

OctoPocus: A Dynamic Guide for Learning
Gesture-Based Command Sets

Olivier Bau & Wendy E. Mackay
In|Situ|, INRIA, LRI

Building 490, Univ. Paris-Sud, Orsay Cedex, France
bau@lri.fr, mackay@lri.fr

ABSTRACT
We describe OctoPocus, an example of a dynamic guide
that combines on-screen feedforward and feedback to help
users learn, execute and remember gesture sets. OctoPocus
can be applied to a wide range of single-stroke gestures and
recognition algorithms and helps users progress smoothly
from novice to expert performance. We provide an analysis
of the design space and describe the results of two experi-
ments that show that OctoPocus is significantly faster and
improves learning of arbitrary gestures, compared to con-
ventional Help menus. It can also be adapted to a mark-
based gesture set, significantly improving input time com-
pared to a two-level, four-item Hierarchical Marking menu.

ACM Classification: D.2.2 [Software Engineering]: Design
Tools & Techniques, User interfaces, H.1.2 [Models &
Principles]: User/Machine Systems Human factors, H.5.3

General terms: Design, Human Factors, Experimentation
Keywords: Dynamic Guides, Feedback, Feedforward, Ges-
ture recognition, Mouse input, OctoPocus, Pen input

INTRODUCTION
Gesture-based interfaces allow users to interact with the
objects of interest on the screen, providing expert users in
particular with a direct and efficient form of interaction.
Unlike buttons and pull-down menus, which force the user
to move the mouse or pen to the command’s location on the
screen, gestures can be performed directly from the current
cursor position. Gestures may be arbitrary, such as strokes
in different directions, or mnemonic, so that the gesture’s
shape corresponds to the command’s meaning, e.g., draw-
ing a “c” to invoke a copy command. The former are sim-
ple and quick to execute; the latter are easier to remember.
Some researchers have explored gesture recognition in spe-
cific applications, including flick gestures in web browsers
[27], interfaces for air traffic control [8] and drawing appli-
cations [17]. However most graphical user interfaces con-
tinue to use standard buttons and pull-down menus. Tech-
nically, gesture recognition demands robust and accurate
algorithms that reliably differentiate among noisy inputs

and correctly identify specified commands. For users, ges-
ture-based interfaces demand extra learning: they must re-
call which gesture is associated with which command
whereas users of button and menu-based interfaces need
only recognize the correct command. Although gesture-
based interaction is ultimately more efficient for experts,
novices need extra support to learn and to correct errors.
How can we improve gesture-based interfaces to make
them more efficient and accessible to users, independent of
their expertise? Some research focuses on improving ges-
ture recognition algorithms, e.g., Rubine’s example-based
recognition [29] and the more recent $1 Recognizer [31].
Others focus on helping to design effective gesture sets,
e.g., Cao et al.’s [11] pen-gesture model. We are interested
in the complementary problem: helping users to learn, exe-
cute and remember new gesture sets. Our goal is to help
users move from novice- to expert-level performance, ob-
taining the benefits of gesture-based interaction independ-
ently of the gesture set or recognition algorithm used.
This paper proposes a design space for classifying existing
feedforward and feedback mechanisms in gesture-
recognition systems. We describe the concept of dynamic
guides, which address an empty area in this design space,
and our development of OctoPocus, which provides nov-
ices with continuous feedforward and feedback while draw-
ing a gesture. We describe two experiments that compare
OctoPocus to a standard Help menu and a Hierarchical
Marking menu, respectively, and conclude with a discus-
sion and directions for future work.

RELATED WORK
This section first reviews technical strategies for improving
pen- and mouse-based gesture recognition systems. We
then review literature that focuses on the user’s perspective
i.e. on-screen strategies to help users during gesture input.

Technical perspective
Gesture recognition algorithms include Rubine’s popular
gesture classifier [29], which requires initial training by
drawing sample gestures, and the $1 Recognizer [31],
which provides a simple and efficient algorithm intended to
support rapid prototyping of gesture-based interfaces. Other
algorithms use symbol fragmentation [14] or turning angle
representation [15] to recognize shapes. Another way to
improve gesture recognition is through the gesture sets
themselves. Some researchers create general tools for de-
signing gesture-based interfaces, e.g., SATIN [13]. Others
develop specific gesture sets that emphasize easy text input,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’08, October 19-22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

such as, Graffiti [5] and the Unistroke [10] alphabets. Still
others focus on quantitative models for predicting per-
ceived similarities among gestures [23,24] or models of
human performance to analyze single-stroke pen gestures
[7]. While these are all important, our focus here is on the
complementary problem of improving gesture-based inter-
faces from the user’s perspective.

Userʼs perspective
Existing systems provide two basic mechanisms for learn-
ing gesture sets and reducing errors: Feedforward mecha-
nisms provide information about a gesture’s shape and its
association with a particular command, prior to the execu-
tion or completion of the gesture. Feedback mechanisms
provide low-level information about the recognition proc-
ess, either during or after the execution of the gesture.
Feedforward mechanisms are relatively common in com-
mercial gesture-based interfaces. Some provide a physical
help card or pop-up ‘cheat sheet’ to illustrate the gestures
and associated commands. The disadvantage is that users
must divide their attention between the current gesture and
the cheat sheet. Also, displaying a complete set of gestures
and associated commands takes a large amount of screen
space and risks occluding large sections of the screen.
Kurtenbach et al. [20] combined crib-sheets and contextual
animation to help users learn which gestures are currently
available. A pop-up cheat sheet displays the relevant subset
of the gesture vocabulary available depending on context,
with whole gestures next to their corresponding commands.
They provide “animated, annotated demonstrations” to
demonstrate each gesture and help users visualize how ges-
tures should be performed.
Avrahami et al. [4] Paper PDA is a paper-electronic inter-
face with templates that guide simple, single-stroke input.
The approach does not scale to on-screen interaction, be-
cause the templates include the whole gesture set and
would occlude major sections of the screen. Hover Widgets
[11] offer an alternative, providing a guide based on a dedi-
cated algorithm that recognizes simple gestures. The user’s
pen ‘hovers’ over a graphics tablet to obtain a feed-forward
display of all possible gestures. On-screen “tunnels” indi-
cate where to move to invoke commands. Crossing the bor-
der of one tunnel resets it, though others may not. The vis-
ual complexity increases when full gestures overlap.
Feedback mechanisms depend upon the recognition algo-
rithm and can only occur after the user has begun making a
gesture. Feedback may consist of displaying the recognized
command or provide incremental information as to the cur-
rent state of the recognition algorithm. Mankoff et al. [26]
focus on post-input mediation, in which the recognizer re-
veals how it interpreted the input. They survey existing
error-correction techniques and identify two mediation
strategies: repetition and choice. They also describe OOPS,
a “toolkit that supports resolution of input ambiguity
through mediation”. They use Igarashi's interactive beauti-
fication technique [16] as an example of post-input media-
tion, since it shows users how the gesture was interpreted
and lets them choose among “perfect” alternatives.

