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This paper describes a generative theory of bugs. It claims that all bugs of D 
procedural skill con be derived by a highly constrained form of problem solving 

acting on incomplete procedures. These procedures are characterized by formal 
deletion operations that model incomplete learning and forgetting. The problem 
solver and the deletion operator have been constrained to make it impossible to 
derive “star-bugs”--xJgorithms that are so absurd that expert diagnosticians 
agree that the alogorithm will never be observed as o bug. Hence, the theory not 

only generates the observed bugs, it fails to generate star-bugs. 

The theory has been tested on on extensive doto base of bugs for multidigit 
subtraction that was collected with the aid of the diagnostic systems BUGGY and 
DEBUGGY. In addition to predicting bug occurrence, by adoption of additional 

hypotheses, the theory also makes predictions about the frequency and stability 
of bugs, as well as the occurrence of certain lotencies in processing time during 
testing. Arguments are given that the theory can be applied to domains other 

than subtraction and that it con be extended to provide a theory of procedural 
learning that accounts for bug acquisition. Lastly, particular care has been taken 
to make the theory principled so that it can not be tailored to fit ony possible 

data. 

1. INTRODUCTION 

This paper presents our current efforts to form a generative theory of bugs in 
procedural skills. Given a procedural skill, it predicts which systematic errors or 
/xcgs will occur in the behavior of students learning the skill. 

1.1 Background: Bugs and “Bug Stories” 

Over the past few years our group has been engaged in the task of fusing 
computer science tools with modelling techniques from cognitive science in 
order to construct systems for diagnosing systematic student errors. These diag- 
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nostic systems, BUGGY and more recently DEBUGGY, have been used to analyze 
thousands of students’ work (Brown & Burton, 1978; Burton, 1981; VanLehn & 
Friend, 1980) and have enabled us to construct an extensive catalogue of pre- 
cisely defined systematic errors-or bugs for place-value subtraction. Several other 
investigations of errors in arithmetic have uncovered the same “bug” phenome- 
non (Buswell, 1926; Brownell, 1941; Roberts, 1968; Lankford, 1972; Cox, 
1975; Ashlock, 1976; Young & O’Shea, forthcoming). 

A child’s errors are said to be systematic if there exists a procedure that 
produces his erroneous answers. In nearly all cases, we have found that systema- 
tic errors are minor peturbations from the correct procedure for that skill. Pre- 
cisely defined erroneous variations of a procedure are known as bugs. To say that 
a subject “has” a certain bug is to predict not only which problems he will 
answer incorrectly on a test, but also to predict the digits of those answers as 
well. Because an entire test’s answers must be generated by a bug before we are 
willing to say the bug exists, there is very little chance that bugs are just “ran- 
dom” errors. Indeed, bugs seem to be complex, intentional actions reflecting 
mistaken beliefs about the skill. This is not to say that random, unsystematic 
errors do not occur. They do. But such errors have the appearance of “slips,” 
where the subject did something which they did not intend to do. (Norman, 1979, 
argues for the widespread existence of slips in adult performance.) The subtleties 
of the slip/bug distinction and the data analysis techniques that were used to 
determine the difference are discussed in VanLehn (forthcoming). For this paper, 
we will assume the viability of the bug concept. Appendix 2 lists the subtraction 
bugs that we have observed. 

BUGGY and DEBUGGY provided both a notation for precisely describing 
bugs and a powerful diagnostic tool which we used to sieve large amounts of 
student data in search of still unaccounted for errors, which could then be 
analyzed by hand to determine if they stemmed from a new, previously undisco- 
vered bug. Now that several thousand student tests have been analyzed, we have 
reached a stage where our data base of bugs is converging. We are able to 
account for a substantial number of student errors and only a small number of 
new bugs are being discovered. 

This rather extensive data base of bugs now enables a much deeper ques- 
tion to be investigated, namely, what is the cause of these bugs and why do just 
they occur and not others? Whereas our earlier effort explained a student’s errors 
as symptoms manifested by bugs in a correct procedure, our current effort is to 
explain these known bugs in terms of a set of formal principles that transform a 
procedural skill into all of its possible buggy variants. We shall call the set of 
principles and the process that interprets them a generative theor?! of bugs. Using 
“+” to mean “explains,” this can be graphically stated: 

generative theory of bugs + bugs + systemutic errors 

The challenge of a generative theory of bugs is twofold. It must generate all the 
known or expected bugs for a particular skill and it must generate no others. 
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Many bugs appear to have a rational basis. That is, it is often easy to 
construct a plausible “bug story” about how a certain bug could have been 
acquired. We are not alone in this belief in rational genesis. Young and O’Shea 
(forthcoming) show that models of bugs can be constructed by editing a model of 
the correct skill in such a way that most of the edits have plausible, albeit 
informal explanations. For example, a model of a certain, observed bug is 
created by replacing the rule that normally decides when to borrow by a rule that 
says to borrow always. By similar replacements, deletions and additions, models 
for many common bugs can be created. However, it is not the case that every 
possible edit creates a model for a bug-the theorists must carefully select the 
edit. Hence, the fact that editing can produce models for bugs is just a tribute to 
the expressive power and modularity of their representation language. What is 
important are the bug stories that accompany and presumably constrain most of 
the edits they describe. For example, in describing the edit mentioned above, 
they say “Such a rule could result from a student’s believing that borrowing is an 
essential part of subtraction, perhaps as a consequence of being given a series of 
examples in which borrowing was always necessary.” Such bug stories are 
insightful but informal. A generative theory can be viewed as formalizing such 
bug stories. Indeed, before we constructed our generative theory, we constructed 
multiple bug stories for each of our bugs in order to discover possible patterns 
that would enable us to decide which of each bug’s stories to choose in order to 
build a unified theory. 

