Course	Outline	
	Торіс	Exercises
l April	Instrumental interaction and co-adaptive systems	Deconstructing interaction
8 April	Designing instruments	Idea generation
15 Apr	l Learning	Design ideas & scenarios
22 Apr	I User innovation	Video prototyping
29 Apr	I Collaborative interaction	Generative walkthroughs
6 May	Instrument architectures	Function-interaction tables
13 May	Ubiquitous computing	Alternate scenarios
20 May	Tangible interaction	Alternative video prototypes
27 May	Shifting the design paradigm	Final Presentations
3 June	Final presentations	

Homework for today

Readings:

Tsandilas, T., Letondal, C. and Mackay, W. (2009)
 Muslnk: Composing Music Through Augmented Drawing.
 In CHI'09, Proc. ACM Human Factors in Computing Systems, pp. 819-828.

CS-477 Reinventing Interactive Systems Instrumental Interaction and Co-Adaptive Systems

Course 4: User Innovation

Wendy E. Mackay Michel Beaudouin-Lafon

Stanford University

Nardi, B. and Miller, J. (1991) Twinkling lights and nested loops: Distributed problem solving and spreadsheet development International Journal of Man-Machine Studies 34: 161–184.

Activity: Create a full scenario for a basic instrument

in|situ| lab, INRIA & U. Paris-Sud

What we've done so far Defined the concept of ''instrumental interaction'' • deconstructed interaction • identified design principles: reification, polymorphism and re-use • brainstormed ideas for instruments Defined the concept of ''co-adaptation'' • discussed the learning aspect • begun developing use scenarios

What we'l	l do today	
10 min 10 min 30 min 20 min	Present design process Divide into three groups: choose suject area Identify a real-world task and develop a use scenario Design at least one, at most 3 instruments design 3 alternatives for each Develop the design scenario & storyboard	
10 min	Conclusion and homework for next week	

Multi-Disc	Multi-Disciplinary Design Methods				
Understand	Analyse	Invent	Prototype	Evaluate	Redesigi
the user	the user	new ideas	the system	the system	the syste
"Fly-on-the-wall observation Ethnography	Interactive Thread	Oral brainstorming I Psychology	Paper prototyping Participatory Design	Focus group Marketing	Generative Walkthrough
Critical incident	Contextual	Design	Video	Usability	Technology
interview	Inquiry	space	prototyping	study	probe
Human Factors	Antrhopology	Design	Participatory Design	Human Factors	Design
Questionaire Sociology	Task analysis Human Factors	Sketching Design/Arts	Wizard of Oz Human Factors	Heuristics	Design Rationale
Cultural	Scenario	Video	Software	Design	
probe	analysis	brainstorming	simulation	walkthrough	
Design/Arts	Activity Theory	Participatory Design	Computer science	Psychology	
Grounded	Protocol	Design	Design	Design	
Theory	analysis	room	scenario	Critique (Crit)	

What we'll do today

10 min	Present design process
10 min	Divide into three groups: choose suject area
30 min	Identify a real-world task
	and develop a use scenario
20 min	Design at least one, at most 3 instruments
	design 3 alternatives for each
20 min	Develop the design scenario & storyboard
10 min	Conclusion and homework for next week

Video Prototype 3 co	-adaptive instruments	
Sample instruments to explore:		
I. Creativity:	Help musicians express musical ideas	
2. Spell check:	Help dyslexics find and spell words	
3. Procedures:	Help emergency staff follow checklists	
4. Communication:	Help people stay in touch	

What we'll do today		
10 min	Present design process	
10 min	Divide into three groups: choose suject area	
30 min	Identify a real-world task	
	and develop a use scenario	
20 min	Design at least one, at most 3 instruments	
	design 3 alternatives for each	
20 min	Develop the design scenario & storyboard	
10 min	Conclusion and homework for next week	

Creating scenarios
Create a realistic account, ideally grounded in real-world observation of users, of a series of activities that illustrate and challenge the use of a new tool Goal: to help you think through interaction issues NOT to 'sell' the prototype
Techniques: Extreme users Theme and variations Breakdowns