Other feedback approaches provide recognition results dur-
ing input. Most focus on shape beautification i.e. modify-
ing the user’s hand-drawn input to illustrate a perfect in-
stance of a given gesture class. Fluid Sketches [2] morph
gesture input into simple shapes, such as circles. Users
must draw a significant portion of the final gesture before
obtaining useful feedback and, although Fluid Sketches
have been integrated into a graph-drawing application [3],
they remain limited to simple gesture sets. Li et al's [21]
Incremental Intention Extraction provides feedback that can
be seen as a discrete version of Fluid Sketches. If a part of a
user’s drawing is recognized as, for example, a clockwise
elliptic arc, it is “beautified” during input. Agar and No-
vins’ [1] polygon beautification algorithm uses drawing
speed to detect corners, providing recognition information
only about the segments between corners.
Some gesture-set design tools provide gradual information
about recognition state, which helps gesture-set designers
discover and fix recognition problems. For example, Long
et al.‘s GDT class window [23] displays the state of Ru-
bine’s algorithm after a given test input, indicating not only
whether a particular gesture was recognized but also a nu-
meric value quantifying how well it was recognized. This
dynamic approach makes the recognition process more
transparent and helps the user to input gestures correctly.
Combining Feedforward and Feedback Mechanisms. Kurten-
bach’s [19] Marking menus extend Pie menus [6] to com-
bine feedforward and feedback and provide a smooth tran-
sition between novice and expert use. Users flick the pen or
mouse in a particular compass direction to indicate a com-
mand. Marking menus take advantage of novice users’
hesitation when they are unsure of a gesture or command.
After a “press and wait” gesture, a circular feedforward
display appears around the current mouse cursor, showing
each available command and its associated direction. High-
lighting the current selected item during input gives feed-
back on how a user's input is being interpreted. This ap-
proach offers an excellent compromise between learning
and efficient use: Novices pause to take advantage of the
feedforward display. As they become expert, they move
more quickly, no longer needing the Marking menu, and
thus significantly increase overall performance.
Marking menus are three times faster than ordinary pull-
down menus [18] and have been adapted for text entry [28]
and multiple command entry [12]. Zhao and his colleagues
have further improved them by increasing menu breadth
with zone and polygon menus [33] and have improved the
efficiency of Hierarchical Marking menus by converting
zigzags into single strokes [32]. Their key limitation relates
to the gesture set itself. Kurtenbach notes that “the mark set
is not particularly expressive” and that the Marking menu is
not adapted to complex gestures. One of our goals is to take
advantage of the Marking menu approach for helping users
and extend it to encompass any type of single-stroke ges-
ture for a wide range of recognition algorithms.

DESIGN SPACE
This section examines representative examples of feedfor-
ward and feedback mechanisms. We identify underlying
dimensions that form a design space, independent of the
design of gesture sets or of gesture recognition algorithms.
Feedforward Mechanisms
We can classify the feedforward systems in the literature
along two dimensions (Fig. 1):

Level of detail: from a minimal hint to a portion of the ges-
ture to the whole gesture, and

Update rate: from only once prior to execution to discrete
intervals to continuously during execution.

Marking menus are updated once, if the user hesitates, and
display low-detail hints to indicate possible directions. This
is sufficient for guiding mark-based gestures, although not
suitable for more complex gestures. Hierarchical Marking
menus update these low-detail hints in discrete steps as the
user progresses through the menu hierarchy. The Paper
PDA, Contextual animation and on-screen cheat sheets
display high detail, i.e. whole gestures from the command
vocabulary, but update them only once. Hover widgets dis-
play whole gesture templates and continuously update them
to prevent the user’s cursor from crossing the tunnel
boundary.

Fig. 1: Six feedforward approaches for guiding gesture input

Feedback Mechanisms
Unlike feedforward systems that are independent of a
user’s gesture, feedback systems are closely tied to the ges-
ture recognition process and typically involve three phases:
1. Acquire raw recognition data from the recognizer.

Most algorithms output gesture-input recognition rates
according to each gesture class of a given vocabulary.
Depending upon the recognition algorithm, those rates
may produce classifications, distances or probabilities.
The resulting values may be binary (recognized or not)
or real (percentages). A data sheet is produced for a
given input, with all gesture classes and corresponding
recognition rates.

2. Choose raw, converted or filtered recognition data.
A pre-determined threshold may be used to convert a
raw percentage into a binary ʻrecognized or notʼ mes-
sage. Similarly, a filter may select which command sub-
set remains available for the user.

3. Represent feedback to users.
Feedback may take different forms, e.g., highlighting the

label of a recognized command or displaying the prob-
ability of recognizing each of several commands.

Recognition systems can display feedback to the user based
on information generated during any of these phases. We
identified four dimensions for classifying feedback sys-
tems, each associated with one recognition process phase:

Recognition value: The recognition rate of a particular ges-
ture may be expressed as a binary or real value.