1.2 The Key Idea is Repairing Impasses 

In this paper we describe our current efforts to form a generative theory of bugs, 
one that is capable of explaining why we found the bugs that we did and not other 
ones, one that is capable of explaining how bugs are caused, and most impor- 
tantly, one that is capable of predicting what bugs will exist for procedural skills 
we have not yet analyzed. 

The theory is motivated by the belief that when a student has unsuccess- 
fully applied a procedure to a given problem, he will attempt a repair. Let us 
suppose that he is missing a fragment of some correct procedural skill, either 
because he never learned the fragment or maybe he forgot it. Attempting to 
rigorously follow the impoverished procedure will often lead to an impawe. That 
is a situation in which some current step of the procedure dictates a primitive 
action which the student believes cannot be carried out. For example, an impasse 
would follow from an attempt to decrement a zero, provided the student knows 
(or discovers) that the decrement primitive has as a precondition that its input 
argument can’t be a zero. When a constraint or precondition gets violated the 
student, unlike a typical computer program, is not apt to just quit. Instead he will 
often be inventive, invoking his problem solving skills in an attempt to repair the 
impasse so that he can continue to execute the procedure, albeit in a potentially 
erroneous way. We believe that many bugs can best be explained as “patches” 
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derived from repairing a procedure that has encountered an impasse while solv- 
ing a particular problem. 

The key idea of the generative theory is the notion of /-ep~ir. Hence, we 
refer to the theory as Repair Theory. A bug’s derivation in the theory has two 
parts. The first is a series of operations that generate an incomplete procedure, 
namely, a procedure that may reach an ~UI~XUS~ on certain problems. The second 
part is a series of operations that represent the repair of the procedure so that it 
can proceed. It is an important assertion of the theory that these two parts are 
independent. That is, the kind of repair attempted depends only on the procedure 
and its current impasse, not on how the incomplete procedure was derived. 

This paper reports on work in progress. Although a precise theory will be 
presented, it is not as empirically adequate as we would like. The first part of the 
theory, namely that which generates incomplete procedures, has known in- 
adequacies. However, the repair generation part appears adequate. The theory is 
worth presenting now, in its naive form, because it raises many new distinctions 
that have allowed us to frame several interesting theoretical and empirical ques- 
tions in a sharp, clear fashion. In particular, several predictions concerning 
phenomena such as processing time, bug stability and bug frequency, fall natur- 
ally out of what was originally conceived of as a theory of bug occurrence. 

The paper first presents the theory and gives examples of bug derivations. 
The second half of the paper is a discussion of the methodology of our research 
along with a careful statement of its claims and their empirical support. We have 
tried to be very clear about what the core support is, and how it is extended 
through adoption of hypotheses that project the claims of the theory to become 
claims about other phenomena. We think such an examination of methodology is 
important for understanding how complex theories of complex cognitive 
phenomena can be evaluated and extended. 

2. THE FORM OF THE GENERATIVE THEORY 

As mentioned above, the generation of a bug has two parts: generation of an 
incomplete procedure and generation of a repair to any impasse that that proce- 
dure may encounter. Repair Theory defines the set of incomplete procedures by 
applying a set of tleletim principles to a formal representation of the correct 
procedure. The set of repairs is defined by a set of r-epctir heuristics and a set of 
critics in the following manner. When an incomplete procedure is applied to a 
problem and reaches an impasse, a set of repairs is performed by a gener-ure utd 
test problem solver. The set of all observable repairs is characterized by the set of 
repair heuristics in conjunction with a “tester” or filter which can reject certain 
proposed repairs based on a set of critics. That is, the heuristics suggest repairs 
and the critics veto some of them. Given this form, there are four major compo- 
nents that must be designed: 



REPAIR THEORY 383 

1. A representation of the gi\lerl procetlural skill. In determining this, several 
issues must be addressed. One concerns the representation language and its 
associated interpreter. Another is the representation of the physical page which 
bears the test problems. A very important issue concerns the structural decompo- 
sition of the skill that is to be embedded in the chosen representation language. 
The same procedural skill or method can often be decomposed in more than one 
way, which can have subtle theoretical ramifications. 

2. A set of principles for rleletirzg frtrgments of the correct procedure. These 
principles will determine what parts of the original skill can be deleted, thereby 
reflecting what parts of the procedure might become inaccessible in long term 
memory or may never have been learned (given the circumstances of our testing, 
it is often the case that students are given problems requiring subprocedures that 
they have not been taught yet). For example, the simplest principle might assert 
that any step of a procedure can be deleted; other principles might restrict the 
deletions to reflect a possible learning sequence of the procedure. 

The next two constituents concern the elements of the generate-and-test 
problem solver charged with carrying out the requisite repairs. 

3. A set of repair heuristics to propose repairs. The generator can examine the 
preconditions that have been violated on a primitive and propose explicit repairs 
based on a set of repair heuristics. Our later discussion of this component will 
circumvent control issues of how one repair heuristic might be initially chosen 
over another. Instead, we will focus on what the actual repair heuristics are and 
claim that any heuristic whose repair is not rejected by the tester must generate a 
bug. 

4. A set of critics tofilter out some repairs. Closely allied to the generator is the 
tester, which filters out those repairs that it considers to be unreasonable based on 
the form of the solution stemming from the proposed patch. Again, our interest 
here will be on the precise set of filtering conditions or “critics” and not so much 
on the process of invoking the critics and performing the necessary backtracking. 

There are several noteworthy points to the form of this theory. The most 
important concerns its composite nature. We could have tried to account for all 
the known bugs in a skill by searching for a set of transformations that operate on 
the skill and directly produce all and only those bugs. Our theory, on the other 
hand, involves two parts. The first part edits the skill as dictated by a set of 
deletion principles which in themselves are not intended to explain all the sought 
after bugs. Instead, each possible edit or deleted portion generates a procedural 
variant which when followed (or executed) will often lead to an impasse that sets 
the stage for part two, the repair process. This second part uses a set of repairs to 
fix the procedure and allow it to continue. 

