimization methods.

Similarly to Optim-DCP, the Ternary approach gets a higher average sum-rate than the Binary

method with Optim-DCP-Reg, which can be explained by the equity between users obtained by

the Binary method, resulting into a lower sum-rate. For all cases, Optim-DCP-Reg is outper-

formed by Optim-DCP in terms of sum-rate. The proposed Binary approach achieves a sum-rate

20% lower with Optim-DCP-Reg (1.656 Gbit/s) than with Optim-DCP and the proposed Ternary

approach shows a sum-rate 45% lower with Optim-DCP-Reg (2.171 Gbit/s). Nevertheless, despite
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(a) Average Delay Outage for K = 10 (b) Average Rate Outage for K = 10

Fig. 12: Outage Probability Performance for K = 10

this sum-rate reduction, this optimization algorithm succeeds in meeting the QoS constraints

requested by the users, similarly to the first optimization method.

Finally, we show in Fig. 13 the execution time of sub-schedulers for K = 10 users. We can

clearly see that the second optimization method is faster than the first one for all the proposed

methods, especially for the Binary approach where the optimization induces higher complexity.

In Fig. 13(a), we illustrate the average execution time for the whole simulation. We can observe

that the execution time per episode required by the sub-schedulers for the Binary method is

significantly higher than that for Ternary, for both optimization methods. There is no clear

difference between the two optimization methods in this figure due to the random actions of

the learning algorithm. In Fig. 13(b), we plot the execution time after convergence for both

optimization methods. After convergence, the random part of the DQN is reduced and we can

compare more easily the optimization algorithms. Optim-DCP-Reg is clearly faster than Optim-

DCP, especially for the Binary Partitioner where the optimization problem is more complex.

(a) Average execution time, K = 10 (b) Execution Time after convergence, K = 10

Fig. 13: Execution Time of the Sub-Schedulers, K = 10
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VIII. CONCLUSION

In this paper, we investigated the resource allocation problem for short-packet communications

over the mmWave and Sub-6 GHz frequencies. We have formulated our problem as a sum-rate

maximization under users’ QoS requirements expressed in terms of delay and rate while including

reliability (PER) requirements. To solve it, we proposed a two-stage resolution framework based

on a DRL approach that combines the advantages of optimization and learning methods. In

particular, the proposed DRL-based Partitioner fully integrated users’ QoS requirements and

varying LoS situation in the partitioning decision while the sub-schedulers optimize the RBs

and beams allocations. We designed different approaches for the DRL Partitioner’s action-space,

as well as the resource allocation optimization in order to find a trade-off between outage

probabilities, sum-rate and execution time. Through extensive simulations, we have shown the

advantages of our proposed methods compared to baseline partitioning methods.

In future works, we will extend our framework to a distributed one to cope with practical

impairments pertaining to imperfect or outdated feedback information, and to handle massive

device connectivity. Additionally, the sub-schedulers will be developed to optimize beamforming

parameters under highly mobile environments.
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