Filtering: Feedback may include any portion of the gesture
set: one gesture, a subset or all gestures.

Update rate: Feedback may be updated at different rates
during input: once after input, in multiple discrete steps
or continuously.

Representation: Recognition may be visualized differently,
from highlighting a command name to beautifying cur-
rent input by replacing it with the recognized gesture
classʼ template.

Fig. 2 classifies four systems, Fluid sketches, Interactive
beautification, GDT and Marking menus which were cho-
sen to represent the range of different feedback systems.
Three systems, Marking menus, Interactive beautification
and Fluid Sketches, generate a binary recognition value,
expressed as ‘recognized or not’. This is simple and easy to
interpret, but offers limited visibility as to the algorithm’s
recognition state. GDT’s class windows provide real values
about Rubine’s training and recognition states, giving ges-
ture-set designers precise feedback about how well a ges-
ture is recognized within a particular gesture class.

Fig. 2: Feedback options during the gesture recognition process

Filtering permits display of subsets of possibly recognized
gestures, allowing flexibility in the face of ambiguity and
error. Strategies range from Marking menus, which display
all possible commands, to Interactive beautification, which
displays the subset of most likely commands, to Fluid
sketches, which show only the best recognized command.
GDT’s class window feedback does not filter, because the
user focuses on only one gesture class.
The update rate ranges from just once for Interactive beau-
tification and GDT to continuous display during input for
Marking Menus and Fluid sketches which reflect the evolu-
tion of current input recognition states.
Each system offers a different form of representation. In-
teractive beautification and Fluid sketches emphasize per-
fect gesture templates, whereas Marking menus highlight
the recognized command’s label and GDT’s class window
displays a real value of the recognition rate. Graphical rep-
resentations that remain close to the actual gestures help
users focus on the actual form of the gestures.

Dynamic Guides
If we examine these two sets of dimensions together, sev-
eral empty spaces are apparent. Feedforward systems pro-
vide either very limited or complete final information; none
provide intermediate information showing what is left to
draw among the remaining subset of possible gestures.
Similarly, feedback systems provide either binary recogni-
tion values, expressed as complete gestures, or percentage
numeric values. None reveal a graphical representation of
the recognizer’s state during execution of the gesture.

Hierarchical marking menus are a good example of dy-
namic feedforward for a simple gesture set. GDT’s class
window is a good example of gradual feedback. The chal-
lenge is how to continuously issue dynamic feedforward
and gradual feedback during input. We propose dynamic
guides as a general approach for providing users with con-
tinuously updated information: feedforward about the
user’s current set of options and feedback about how well
the current gesture has been recognized. The next section
describes the design and implementation of OctoPocus, a
dynamic guide that accommodates both incremental and
non-incremental recognition algorithms and can be adapted
to a wide range of gesture sets, from simple, direction-only
marks to arbitrarily complex gestures.

OCTOPOCUS
Like Marking menus, OctoPocus appears after a “press and
wait gesture” of approximately 250ms. However, for Oc-
toPocus, both feedforward and feedback are continuously
updated as the gesture progresses. Novice users may dis-
play a map of all possible gestures and commands, centered
around the current cursor position, to help them learn the
associations between gestures and commands. After the
user selects and begins to make a gesture, less likely ges-
ture guide paths become thinner and disappear. OctoPocus
reveals each gesture’s ideal future path as well as how the
current gesture has been interpreted by the recognizer. Be-
cause OctoPocus appears only if the user hesitates, experts
can execute commands very efficiently, but can slow down
at any time to see which gestures and commands remain.

Fig. 3: OctoPocus displays three gestures and commands.

Tracing copy causes paste to disappear and cut to get thinner.

Fig. 3 shows how OctoPocus appears to a novice user who
is learning gestures associated with copy, cut and paste. As
the user begins to follow the copy guide path, the paste path
quickly disappears and the cut path becomes progressively
thinner, indicating that it is less likely to be recognized. If

the user returns to the starting point of the gesture without
releasing the mouse button, OctoPocus resets itself.
Feedforward: OctoPocus uses templates to represent each
gesture class. These may be extracted automatically from a
set of examples or defined when the gesture vocabulary is
designed. Each class requires a ‘perfect’ gesture example
that, if drawn by the user, will lead to perfect recognition.
All templates begin with a prefix that shares the same start-
ing point radiating from the cursor. After a “press and wait”
gesture, prefixes of each template appear around the cursor
and serve as guides for drawing the gesture correctly.
Fig. 4 shows how a single gesture template evolves. The
prefix proceeds from the cursor and is rendered in solid
blue. The associated command always appears at the end of
the prefix; the rest of the path is translucent. As the user
moves along the path, the prefix moves accordingly. Sub-
tracting the current input length generates a sub-template
that represents the remaining path. The prefix length re-
mains constant until the path length is less than its prefix, at
which point only the remaining path is highlighted.

Fig. 4: The prefix serves as a guide for drawing the gesture

Feedback: In addition to highlighting the currently recog-
nized command, OctoPocus varies the template path’s
thickness to indicate the evolving state of the recognition
process. This requires continuous or discrete values from
the recognition algorithm. We have adapted OctoPocus to
work with both non-incremental and incremental recogni-
tion algorithms, using a version of Rubine's algorithm and
an incremental turning angle representation, respectively.
Classification algorithms are able to define the closest ges-
ture class for any given input. To reduce inconsistencies,
they use a distance measure that indicates how well the
input maps to a specific gesture class. Our Rubine-based
implementation of OctoPocus uses the Mahalanobis dis-
tance for gradual feedback. Our turning-angle representa-
tion implementation classifies gestures by computing only
distance.
Based on these continuous distance values, we compute the
consumable error rate for each vocabulary class. Note that
other continuous values could be used, depending upon the
recognition algorithm. The consumable error rate corre-
sponds to the remaining amount of possible user error, be-
fore the input can no longer be recognized as a member of a
given gesture class. We map the consumable error rate onto
the thickness of the guide. Figure 5 shows the evolution of
path thickness during input. Initially, all paths have the
same thickness. The path being followed retains this thick-
ness, since no errors have been made. Other paths that are
not being followed become progressively thinner as error
accumulates and then the path finally disappears.