It is the set of all vu/id reppairs (i.e. those uot filtered out b.v critics) to oil 
possible impasses that is merrnt to predict the set of trll possible bugs. 
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2.1 The Method of Investigation 

Since our primary concern is to provide a principled account of a set of buts and 
to use these principles to predict bugs for skills yet to be analyzed, we invoke as 
little problem solving machinery as possible to account for the data. We fully 
recognize that there exists much more powerful problem solving models that 
may, in fact, better capture what a student is actually thinking while inventing a 
patch. We will also utilize as little of an actual process model as is possible and 
instead proceed under the assumption that if a rule is applicable it will be used. 
The trouble with invoking a process model is that it is hard to get a crisp 
boundary on precisely what bugs will be generated by the model since, for 
example, it is never certain what scheduling strategies a student might be using to 
select his rules or what specialization strategies he might possess for transform- 
ing a weak heuristic into a specific repair rule. We will sidestep such issues and 
see just how far we can get with specific repair rules that apply universally. 

It is particularly important not to interpret the deletion principles in process 
model terms. We trre not drrimitzg thr~t N student knew the correct procedure, 
then forgot part oj‘it. The tleletiotl principles ure tr fortwl chrrmcterixrtion of the 
set of irlcomplete procedures, r~rul hence imptrsses, thtrt m-e wed and possi1d.v 
repaired. One of us (VanLehn) is constructing a learning theory which can 
generate that same set by simulating a student’s miscomprehension of examples 
in the teaching sequence. We use a set of deletion principles operating on the 
correct skill as a precise way to characterize the set of procedures that are subject 
to repair while realizing that a deeper explanation for this set may be found in 
theories of forgetting or mislearning. 

The evaluation of a generative theory rests on its ability to generate all the 
known bugs but to avoid predicting wild, improbable bugs. To expedite the 
evaluation of such theories on our data base, a “workbench” has been im- 
plemented on a computer. The workbench allows the construction of a repre- 
sentation language and its deletion principles, then systematically applies a dele- 
tion operator to every part of a correct procedure’s representation. This generates 
a set of incomplete procedures, which after being repaired, are run on a highly 
diagnostic screening test. Their answers are analyzed by the workbench, and the 
set of known bugs, if any, that match each procedure’s behavior are reported. 
Thus the workbench allows rapid comparison of representation languages, as 
well as help in settling fine points in the structuring of a correct procedure’s 
representation. Our experience has been that comparison of representations has 
proven to be a powerful tool for zeroing in on the right skill decomposition. This 
topic is treated in detail in (VanLehn, 1980). 

We have adopted the principle that each piece of information in the repre- 
sentation of a procedure must be used in the correct solution of at least one 
problem. This principle rules out the representation of bugs as “dead code,” or 
information that is accessed only in the case of a deletion. With no principles 
governing the presence of dead code, allowing it would mean that the explana- 
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tion for a bug that involved the dead code would not be completely contained 
within the theory, a situation we would like to avoid. 

2.2 The Representation of the Procedure 

The representation of procedures has an impact on all parts of the theory. Some 
of the issues involved are the decomposition of the skill, the level of primitives, 
and the language for expressing the procedure. A great deal of effort has been 
spent comparing various choices along these dimensions in order to find ones that 
maximize the expected empirical fit of the theory. The method used in this part of 
the investigation involved extensive use of the workbench to assess the ramifica- 
tions of a simplified version of the theory on the representation. The results of 
this investigation are presented in a technical paper (VanLehn, 1980). 

The language that was finally chosen to express procedures is a descendent 
of production systems (i.e. a collection of condition-action rules, c.f. Newell & 
Simon, 1972). There are several syntactic restrictions on the rules. Each rule’s 
conditions must mention exactly one internal symbol ( = goal). The other condi- 
tions, if any, test some features of the external world (i.e. the test problem being 
worked on). Each rule has exactly one action, which is either a primitive action 
or a subgoal. Rules are labeled for ease of reference, but the labels play no role in 
their interpretation. 

Like production systems, rules are eligible to be run when their conditions 
are true. When more than one rule is eligible, the following conflict resolution 
strategies are applied in order until the choice is unambiguous: 

Only q ow~t If this rule has been executed before, and the goal it matches this time is 
the same instantiation (token) as the goal it matched last time, then eliminate.this rule 

from consideration. 

T/y special ccr.se rulesfirs!; If the conditions of this rule are a subset of the conditions 
of some other eligible rule (i.e. the other rule is a special case of this role), then 
eliminate this rule from consideration. 

Stipulufecl o,-Art If there is still more than one eligible rule, then take the one that 

occurs first in the list of rules. 

These conflict resolution strategies are found in many production system lan- 
guages (McDermott & Forgy 1978). 

Unlike most production systems, rules are interpreted with a stack. When 
the action of a rule is a goal, execution of that action pushes the current internal 
state onto the goal stack, and the new goal becomes current. Only rules matching 
the current goal are eligible to run. Goals have a type-like construction that 
controls when they are exited (i.e. when the stack pops). Two types are AND and 
OR. What the AND type means is to “exit only when all my rules have been 
executed.” The OR type means to “exit as soon as one of my rules has been 
executed. ” 

The control structure described thus far is isomorphic to that found in 
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And/Or graphs (except that the “try special cases first” conflict resolution 
strategy is not used-a minor difference). The nodes and. links of AO graphs 
correspond, respectively, to the goals and rules of this language. However, this 
language provides a generalization of the And and Or types of AO graphs. The 
generalization of these two types is to allow a goal to exit when a given conrlirion 

is true. This exit condition is named the “satisfaction condition” of the goal. 
Rules of a goal are executed in sequence until either the goal’s satisfaction 
condition becomes true, or all the applicable rules have been tried. Note that this 
is not an iteration construct-an “until” loop-since a rule can only be executed 
once. The AND types become satisfaction conditions consisting of the constant 
FALSE. Since rules are executed until the satisfaction condition becomes true 
(which it never does for the AND) or all the rules have been tried, giving the 
AND goal FALSE as the satisfaction condition means that it always executes all its 
rules. Conversely, OR'S become the constant TRUE-the goal exists after just one 
rule is executed. The language is named Generalized And/Or graphs (GAO 
graphs). 