Scenario: HIV vaccines example

Title	Why do two new HIV vaccines work only when combined?
Who?	Thierry, M, 38, Professor, Cellular Biology, host
	George, M, 42, Professor, Biochemistry, worked on study 2
	Ivan, M, 28, Gene therapist, Genentech
	Manuela, F, 37, Asst. Prof, Evolutionary biology
	Jun, M, 32, Post-doc, U. Paris, Computer Science
	Ann, F, 55, Prof., MIT, Bioinformatics
	Jason, M, 43, Prof., CMU, Physician, Designed study 2
	Sun Lee, F, 48, Prof. U. Vietnam, Epidemiologist, Public Health
What?	Emergency research meeting

Where? University Paris-Sud, France

When? I 2:00, Friday, 22 April

Scenario: HIV vaccines example

Motivation:

Finding an effective HIV vaccine has proven elusive: vaccines that seemed promising in the lab have systematically failed to provide clinical results in the field. However, a recent double-blind field study in Southeast Asia produced astonishing results.

The study tested two vaccines, organized into four groups: no vaccine, vaccine A, vaccine B, and both vaccines A and B together. Neither vaccine alone, nor the control condition, reduced HIV infection rates. However, when the two vaccines were combined, HIV rates dropped by 30%. This was completely unexpected and none of the scientists has an explanation.

The U. Paris-Sud Biology department is hosting an emergency working session, with local participants from the Institute Pasteur and INRA, as well as world-class experts from around the world, with experience in these specific vaccines and different types of biology, including geneticists, cellular biologists, biochemists, epidemiologists, bioinformaticians as well as physicians and public health officials associated with the field trials.

Scenario: HIV vaccines example

Situation:

The meeting begins at 12:00 at U. Paris-Sud, with several remote participants from MIT. Most participants arrive with their own hard drives and laptops (Mac, Linux and various versions of Windows).

The 'wet' biologists also bring their paper laboratory notebooks and one brings a set of gels, the results of a recent experiment. They have a wide variety of different forms of data, including images, data tables, spreadsheets with dosage levels, experimental protocolas, scripts and alogrithms for running specific analyses, models of specific molecules and results of relevant genetic analyses, as well as published research articles.

Some of this data is highly confidential and cannot be viewed by the others. Other information can only be reviewed under non-disclosure agreements. Still other data and results can be shared, with varying levels of protection, within the confines of the group. In addition, the group has access to a large number of on-line databases and research libraries.

Scenario: HIV vaccines example

Host Thierry has identified a series of research articles from Nature, Science and JAMA and displays the abstracts, so everyone can see. He then moves them into a small pile in the lower right-hand corner of the wall. (As the meeting progresses, people will add articles and documents to the pile, which can be printed or leafed through at any point in the meeting.)

Thierry begins the session by showing an extremely large 3d model of the molecule of the active ingredient in vaccine A, written in Pymol and displayed at very high resolution. He wants to demonstrate how this molecule prevents the 'docking' of the HIV virus with normal cells.

George has a different type of model of vaccine B. Thierry shrinks his molecule and George displays his model next to Thierry's. They work together to see how the two molecules interact with each other, in the presence of normal cells. This raises a question at the genetic level.

Ivan displays the results of his research on gene therapy on chimpanzies, in which vaccine A proved to be effective in the laboratory. However, the corresponding mouse studies were inconclusive and he wonders whether this particular gene has an unusual incidence within this particular population. He diplays 1000 gene sequences, aligned in multiple columns on the display wall and rearranges them to highligh particular patterns.

Scenario: HIV vaccines example

Manuela is an expert on the origins and early evolution of the HIV virus first traced in the green monkey in Africa. She has developed a software visualisation tool that allows her to compare different gene sequences in different animals and humans and highlight differences, with about 10,000 nodes.

George has a different approach, and shows the results of a comparative analysis he did by hand, over a period of three days, that identified two unexpected relationships.

Jun contributes a new algorithm that builds upon these two relationships and generates a new visualisation. He writes down the algorithm on paper, and projects it onto the wall.

They ask Ann, participating at a distance from MIT, if she can run several additional analyses and display them when she is finished.

Sun Lee has been working with her colleagues in Vietnam and has the results of two recent epidemediological studies of HIV incidence rates in each of the villages where the two vaccines were tested. She describes how the study was conducted, the details of the experimental protocol and the statistical analysis assumptions.