Fig. 5: Path thickness is mapped to the current gesture
recognition state, becoming thinner and then disappear-
ing as recognition becomes unlikely and then impossible.

We use part of the template to complete the gesture and
then compare it to the corresponding class. This allows us
to compute the consumable error rate for incomplete input
when using non-incremental recognition algorithms. As-
suming T is the template or ‘perfect’ gesture for class C,
our algorithm proceeds as follows for each template:
1. Subtract the prefix of the length of user's input from the

full template T, resulting in a sub-template subT.
2. Concatenate the current user's input with sub-template

subT. The resulting shape perfT is the user's completed
input together with a perfect drawing for a given class.

3. Use the recognizer to compute the distance between the
resulting shape perfT and the gesture class C associ-
ated with the template.

4. Compute the difference between the computed current
value and a given threshold. This gives gives userʼs
room for error before reaching the distance threshold i.e.
before the input no longer resembles an element of
class C, from the recognizer's perspective.

This algorithm allows users to adapt their gestures in real
time with respect to the evolving probability of error. Of
course, for very short gestures, users may not have time to
incorporate this gradual feedback during input. However,
for long gestures or when input is repeatedly misrecog-
nized, the user may slow down and examine which section
of the gesture decreases the error rate.
Note that OctoPocus can be adapted to use both scale-
dependent and scale-independent algorithms. With the lat-
ter, expert-mode gestures (performed without OctoPocus)
may be executed at any scale. However, for novice-mode
gestures (performed with OctoPocus), the current version of
OctoPocus uses a single, standard-size template for each
gesture, scaled appropriately for the current screen.
Managing Visual Complexity: Dynamic guides demand a
trade-off between visual search and exploration. For exam-
ple, Hierarchical Marking menus were designed to increase
how many items a Marking menu can handle. At any one
time, users have a less complex visual display but must
progress through one or more levels of a hierarchy. In con-
trast, OctoPocus risks creating visual complexity by dis-
playing many items at the same time, but does not require
the user to explore multiple levels.
To reduce OctoPocus’ visual complexity, we highlight only
the initial prefix of each gesture and the corresponding
command. Rendering the ends of each path translucent
helps the user focus on the next portion of the gesture to be
drawn while still providing an overview of the whole ges-

ture. We also reduce the thickness of unlikely commands
and quickly eliminate impossible alternatives. The worst
case of visual complexity occurs when OctoPocus appears
at the very beginning of an input.. Yet even here, the user
can ignore the paths and focus on the desired command
label. Once the user finds it and starts tracing the related
gesture, improbable gesture paths quickly disappear.
Fig. 6 shows the rapid decrease in visual complexity due to
the number of gestures surrounding the cursor, for an arbi-
trary 16-command gesture set. In this example, an average
of six of the 16 templates remain around the cursor after an
input length of approximately 50 pixels. The mean length
of gestures in this example is 533 pixels.

Fig. 6: Reducing visual complexity through rapid elimination of

paths that are unlikely to be recognized.

We can create gesture sets that let OctoPocus take advan-
tage of this by designing gestures that share a common pre-
fix and clustering them. For example, S, C and O all begin
with the same initial arc segment and form a pseudo-
hierarchical structure. Users begin by drawing the initial
arc and then complete the gesture differently to indicate the
desired letter. This approach also helps when using a touch
screen. We can reduce occlusion from the user’s hand by
creating gestures that fan out from a common prefix, group-
ing them to appear in the most visible part of the screen.

EXPERIMENTS
We conducted two experiments to determine whether the
dynamic feedforward and feedback provided by OctoPocus
helps users to learn and execute gesture sets. Experiments
that test learning are notoriously difficult to control and are
often conducted with a between-subjects design. However
this increases inter-subject variability, due to individual
differences in learning patterns, and makes results more
difficult to compare. We chose instead to use a within-
subjects design that explicitly avoids training effects for
subsequent conditions. This requires thorough counter-
balancing of all trials and blocks, across subjects, and also
ensuring that one condition does not influence the next.
Experiment 1 was influenced by the observation that few
real-world systems use complex shapes as gesture sets,
despite many potential applications. They might simply be
too difficult to learn and execute: Not only must the user
learn the association between a complex gesture and its
command, but he or she must also master the details of

drawing the shape to improve recognizer accuracy. If so,
providing continuous feedforward and feedback facilitates
learning and execution of complex gesture sets, gives inter-
face designers more options. Experiment 1 compares a tra-
ditional, static Help menu, with the dynamic feedforward
provided by OctoPocus. We chose arbitrary (non-
mnemonic) gestures to ensure the difficulty of the task.
Experiment 2 examined whether OctoPocus could help
even with gesture sets that have already been shown to be
simple and efficient, such as the marks used with Hierar-
chical marking menus. Does continuous rather than discrete
feedback continuous aid performance? Is it faster to learn?
If so, then OctoPocus could be used as a single, efficient
technique for a wide range of gesture sets. We compare
Hierarchical marking menu (discrete) feedback with Oc-
toPocus’s continuous feedback, adapted to recognize the
same two-stroke gesture set used in a two-level Hierarchi-
cal marking menu with four items at each level.
Both experiments use 16-item gesture sets because they are
difficult to learn and exceed the limits of short-term mem-
ory. Each guide condition tests eight of each set of 16 ges-
ture-command pairs. This reduces overall run-time for par-
ticipants and the eight non-tested gestures serve as a secon-
dary control, allowing us to compare learning with no guide
to learning with each type of guide. We also assess whether
simple exposure to gesture-command alternatives increases
the user’s likelihood of learning non-trained commands.