An important concept in the representation is “focus of attention.” By this 
term, we mean where the procedure is in the problem, that is, its “current 
location” on the test page. Focus is strongly associated with subgoals. Focus can 
only be shifted by calling a subgoal-there is no assignment statement for focus. 
Similarly, when control returns to a goal after a subgoal that it called is finished, 
focus is restored as well. (In computer science terms, focus is bound locally. In 
fact, focus is represented syntactically by giving arguments to goals just like the 
arguments of procedures. For example, the SubCol goal which processes a 
column has three arguments named TC, BC and AC which are bound by the caller 
to the top, bottom and answer cells of the current column.) Thus, there are no 
calls to a focus shifting function to move focus back to the initiating column after 
a borrow is completed. Instead, focus is restored automatically when the goal 
stack pops. In short, the procedure’s control location and its external location are 
maintained in exactly the same manner. 

Figure 1 shows the GAO graph for a standard version of subtraction taught 
in the United States. Since it will be used for examples throughout this paper, it is 
worth a moment to explain it. The Sub goal simply initializes the column traver- 
sal to start with the units column. ColSequence is the loop across columns, 
expressed recursively of course since there are no loop constructions in the 
language. SubCol processes a column. If the bottom cell is blank, it writes the 
contents of the top cell in the answer (L4). If the top digit is less than the bottom 
digit, it calls the Borrow subgoal (L5). Otherwise, it calls the primitive Diff 
which writes the difference on the top and bottom digits in the answer (L6). 

The Borrow goal is a conjunction of borrowing into the column originating 
the borrow (L8-Add10 is a primitive), and borrowing from the column (L7). By 
convention, borrowing-from occurs before borrowing-into. Borrowing from the 
next column is easy if its top digit is non-zero; the digit is decremented by the 
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The syntax is: 

Goal (eoalf argu~re~~rs) Sarisfacrion Condition: @al’s sarisfacrion cor~dilior~ 
label: {rule k corld/lions} ---> m/e’s acrion 
orher rulesforachieeing /he goal... 

The rules for the version of subtraction used in this paper are: 

Sub () Satisfaction Condition: TRUE 
Ll: I} ---> (ColScqucnce RightmostTopCelI 

RightmosrBotromCcll RightmostAnswerCell) 

ColS;;luenc;TzFC AC) Satisfaction Condition: (Blank? (Next TC)) 
(SubCol TC AC AC) 

L3: {} ---> (ColScquence (Next TC) (Next BC) (Next AC)) 

SubC;i (TC BC AC) Sarisfaction Condition: (NOT (Blank? AC)) 
{(Blank? BC)} ---> (WriteAns TC AC) 

L5: $L:e;? TC BC)) ---> (Borrow TC) 
L6: (Diff TC BC AC) 

Borrow (TC) Sarisfaction Condition: FALSE 
Ll: {) ---> 
LS: {} ---> 

(BorrowFrom (Next TC)) 
(Add10 TC) 

BorrowFrom (TC) Satisfaction Condition: TRUE 
L9: ( BorrowFromZero TC) L1o: Iy-~f,“? WI ---> 

(Deer TC) 

BorrowFromZero (TC) Satisfaction Condition: FALSE 
Lll: {} ---> (Write9TC) 
L12: {} ---> (BorrowFrom (Next TC) j 

TC. BC and AC are variables. Their names are mneumonic for their contents, which happen to be 
the cop. bottom and answer cells of a column. 

The primitive actions and their associated preconditions are listed below. All of their arguments are 
cells. The actions cxpccting digits in certain arguments have c precondition chat those cells not be 
blank. 

Diff -- Subtracts the digit contained in its second argument frcm the digit contained in its first 
argument and wriccs the result in the third argument. The second argumenr can not be larger than 
the first argument. 

Deer -- Subtracts one from the digit contained in its argument and writes the result back in the 
same cell. The inpur digit must be larger than zero. 

Writchns -- W’ritcs the digit contained in its first argument in its second argument 

Add10 -- Adds ten to chc digit contnincd in its argument and writes the result back in the same cell. 

Write9 -- Writes a nine in irs argument Ihc cell can not be blank originally. 

Figure 1. A GAO graph for D standard version of subtraction 

primitive Deer (LlO). If the digit is zero, it is changed to a nine (Lll) and 
BorrowFrom is called recursively (L12) to try to decrement the next column. 
When borrowing is completed, control returns to SubCol. Because SubCol’s 
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satisfaction condition is not true yet, L6 runs and Diff takes the column dif- 
ference . 

Although there are many other versionslof subtraction, and several other 
ways to express this version in the GAO language, the decomposition of figure 1 
has been found to optimize the empirical predictions of the theory. 

This concludes the discussion of the representation. As mentioned earlier, 
there are arguments for each of the architectural features of GAO graphs. These 
arguments are long and subtle enough to deserve a paper of their own (VanLehn, 
1980). 

2.3 Deletion 

Concomitant with the development of the representation, a variety of deletion 
principles were tried. The one that performed the best was deletion of rules. 