Jason has brought a geneological map that shows the genetic lineage of this part of the country. Victoria begins exploring several on-line databases to see if she can answer his question. She diplays the top 40 results of her search in a series of windows on the wall. Jason updates his map accordingly.

What we'll do today

10 min	Present design process
10 min	Divide into three groups: choose suject area
30 min	Identify a real-world task
	and develop a use scenario
20 min	Design at least one, at most 3 instruments
	design 3 alternatives for each
20 min	Develop the design scenario & storyboard
10 min	Conclusion and homework for next week

Course exercise

Video prototype a co-adaptive instrument (or suite) for real users

range of expertise, within and across users

on different platforms

multi-surface, tangible

addressing different situations

collaborative

distributed

Reminder: Encapsulating interaction Encapsulating interaction involves three basic principles: *Reificiation* take an action and turn it into an object that can be manipulated. Example: action of scrolling can be turned into a scrollbar.

Polymorphism let interactive objects perform coherently with different inputs Example: copy-pastse object that can handle text, graphics and video.

Reuse capture previous interaction sequences & turn into reusable objects Example: capture series of paragraph settings, turn them into reusable style

What we'll do today		
10 min 10 min 30 min 20 min	Present design process Divide into three groups: choose suject area Identify a real-world task and develop a use scenario Design at least one, at most 3 instruments design 3 alternatives for each	
20 min 10 min	Develop the design scenario & storyboard Conclusion and homework for next week	

Resources for design: Scenarios

Tell a story that illustrates how one or more people interact (with technology) in a real-world setting

Current scenario:

Draws from real-world observation of people who face challenges that a new technology might address

Design scenario:

Builds upon current scenarios and speculates how these people would interact with new technology, in this setting

Current scenario: What happens now

Write a tiny, branching one-act play, sub-divided into one-paragraph micro scenes that describes the interaction Create one or more characters, each with: name, age, gender, motivation usually with a profession, expertise usually with a goal or motivation Create one or more realistic setting(s): date, time, place, context Identify a series of events over a period of time

Tip: Choosing character names

Make names short, ideally one syllable

Either alphabetize them: Ann, Bob, Chuck, Dave, Eli

Or link names to functions: Pat is a patient Sue is a surgeon

Scenarios: What to do Create a theme ... and variations to explore alternatives Balance both 'normal' and unusual situtions especially breakdowns and errors (... and normal is rarely normal) Consider external events that affect interaction as well as motivated action by the user Include patterns of interaction over time including repetitions and wasted effort Highlight surprises

Scenario format

Title:	Event or technology being designed
Who?	Characteristics: name, sex, age, profession,
What?	Event that sparks the story
Where?	Location
When?	Date, time
Motivation:	Why is this happening?
Situation:Relev	ant detail to aid understanding
Story:	Paragraph-by-paragraph description of
	who does what and why

Exercises	
Previous exercises: Design notebook Deconstruct interaction Design principles Brainstorming Paper prototype Video brainstorming Design space Design scenario	Record instances of observed interaction: yours and others Break down interaction into components Encapsulate interaction via reification, polymorphism, reuse Generate maximum ideas in limited time, avoid criticizing Create tangible example and show interaction Video interaction ideas, one director, theme & variations Categorize ideas along dimensions, populate with ideas (Extreme) characters in a series of real-world actions using new technology. Positive and nearther results
Storyboard	Illustrate scenario, step-by-step, for video prototype

Vhat we'll do today	
10 min	Present design process
10 min	Divide into three groups: choose suject area
30 min	Identify a real-world task
	and develop a use scenario
20 min	Design at least one, at most 3 instruments
	design 3 alternatives for each
20 min	Develop the design scenario & storyboard
10 min	Conclusion and homework for next week

Next week:

Turn in:

Scenario - at least one page with at least three 'events' Instrument - (at least two) What data does it operate on?

What does it reify?

ls it polymorphic?

How does it support reuse (user or system or both?)

Discuss:

Tsandilas, T., Letondal, C. and Mackay, W. (2009) MusInk: Composing Music Through Augmented Drawing, In CHI'09, Proc. ACM Human Factors in Computing Systems, pp. 819-828.

Nardi, B. and Miller, J. (1991)

Twinkling lights and nested loops: Distributed problem solving and spreadsheet development International Journal of Man-Machine Studies 34: 161–184.