Procedure
Both experiments use a one-factor within-subjects design
and follow the procedure outlined in Fig. 7. Techniques and
gesture sets are counter-balanced across participants. An
initial practice session prior to each experiment lets partici-
pants learn about and practice the guides they will use in
the experimental conditions. None of the specific com-
mands used in the experimental conditions appeared in
these practice sessions.

Fig. 7: Pre-test / post-test design for both experiments, with

trial counterbalancing strategy.

Pre-test: We use a pre-test/post-test experimental design,
which is standard for learning experiments. Prior to any
training during the experimental conditions, we present
participants with a block of 16 command names and ask

them to generate a gesture for each. They are told to just
guess, since they are not expected to know the gestures at
this point. This provides the baseline level of performance
and error rates, and forms the basis for comparison of each
successive post-test. Note that since the associations be-
tween gestures and commands are arbitrary, we expect ini-
tial performance to be at chance, near 0%.
Training Condition: Each training condition teaches a new
command set using one of two on-line guides. Participants
are exposed to 16 gestures and 16 associated commands of
which we test performance on eight. All conditions are
counterbalanced for order across participants and guide
type. Each training condition consists of three blocks of 24
trials, followed by a post-test.
Each trial begins by displaying a square on the screen.
When the participant clicks within this square, a command
name appears and the clock starts. If the participant chooses
to not use any form of assistance, the trial is in expert
mode. If the participant chooses to obtain assistance, which
varies according to the specific condition, the trial is in
novice mode. When the participant releases the mouse but-
ton after input, the command that corresponds to the drawn
gesture appears and the trial clock ends. If correct, this
command corresponds to that already on the screen. If in-
correct, either another command recognized by the system
appears or else the phrase “not recognized”.
Each block consists of 24 trials (eight commands with three
replications of each command) and tests the same eight
commands, of the possible 16 in the command set. Within a
block, each command is presented three times in a row. We
ask participants to learn each command and perform the
associated gesture as quickly and as accurately as possible,
trying to improve performance each time.
Post-test: After each block of 24 trials, participants are
asked to perform each of the eight commands they have
learned, without any guidance. We display their overall
score at the end of the test. The final posttest is identical to
the pre-test i.e. participants perform all 16 gestures without
any guidance. This allows us to also assess whether partici-
pants learn commands for which there was no guide at all.

Debriefing: After completing all sessions with both on-line
guides, we ask participants which type of guide they prefer
and how they judge their own levels of performance with
respect to learning, errors and speed.

Data collection: We capture all generated gestures as well as
start and stop times. We classify trials as in expert mode i.e.
without assistance or in novice mode i.e. the participant
used one of the on-line guides: OctoPocus, Help Menu or
Hierarchical Marking Menu. For trials in novice mode, our
time measure includes 1. time from trial start to the time the
participant chose assistance and 2. time from when the
guide appears to the time when the gesture is complete.

Trials are classified as either correct: the participant per-
formed the requested gesture and our system recognized it,
or incorrect: the participant performed a gesture that the
system recognized, but it was not the command requested.

Data analysis: Within-subjects repeated measures designs
expose participants to equivalent conditions, counterbal-
anced for order. We performed an ANOVA and accounted
for repeated measures by treating subject (participant) as a
random variable. We also used JMP’s REML function to
account for replicated measures, when participants are ex-
posed to multiple instances of each condition.

EXPERIMENT 1
Experiment 1 compared OctoPocus to a standard Help
menu. Our hypothesis was that the combination of dynamic
feedforward and feedback provided by OctoPocus would
lead to better gesture learning and reduce input errors,
without requiring extra input time.
Participants: 16 (14 men and 2 women) with medium- to
expert-level computer experience. All were right-handed.
Apparatus: The experiment was conducted on an Intel 2Ghz
laptop, using a mouse for input and a 15’’ display. The sys-
tem ran on MacOs X; all software was implemented in Java
1.4. We used Rubine’s algorithm and the authors trained
the gesture classes. Final training of the classifiers was ad-
justed based on the results of four pilot experiments. Our
pilot studies allowed us to adjust the gestures to ensure
similar input times and errors and we distributed gesture
complexity evenly across the two techniques.
Test items: We created a difficult 16-item gesture-command
set. OctoPocus was available for eight gestures and a tradi-
tional Help menu was available for eight other gestures.
Fig. 8 shows the two guides at the first moment of novice
mode. We randomly linked gestures to city names and veri-
fied that there were no obvious relations between them,
e.g., a round shape for Oslo.

Fig. 8: OctoPocus and a standard Help menu, each showing

16 arbitrary gesture-command pairs

The Help menu pops up when the user presses the Help
button. It provides an alphabetical “cheat sheet” with each
command and its associated gesture; a red dot shows the
starting position. On release, the Help menu disappears.
Note that this is more accessible than in most real applica-
tions, which hide help menus within a menu hierarchy. We
did not implement Kurtenbach et al.’s ‘crib sheet’ because,
with 16 gestures, it would occlude too much of the screen.
In novice mode, it takes 250ms to display OctoPocus.

Experiment 1 compares two strategies: learn first, then do
(Help menu) and learn while doing (OctoPocus). We were
interested in whether the dynamic nature of OctoPocus
improves learning of a set of arbitrary gesture-based com-
mands, compared to a conventional Help menu.

Results
For trials in novice mode i.e. trials in which the participant
chose to use one of the guides, the overall input time was
significantly faster for OctoPocus, 5.7 sec., than the Help
Menu, 5.9 sec., F(1,79)=5.27; p=0.024. We define overall
input time as the time from the start of the trial until the
gesture is complete. Some of this time is due to the differ-
ence in mean time to access the Help Menu, mean = 1.3 sec
versus OctoPocus, mean = 1.1 sec, which are significantly
different from each other, F(1,13)=10.03; p=0.007). We
define input time as the time from when a guide of either
type appears on the screen until the gesture is complete. We
might expect the time for OctoPocus to be significantly
longer, since the user must slow down to follow the desired
path instead of just glancing at the Help menu and execut-
ing the gesture. However, we found no significant differ-
ences between OctoPocus and the Help Menu,
(F(1,13)=0.55 ; p=0.47).