When a rule is deleted, its sister rules will often be executed in its place, 
which frequently leads to an impasse. For example, when L4 of Figure 1 has 
been deleted, and the procedure is run on. the problem 

27 
-4 

an impasse is reached in the tens column because the interpreter chases L6, the 
only rule that applies given that L4 is gone. Running L6 results in calling the 
primitive action Diff. Diff takes a column difference by taking the difference of 
its first two arguments’ contents and writing the result in the cell pointed to by the 
third argument. But Diff has a precondition that neither of its arguments be 
blank. Since this precondition is violated when Diff is called on the tens column, 
the procedure is at an impasse. This impasse can be repaired in a variety of ways. 
For example, the procedure could simply do nothing instead of take the column 
difference (the “no-op” repair heuristic). Control would return from Diff, and 
ultimately the procedure would terminate normally leaving 3 as the answer. This 
way of repairing the impasse generates the bug Quit-When-Bottom-Blank. (The 
bug names were published (Brown and Burton, 1978) before Repair Theory was 
developed, so some of the names are a little inappropriate.) 

Not all deletions lead to impasses. For example, when L12 is deleted, the 
only action that is executed during a borrow across zero is the action Write9, 
which scratches out a zero and writes a 9 over it. No preconditions are violated, 
so no repairs are needed. The resulting procedure is the bug Borrow-From-Zero. 
A test item answered by this procedure would look like 

207 
128 
179 

Unconstrained deletion overgenerates. That is, deleting certain links Leads to 
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procedures that we have never observed, and moreover, the procedures are so 
counter-intuitive that we strongly believe they never will be observed. Such 
procedures are called “star-bugs” after the linguistic convention of putting a star 
before sentences judged to be unacceptable. Deleting LlO would generate a 
star-bug. The procedure resulting from the deletion never violates a precondition 
and hence is not repaired. It has the strange property that it only borrows cor- 
rectly when the borrow is from zereregular, “simple” borrows are not done. 
A test item solved by this star-bug would be 

3075 
1298 
2787 

Intuitively, it seems implausible to delete the ordinary case while leaving the 
special case intact since presumably the ordinary case had been mastered some 
time before the special case had been taught. Indeed, in VanLehn’s learning 
theory (forthcoming), learning the rule that is a special case of another rule, in 
that its conditions are a super-set of the other rule’s conditions, requires the prior 
existence of the ordinary-case rule. Hence, a deletion blocking principle can be 
derived from a somewhat more plausible principle, namely, that a new rule is 
forgotten more readily than an old one (or, recalling that the testee’s are often in 
the middle of the subtraction curriculum, that rules are taught in the order that 
they can be learned). In short, there is a basis in learning for the following 
principle: 

A Deleriorr Blockir~g Principle 

If hw rules have the scrme goal md one is a special case of rhe orher rule (i.e. irs 
condifions are <I superset of rhe more general rule’s condiriom), rhen the general rule 
cm no/ be deleted unless rhe special cue rule is deleted m well. 

Since L9 is a special case of LlO, the latter can not be deleted in isolation, and 
hence the star-bug mentioned earlier is not generated. It may seem that incor- 
porating a special-case predicate into the theory is ad hoc and unmotivated, but 
this is not the case. Special case checking is needed anyway by the interpreter to 
sequence rules (c.f. the preceding discussion of conflict resolution). 

The deletion blocking principle is in fact just the tip of the learning theory 
iceberg. We now believe that a better way to generate incomplete procedures 
would involve a complicated derivation that mimics in part the learning sequence 
of the subject prior to the point of testing. In this light deleting when constrained 
by the deletion blocking principle can be seen as an elegant, simple way to derive 
the incomplete procedures of subjects who never mis-learn anything, but have 
only learned (or remembered) part of the total algorithm. Further comments on 
this view will be made after discussion of the problem solver that generates 
repairs. 
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2.4 Examples of Repair Generation 

We believe that a student following a procedure that specifies that a particular 
primitive is now to be executedbut which can’t be, for whatever reason, is apt to 
invent some repair to circumvent his current dilemma. For example, suppose he 
is trying to perform a column subtract with a larger number from a smaller 
number and he can’t because there is no appropriate entry in his facts table (or 
because he knows he can’t). What might he do? One obvious repair might be to 
skip trying to execute that primitive action and move on to the next step of the 
procedure. Another repair might be to simply quir doing the problem. Yet 
another repair might be to snip the,focu.s lw-ticu//y before calling Diff-that is, 
if it doesn’t work taking the bottom digit from the top one, try swapping them 
around. And a last example might involve his being very clever and resorting to 
invoking the counting-based subtraction procedure that he originally used to 
generate or understand the facts table. For example, he might reason that if he 
had five apples and Tommy took seven away, then he certainly wouldn’t have 
any apples left. Or he might count backwards from five in synchrony with 
counting up from seven, ending as the former becomes zero. Either way, the 
overall effect of reverting to the “semantics ” of the facts table is to arrive at zero 
as the column’s answer. 

Examples of simple repairs. In a moment, the details of how repairs are 
created will be presented. But first, we will go through some examples to see 
how repair-generated bugs produce erroneous answers. 

Suppose that rule L5 (see Figure 1) is deleted. This is the rule that says to 
borrow when the top digit is too small. If L5 is deleted, then L6, the rule for 
processing ordinary columns, will be executed on every column, including larger 
from smaller (LFS) columns where one ought to borrow. LFS columns violate a 
precondition of Diff (the action called by L6), namely that the first input number 
be larger than the second input number. This precondition violation is an im- 
passe, and the problem solver is called in to repair it. 

Several bugs can be generated by repairing this impasse in different ways. 
A natural repair is to skip the primitive whose precondition is violated. In this 
example, the so-called “No-op.’ repair heuristic (because it replaces the primi- 
tive with a null operation) generates a bug named Blank-Instead-of-Borrow. 
Since Diff is simply skipped when its precondition is violated, the bug does not 
write an answer in an LFs column. 

Other repairs to the same impasse generate other bugs. If the “Quit” repair 
heuristic is used, then the bug is Doesn’t-Borrow, because the problem is given 
up as soon as a LFS column is encountered. A more complicated repair heuristic is 
to swap cells when they are in the same column (as they are in this case). When 
this “Swap Vertically” repair heuristic is used, the bug Smaller-From-Larger 
results. This bug takes the absolute difference of each column’s digits. 

An even more complicated repair heuristic is used to generate the Zero- 
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Instead-of-Borrow bug. This bug answers all LFS columns with zero. It is gener- 
ated by forgetting about the facts table and revtirting to the counting procedure 
that underlies it. As mentioned above, there are several procedural “semantics” 
for the facts table that return zero when invoked with such arguments. We call 
the repair “Dememoize” because it is the inverse of the computer programing 
technique of “memorizing” a function by replacing it with a table that pairs its 
inputs with the outputs it would generate if it had been run. 

In short, four procedures are generated by repairing the same impasse four 
different ways. We can summarize these procedures as: 

Repairs Bugs 

Skip 

Quit 

Swap Vertically 

Dememoize 

Blank-Instead-of-Borrow 

Doesn’t-Borrow 

Smaller-From-Larger 

Zero-lnsteod-of-Borrow 

These four heuristics can be used in conjunction with the deletion of L8 to 
generate four more procedures. L8 is the rule that adds ten to the top of the 
column being borrowed into. When L8 is deleted, the procedure does the decre- 
ment part of borrow correctly but fails to add ten to the top digit of the column 
which caused the borrow. Hence, after borrowing is done, and rule L6 is run, 
Diff is entered with the column in its original LFS state. Hence, the precondition 
that was mentioned above is violated, and an impasse occurs. Repairing this 
impasse with the same four repair heuristics generate four new procedures: 

Repairs Bugs 

Skip 

Quit 

Swap Vertically 

Dememoire 

*Blank-With-Borrow 

Doesn’t-Borrow 

Smaller-From-Larger-With-Borrow 

Zero-After-Borrow 

The first procedure, *Blank-With-Borrow, is a star-bug. By convention, star- 
bugs’ names are preceded with astericks. Star-bugs have not occurred and are 
judged by experts to be so absurd that they will never occur. They should not be 
generated by the theory. In this case, the generation of *Blank-With-Borrow is 
blocked by a critic which filters out repairs that leave blanks in the interior of the 
answer. This critic also filters out the observed bug Blank-Instead-of-Borrow, 
which is generated by deleting L5, as illustrated just above. In order to avoid 
generating the star-bug, it was necessary to forgo generation of a good bug. 
Critics, and this tradeoff in particular, will be discussed shortly. 

Examples of compound repairs. Sometimes the repair to one impasse 
creates a procedure that has a second impasse. Repairing the second impasse can 
result in bug, but on occasion the resulting procedure reaches a third impasse. 
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Although such a derivation could in principle go on forever, we have yet to see a 
bug that required more than three repairs in its derivation. 

To illustrate such compound repairs, suppose that rule L9 is deleted. L9 is 
the rule that tells the procedure how to borrow from zero. When it is deleted, and 
the procedure is given a problem that requires borrowing across zero, LlO will 
run instead of the missing L9. Since LlO is the ordinary borrow rule, Decrement 
will be called with zero as its input. This violates one of its preconditions. 
Although many repairs lead immediately to bugs, a compound derivation can be 
illustrated by supposing that this impasse is repaired by the heuristic “Backup. ” 
Backup is a well known strategy in problem solving: one backs up control to the 
last point where a choice was made. In this case, control moves up through 
Borrow, which is an AND goal, and settles on SubCol. The effect of this shifting 
of attention is to skip the Decrement operation and the Add10 operation. In other 
words, instead of trying to decrement a zero, the procedure forgets about borrow- 
ing entirely and returns to examining the LFS column, which is still in its original 
form. Since the borrowing rule L5 has already once for this instantiation of 
SubCol, it can not be run again, so the ordinary column processing rule L6 is run, 
and Diff’s precondition is violated. The four repair heuristics mentioned above 
now generate these procedures: 

Repoirs Bugs 

Skip ?Blank-Instead-of-Borrow-From-Zero 
Quit Borrow-Won’t-Recurse 

Swap Vertically Smaller-From-Larger-Instead-of-Borrow-From-Zero 
Dememoize Zero-lnsteod-of-Borrow-From-Zero 

Due to the critic that objects to blanks inside answers, the procedure ?Blank- 
Instead-of-Borrow-From-Zero is filtered out. In this case, no harm nor good is 
done, since it is neither an observed bug nor a star-bug. Procedures that are 
possible bugs (i.e. the experts do not consider them absurd enough to be star- 
bugs) but have not been observed are preceded by “?“. 

In short, with just three deletions and four repair heuristics, we have 
generated eleven different procedures (Doesn’t-Borrow is generated two dif- 
ferent ways), eight of which are observed bugs. An important point to notice is 
that repair is not always a simple process because the repair of the original 
impasse can create secondary impasses. 

Another important point is that there is not a one-to-one correspondence 
between deletions and impasses: some deletions leave procedures that do not 
violate any preconditions. For example, if rule L7 is deleted, the resulting proce- 
dure never does the decrementing half of borrowing, but only the add-ten half. 
This procedure does not violate and preconditions, and hence no repairs are 
generated. This is the bug Borrow-No-Decrement. This repair-less generation of 
bugs is not common. Only two of the nine possible deletions of rules in Figure 1 
lead to impasse-free procedures. Hence, of all the bugs generated from this GAO 
graph, the derivations of all but two involve some repair. 
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2.5 The Problem Solver Is Local 

The architecture of the problem solver is very simple. First, a repair heuristic 
proposes that a certain action be done instead of the primitive action that is stuck. 
Second, the preconditions of the new action are checked. If a precondition is 
violated, the repair is unusable. Also, each critic checks to see if its condition 
would be violated by executing the action. If a critic is violated, the repair is 
rejected as well (in the discussion section, we consider what the impact of 
relaxing this last restriction would be on the empirical coverage of the theory). If 
neither a precondition nor a critic is violated, the repair occurs and the procedure 
derived from this repair is predicted to occur as a bug. 