Overall error rates were low, with no significant differences
obtained between OctoPocus, 5%, and Help Menu, 7%.
However, if we look at the overall error during training
sessions, including those in expert mode when users did not
choose additional help, we find significantly fewer errors
for gestures trained with OctoPocus, 4%, compared to the
Help menu, 8%, F(1,79)=7.30; p=0.008.

Participants used OctoPocus significantly more often, 40%,
than the Help Menu, 32%, F (1,15)=14.40; p=0.002. This is
consistent with comments from several participants who
said OctoPocus was ‘less risky’ than the Help Menu. When
in doubt, they could hesitate and get a quick hint from Oc-
toPocus, without having to decide to move the mouse to go
the Help menu. For ‘expert’ trials in which the user did not
seek help, OctoPocus, 4%, resulted in significantly fewer
errors than the Help menu, 7%, F(1,79)=6.81; p=0.010.

Fig. 9: Learning curve: Evolution of mean error over time. Pre-
test: both almost 100% error. Post-test: significantly fewer er-

rors for OctoPocus (27%) than Help Menu (43%).

The series of post-tests after each training block tested the
participants’ ability to perform each gesture without any
guidance (Fig. 8). Users performed significantly better with
OctoPocus, both in terms of the learning curve,

F(3,105)=3.00; p=0.033 and final post-test performance
F(1,15)=7.98; p=0.012 (Fig. 9). In terms of final expertise,
OctoPocus had a significantly lower error rate, 27 %, com-
pared to the Help menu, 43% F(1,15)=7.97 ; p=0.012. Thir-
teen participants preferred OctoPocus’ learning-by-drawing
approach and 15 said they preferred OctoPocus because it
is more “playful”.

EXPERIMENT 2
Experiment 2 compared OctoPocus to a Hierarchical Mark-
ing menu for learning a standard mark-based gesture set,
with two levels of hierarchy (Fig. 10). We wanted to test
whether OctoPocus could take advantage of the efficiency
already demonstrated with mark-based gesture sets. Our
hypothesis is that the combination of dynamic feedforward
and feedback provided by OctoPocus would lead to better
gesture learning and reduce input errors, without requiring
extra input time.

Fig. 10 : Hierarchical Marking Menu and OctoPocus, adapted

to two-stroke marks.

Participants: 12 (9 men and 3 women) with medium- to
expert-level computer experience. All were right-handed.
Apparatus: The experiment was conducted on an Intel 2Ghz
desktop computer with a 23’’ display and a 21” Wacom
tablet in absolute mode with a pen for input. The system
ran on MacOs X; all software was implemented in Java 1.4.
We used the original discrimination algorithm based on
gesture directions and adapted OctoPocus to Rubine’s algo-
rithm. The authors trained the gesture set, which we ad-
justed based on the results of four pilot experiments. These
allowed us to ensure that angle-based recognition was
equivalent to recognition based on Rubine’s algorithm,
when applied to the same set of 16 gestures.
Test items: We used the set of 16 gestures that correspond
to a two-level Hierarchical Marking Menu, with four items
at each level. Level one contained four food categories;
level two contained four specific foods for each general
category. This was designed to slightly favor Hierarchical
Marking menus at early learning stages, since users need
not explore all 16 items and have, at worst, one chance in
four of choosing the right gesture, compared to one chance
in 16 for OctoPocus.
We trained eight gestures from each set of 16 gestures and
associated commands varying only the style of guide: Hier-
archical Marking menu and OctoPocus. We ensured that no
marks had an unintended symbolic link, e.g., L for Lamb.

Experiment 2 compared two strategies: multiple discrete
steps (Hierarchical Marking Menus) and dynamic guide
(OctoPocus). The former requires exploration, stepping
through fewer options in two steps whereas the latter re-
quires visual search, with all options simultaneously avail-
able in a progressively simpler display.

Results
Input time in novice mode (Fig. 11) was significantly faster
for OctoPocus, mean = 2.6 sec, than for Hierarchical Mark-
ing menu, mean = 3.1 sec, F(1,59)=11.84; p=0.001. The
mean difference between the two input times is 555 ms,
which is higher than the 250ms wait time needed to make
the second-level Hierarchical Marking menu appear.

Fig. 11: Differences in input time when in novice mode

In novice mode, no significant differences obtain in error
rates between OctoPocus, 4% and Hierarchical Marking
menus, 2%, F(1,59)=3.75; p=0.058. Similarly, the evolu-
tion of error rates over the series of post-tests does not
show a significant difference F(3,77)=1.75, p=0.162.

DISCUSSION
Experiment 1 shows that, for a set of 16 complex gestures,
users learn better with OctoPocus, without incurring an
additional cost in time, compared to a traditional Help
menu. OctoPocus also requires significantly less access
time than the Help menu. In real-world applications, Help
menus are often buried in a menu hierarchy that would take
even more time. Users also preferred the “in situ” learning
of gestures with OctoPocus, compared to simply reading a
Help Menu list.
Experiment 2 shows that OctoPocus can be adapted to di-
verse gesture sets, including marks. Given a 16-item mark-
based gesture set, with two levels and four items at each
level, OctoPocus incurs no additional learning cost, nor
does it result in additional errors. However, it does improve
input time for users while they are in novice mode. We plan
to test OctoPocus with other marking-based gestures sets.
Learning: OctoPocus helps users to learn gesture-command
sets by showing the path of each possible gesture and its
associated command. This highlights a key advantage of
OctoPocus over other help systems; i.e. it can be applied to
complex gesture sets that are highly mnemonic and specifi-
cally designed for a particular application.

Execution: OctoPocus also improves how users execute
their gestures, thus improving subsequent recognition. Be-
cause gesture recognition algorithms are opaque, users of-
ten have trouble identifying which specific aspects of a
particular gesture are deemed necessary by the recognizer.
Users tend to focus on the shape and iconic meaning of a
gesture, whereas recognizers focus on quantitative charac-
teristics of the gesture. For example, some execution errors
occur when the recognition algorithm attends to the direc-
tion in which a gesture is executed but the user focuses
only on the final result. If the user moves clockwise to draw
a circle and the recognizer requires a counterclockwise
movement, the system will generate an error and the user
will be confused. OctoPocus, like some cheat sheets and
other guides, addresses this problem by showing the direc-
tion in which to draw each stroke as it radiates from the
current cursor position.

OctoPocus also shows the subsequent optimal path for a
‘perfect’ gesture, from the recognizer’s perspective. Other
errors may result if the recognizer focuses on the number of
direction changes and the user focuses only on the overall
shape. Thus the system may recognize a circle and a square
as the same, whereas, to the user, they are distinct gestures.
OctoPocus addresses this by varying the thickness of the
guide path to indicate the current level of error in the ges-
ture as drawn.

Remembering: OctoPocus also helps users to remember
previously learned gestures by providing a quick hint of the
correct path at any point during the execution process.
Similarly, OctoPocus helps users to remember gesture
command-associations by displaying the command label in
the middle of each possible gesture. This helps users to
understand errors that result from mis-remembering ges-
ture-command associations. For example, if a command
executed in expert mode is recognized, but the ‘wrong’
command label is displayed at the end, the user can find out
why by entering novice mode and checking to see which
gesture would have led to the desired command. OctoPocus
is especially valuable for intermittent users of gesture-
based applications. If the user already has a rough idea of a
gesture, she can dramatically reduce visual complexity by
beginning the gesture and then hesitating, so that OctoPo-
cus only reveals the few possible commands that remain.

FUTURE WORK
The main limitation of OctoPocus is the level of visual
complexity that users face if they enter novice mode with-
out having drawn any portion of a gesture. As explained
earlier, we address this by making the ends of paths trans-
lucent and rapidly eliminating impossible alternatives.
However, we also plan to explore other variations of dy-
namic guides that address this problem differently. We
would like to explore the practical limits of OctoPocus with
respect to both gesture set size and gesture type. We chose
a 16-item set for our experiments because it exceeds short-
term memory limits and poses a sufficiently difficult learn-
ing task but we need to explore how well it scales.

Our algorithm for completing the user’s gesture with the

template is not always optimal, since early parts of the ges-
ture may introduce error and another shape that is not part
of the template may in fact produce a better recognition
result. We plan to improve our current algorithm for more
optimal completion of the user’s input and explore the use
of scale-independent templates. We also plan to develop a
hierarchical version of OctoPocus, building upon Rubine’s
concept of eager recognition. Our goal is to combine differ-
ent instances of OctoPocus to create different types of ges-
tures and thus invoke commands within a hierarchy.

CONCLUSION
This paper addresses the problem of helping users to learn,
execute and remember gesture-based command sets. We
examined existing feedforward and feedback systems that
provide on-screen guidance in gesture-based interfaces and
classified them along six dimensions in a design space. We
then introduced the concept of dynamic guides, which
combine dynamic feedforward and feedback to directly
guide novice user’s performance, without penalizing expert
users. We describe OctoPocus, a dynamic guide that con-
tinuously updates the state of the recognition algorithm by
gradually modifying the thickness of possible gesture
paths, based on its ‘consumable error rate’. We have shown
that users can better learn, execute and remember gesture
sets if we reveal, during input, what is normally an opaque
process i.e. the current state of recognition, and represent
gestures in a graphical form that shows the optimal path for
the remaining alternatives.

The notion of dynamic guides suggests a more general ap-
proach that can be applied to a variety recognition-based
input systems. Instead of creating autonomous recognizers
that simply provide feedback about the final result, we can
explicitly create a dynamic collaboration between the hu-
man user and the recognition system. If the recognizer pro-
vides the user with continuously updated feedback about
the current state of the recognition algorithm, combined
with feedforward about the remaining possible options,
users can increase their understanding how best to interact
with the system while simultaneously modifying their be-
havior to reduce errors and improve overall recognition
accuracy.
Applications such as Eisenstein & Mackay’s Object
Tracker [9] use the same basic principle to improve com-
puter vision recognition of human movement gestures.
However, we believe that this notion of a continuous, inter-
active guide, in which the user receives dynamic feedback
during any type of recognizable performance from the
computer-based recognizer can be extended to a wide vari-
ety of recognition-based systems, including voice recogni-
tion and ubiquitous computing applications. We plan to
extend the current design space to classify a wider range of
feedforward and feedback systems and use it as a genera-
tive technique for creating additional dynamic guides.

ACKNOWLEDGMENTS
Our thanks to the study participants and Michel Beaudouin-
Lafon, Emmanuel Pietriga, Sofiane Guedanna, Aurélien
Tabard and Olivier Chapuis for comments on earlier drafts.

REFERENCES
1. Agar, P. & Novins, K. (2003) Polygon Recognition in

Sketch-Based Interfaces with Immediate and Continuous
Feedback. In Proc. GRAPHITE’03, Computer Graphics and
Interactive Techniques. pp. 147-150.

2. Arvo, J. & Novins, K. (2000) Fluid sketches: continuous
recognition and morphing of simple hand-drawn shapes. In
Proc. UIST’00 ACM User interface Software & Technology,
pp. 73-80.

3. Arvo, J. & Novins, K. (2006) Fluid sketching of directed
graphs. In Proc. Australasian User Interface Conf. Vol. 50,
Australian Computer Soc., pp. 81-86.

4. Avrahami, D., Hudson, S., Hudson, S., Moran, T., & Wil-
liams, B. (2001) Guided gesture support in the paper PDA. In
Proc. UIST’01 ACM User interface Software & Technology,
pp.197-198.

5. Blinkenstorfer, C. (1995) Graffiti. Pen Computing, p. 30-31.
6. Callahan, J., Hopkins, D., Weiser, M. & Shneiderman, B.