There are several ways that this architecture makes the problem solver 
weak. First, there is no ability to “look ahead” and see what the effects of a 
proposed repair might be some number of steps further in the problem. If there 
were such an ability, then the problem solver could avoid having to do secondary 
repairs by looking ahead far enough to see the secondary impasses such as the 
ones involved in the compound repair mentioned above. However, bugs involv- 
ing compound repairs have occurred, so it seems the problem solver should have 
no ability to look ahead. In other words, the “vision” of the problem solver is 
local-it can only see the current state of the interpreter and the subtraction 
problem. 

A second restriction is that the problem solver can propose only a single 
action. That is, the solver can’t generate a repair that is a new goal, complete 
with new rules for satisfying it. It can propose a primitive action (see VanLehn 
1980 for a discussion of the “grain size” of the primitive actions) or a “known” 
goal, such as Borrow. In other words, its repairs are small. Because of the local 
“vision” of the problem solver and the restriction that its repairs be small, the 
problem solver is called a loyal problem solver. 

2.6 A Set of Repair Heuristics 

The following set of repair heuristics seems fairly optimal. The empirical ade- 
quacy of the theory given this set will be discussed in the discussion section of 
the paper. We introduce the heuristics here, grouped under some suggestive 
headings, in order to discuss some theoretical points: 

Four Wed Methods or Genetwl Purpose Heuristics 

1. Escape nrd Flee 
a) Skip 
b) Quit 
c) Backup to last choice 

II. Relocate/refocus the operntiorl 
a) Swap Vertically 
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b) Refocus Left 
c) Refocus Right 

111. Use ~111 upertrtiotl hit uwked itf L/II trd0go~r.s .situotiot~&w 
a) Use Increment (from carrying) for Decrement 
b) Use a top-row operation (i.e. AddlO, Write9 or Decrement) to replace 

another top-row operation. 
c) Use a column operation (i.e. SubBlank, Diff) to replace another column 

operation. 
IV. Demenioi;e 

The headings are meant to suggest that the repair heuristics are really just 
instances of more general purpose heuristics. Take the third category for exam- 
ple. The repair heuristic Increment for Decrement is just an instance of a general 
heuristic: if incrementing worked in an analogous situation, namely the “left 
half” of the regrouping operation of addition, then it ought to work here, in the 
“left half” of the regrouping operation of subtraction. 

In one sense, it is quite heartening that the repair heuristics that fit best 
empirically can be viewed as instances of more general problem solving heuris- 
tics. It is a little easier to believe that students bring a few powerful heuristics, 
perhaps developed elsewhere, to subtraction than that they bring a diverse set of 
special purpose subtraction repair heuristics. Indeed, we propose to constrain the 
power of the theory by stipulating that all repair heuristics be tlo~oin i,rrlepe/r- 
dent in that they could plausibly be derived from general purpose problem solv- 
ing strategies. Although this is not very constraining, it allows us to hope that 
equivalent repair heuristics will be found when the theory is applied to a new 
domain. There will be more discussion of this point later. 

There is a tradeoff in designing a set of repair heuristics. Too few heuristics 
means an inability to generate some known bugs. But too many heuristics means 
predicting nonbugs. For example, there is a bug called Stutter-Subtract where the 
student reacts to nonrectangular problems by subtracting the last digit in the 
bottom row from top digits that are over blanks. Here is an example of Stutter- 
Subtract’s solution to a problem: 

7654 
31 

4323 

The Repair Theory analysis of this bug involves deleting the rule L4. Since this is 
the rule that handles blanks in the bottom row, deleting it causes Diff to be 
entered with a blank as its second argument, which causes a precondition viola- 
tion. To generate Stutter-Subtract, we need a repair heuristic, Refocus Right. 
(This heuristic searches horizontally, moving rightward from the place where 
Diff expected to find its second argument. It stops at the first cell which is 
nonblank, and gives the digit to Diff as the second argument.) In short, Refocus 
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Right seems necessary for generating Stutter-Subtract. However Refocus Right 
can now be used to repair other precondition violations as well. Suppose, for 
example, that it is used to repair the zero precondition of Decrement. This would 
generate a procedure that instead of borrowing across zero would decrement the 
column borrowed i~rro. This bug has never been observed, and seems rather 
implausible. In short, one has a choice of failing to generate Stutter-Subtract, or 
generating bugs that have not been observed. 

We have chosen to accept the intuitively more plausible position that repair 
heuristics are just special cases of general purpose problem solving heuristics, 
and therefore we accept Refocus Right as a legitimate repair. To deal with the 
overgeneration, we propose to use a set of cr7tic.s that test and filter out proposed 
repairs. 

2.7 Critics 

In the generate-and-test architecture of the problem solver that creates repairs, 
the “test” or filter component is driven by a collection of critics. A critic signals 
that something about the current state is unusual. For example, decrementing a 
digit that is the result of a previous decrement triggers a certain critic. 

Critics, most likely, are tacitly acquired by the student’s observing and 
abstracting the patterns that all computations appear to satisfy-especially those 
that were produced by the teacher working through example subtraction prob- 
lems. These abstractions fall naturally into several categories. The most obvious 
of these concern the form of what gets written (the answer and the scratch 
marks). Some examples of critics in this category are: 

I. Form-of-the-Writing Critics (or Constraints) 

I. Don’t leave a blank in the middle of the answer. 
2. Don’t have more than one digit per column in the answer. 
3. Don’t decrement a digit that is the result of a decrement. 