(1988) An empirical comparison of pie vs. linear menus. In
Proc. CHI’88 ACM Human Factors in Computing Systems.
pp. 95-100.

7. Cao, X. & Zhai, S. (2007) Modeling human performance of
pen stroke gestures. In Proc. CHI’07 ACM Human Factors
in Computing Systems. pp. 495-1504.

8. Chatty, S. & Lecolinet, E. (1996) Pen Computing for Air
Traffic Control. In Proc. CHI'96 ACM Human Factors in
Computing Systems. pp. 87-94.

9. Eisenstein, J. & Mackay, W. (2006) Interacting with Com-
munication Appliances: An evaluation of two computer vi-
sion-based selection techniques. In CHI'06 ACM Human
Factors in Computing Systems. pp. 1111-1114.

10. Goldberg, D. & Richardson, C. (1993) Touch-typing with a
stylus. In Proc. CHI'93 ACM Human Factors in Computing
Systems. pp. 80-87.

11. Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., &
Balakrishnan, R. (2006) Hover widgets: Using the tracking
state to extend the capabilities of pen-operated devices. In
Proc. CHI’06 ACM Human Factors in Computing Systems.
pp. 861-870.

12. Guimbretiere, F. & Winograd, T. (2000): FlowMenu: Com-
bining Command, Text, and Data Entry. In Proc. UIST’00
ACM User interface Software & Technology, pp. 213-216.

13. Hong, J. & Landay, J. (2000) SATIN: A toolkit for informal
ink-based applications. In Proc. UIST’00 ACM User Inter-
face Software & Technology, pp. 63-72.

14. Hse (2004) Hse, H., Shilman, M. & Newton, A.. (2004).
Robust Sketched Symbol Fragmentation using Templates. In
Proc. IUI’04 Intelligent User Interfaces. pp. 156-160

15. Iannizzotto, G. & Vita, L. (1999) A Multiscale Turning An-
gle Representation of Object Shapes for Image Retrieval. In
Proc. Visual information & Information Systems. Vol. 1614,
Springer-Verlag, pp. 609-616.

16. Igarashi, T., Matsuoka, S., Kawachiya, S., & Tanaka, H.
(1997) Interactive beautification: a technique for rapid geo-
metric design. In Proc. UIST '97 ACM User Interface Soft-
ware & Technology. pp. 105-114.

17. Igarashi, T., Kawachiya, S., Tanaka, H., and Matsuoka, S.

(1998) Pegasus: a drawing system for rapid geometric de-
sign. In Proc. CHI’98 ACM Human Factors in Computing
Systems. pp. 24-25.

18. Kurtenbach, G. & Buxton, W. (1993) The limits of expert
performance using hierarchic marking menus. In Proc. CHI
'93 ACM Human Factors in Computing Systems. p. 482-487.

19. Kurtenbach, G. (1993) The Design and Evaluation of Mark-
ing Menus, Ph. D. Thesis, Dept. of Computer Science, Uni-
versity of Toronto.

20. Kurtenbach, G. & Moran, T. (1994) Contextual Animation of
Gestural Commands. In Proc. Eurographics Computer
Graphics Forum. Vol. 13(5), 305-314.

21. Li, J., Zhang, X., Ao, X., and Dai, G. (2005) Sketch recogni-
tion with continuous feedback based on incremental intention
extraction. In Proc. IUI’05 Intelligent User Interfaces. pp.
145-150.

22. Liao, C., Guimbretière, F. & Hinckley, K. (2005) Papier-
Craft: A Command System for Interactive Paper. In Proc.
UIST’05 ACM User interface Software & Technology, pp.
241 – 244.

23. Long, A., Landay, J. & Rowe, L. (1999) Implications for a
gesture design tool. In Proc. CHI '99 ACM Human Factors
in Computing Systems. pp. 40-47.

24. Long, A., Landay, J., Rowe, L. & Michiels, J. (2000) Visual
Similarity of Pen Gestures. In Proc. CHI’00 ACM Human
Factors in Computing Systems. pp. 360-367.

25. Mackay, W., Fayard, A., Frobert, L. & Médini, L. (1998)
Reinventing the Familiar: Exploring an Augmented Reality
Design Space for Air Traffic Control. In Proc. CHI’98 ACM
Human Factors in Computing Systems. pp. 558-565.

26. Mankoff, J., Hudson, S. E., & Abowd, G. D. (2000) Interac-
tion techniques for ambiguity resolution in recognition-based
interfaces. In Proc. UIST '00 ACM User Interface Software
& Technology. pp. 11-20.

27. Moyle, M. & Cockburn, A. (2003) The design and evaluation
of a flick gesture for 'back' and 'forward' in web browsers. In
Proc. Australasian User Interface Conf. Vol. 18, Australian
Computer Soc., pp. 39-46.

28. Perlin, K. (1998) Quikwriting: Continuous Stylus-based Text
Entry. In Proc. UIST '98 ACM User Interface Software &
Technology. pp. 215-216.

29. Rubine, D. (1991) Specifying gestures by example. In Proc.
ACM SIGGRAPH Computer Graphics. 24(4):329-337.

30. Rubine, D. (1992) Combining gestures and direct manipula-
tion. In Proc. CHI '92 ACM Human Factors in Computing
Systems. pp. 659-660.

31. Wobbrock, J., Wilson, A. & Li, Y. (2007) Gestures without
libraries, toolkits or training: a $1 recognizer for user inter-
face prototypes. In Proc. UIST '07 ACM User Interface Soft-
ware & Technology. pp. 159-168.

32. Zhao, S. & Balakrishnan, R. (2004) Simple vs. compound
mark hierarchical marking menus. In Proc. UIST '0. ACM
User Interface Software & Technology. pp. 33-42.

33. Zhao, S., Agrawala, M. & Hinckley, K. (2006) Zone and
polygon menus: using relative position to increase the
breadth of multi-stroke marking menus. In Proc. CHI '06
ACM Human Factors in Computing Systems. pp. 1077-1086.