Another category of critics has to do with the information flow. They could also 
be induced from examples, or they may perhaps have been deduced from more 
general beliefs about procedures. Some examples are: 

II. Information Theoretic Critics 

1. Don’t change a column after its answer is written (or more generally. each opera- 

tion must make a difference to the answer) 
2. Don’t borrow twice for the same LFS column (or more generally. avoid infinite 

loops). 

Originally, critics were included in the theory in order to prevent overgeneration. 
When a procedure has been modified by repair, it may violate some critics. Such 
procedures can not, by hypothesis, become bugs. Thus, for example, the No-op 
repairs which lead to the unobserved procedures *Blank-With-Borrow and 
?Blank-Instead-of-Borrow-From-Zero would be rejected because they leave a 
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blank in the answer, thus violating the “No blanks inside the answer” critic. 
Critics explain why such procedures have not been observed. 

After critics were incorporated in the theory, it was noted that the function 
of filtering repairs was also being performed by the preconditions of the primi- 
tives. That is, a repair heuristic sometimes generates an action that violates a 
precondition, in which case it can not be used. For example, when L4 is deleted, 
an attempt is made to execute Diff when the bottom cell in the column is blank. 
This violates the precondition that Diff’s inputs must be digits. Repairing this 
impasse with Swap Vertically’ produces an attempt to execute Diff with the other 
input blank. Since this violates a precondition (in fact, the same precondition), 
the Swap Vertically repair is reject. In short, preconditions also filter repairs, just 
as critics do. 

Since both critics and preconditions filter repairs, symmetry suggested that 
violating a critic ought to create an impasse just as violating a preconditions does. 
We tested this hypothesis, and found that indeed some bugs could be generated 
from impasses triggered by critics. It had escaped our attention earlier since such 
bugs are much less common than precondition-triggered bugs. 

An example of a critic-triggered impasse involves the bug Don’t- 
Decrement-Zero. This bug does borrowing across zero by changing the zero to a 
ten instead of a nine. It cannot be generated from the version of subtraction of 
Figure 1, but is generated instead from another common version. Whereas the 
version of Figure 1 does borrowing across zero by changes the zeros to nines as it 
moves to the left, the version needed here changes the zeros to tens as it moves 
left, then decrements them to nine as it moves right. (This version is in fact the 
one most often taught in school, and the version of Figure I is an optimization of 
it.) To generate Don’t-Decrement-Zero, one deletes the rule that decrements the 
newly written ten to nine as the procedure moves rightward. Hence, the net effect 
is a procedure that changes zeros to tens as it borrows across them. 

This deletion creates a procedure that does not violate any preconditions. 
But it does violate a critic on certain problems. When the procedure must borrow 
across a zero that is over another zero, such as 

504 
108 

it first changes the upper zero to ten. When it later comes to processing the tens 
column, it subtracts zero from ten and attempts to write ten in the answer. Since 
ten is two digits long, there is a critic violation. 

Most of the repair heuristics are inapplicable, but two succeed in generat- 
ing bugs. The first is to form an analogy to addition: the units digit of ten is 
written in the answer and the tens digit is carried to the next column. This 
generates the bug Don’t-Decrement-Zero-Carrying-Answer-Overflow. The bug 
Don’t-Decrement-Zero is generated by a hitherto unmentioned repair heuristic, 
namely simply ignoring the critic violation. In this case, the action generated is 
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just to write ten as the column’s answer. The “Ignore” repair heuristic can only 
be applied to critic-triggered impasses, which is why it wasn’t mentioned earlier. 
Preconditions of primitives, almost by definition, can not be ignored. 

The symmetry between preconditions and critics is to be built into the 
theory as a principle: 

Any condition which can trigger impasses can filter repairs, and vice-versa 

This principle serves to constraint the class of critics. A new critic can not be 
added to the class unless it can function both as a repair filter and as a trigger for 
impasses. That is. adding a critic to block a certain star-bug may cause a different 
star-bug to be generated via an impasse triggered by the new critic. 

2.8 Filtering Repairs versus Triggering Secondary Impasses 

(This subsection discusses some technical details of the theory and can be skip- 
ped by the general reader.) Suppose a repair has just generated an action, and the 
action violates a critic. Since a critic can both filter repairs and trigger impasses, 
which will it do‘? 

A convention is needed. The convention captures the intuition that the 
student will not use a repair if he can tell there is something wrong with using it 
(It the time he is cotr.sitle,-irr<q uhether to ll.se it However, if he can successfully 
apply it before running into trouble, he will not backup and reject the repair but 
instead will repair the impasse at hand. This is an intuition about the performance 
of repair, but it can be captured with a locality constraint on the theory: 

Given a repair and a procedure that has an impasse generated by running it on a certain 

problem, if application of the repair heuristic to the impasse generates an action whose 
execution would inwrcdiu/e/\ ~~iolrrre a critic or a precondition, then that repair is 

,fi/rewt/ OUI as a repair of that impasse. 

This definition is essentially a formal expression of the locality of the problem 
solver. It says that the problem solver can not look ahead to see future violations 
of critics and preconditions. Filtering occurs only when a violation is detected 
concerning the proposed action in the context of the current state. For example, 
the Backup repair to the “Don’t decrement zero” impasse, which was discussed 
in section 2.4, generates an action that pops the goal stack. This popping action 
does not violate any critics or preconditions, so the repair is not filtered. Of 
course, when the stack is reset, the interpreter chases a rule that executes Diff on 
the original LFS column, which violates a precondition as mentioned in section 
2.4. But this violation can not be “seen” by the local problem solver at the time 
it is considering whether to use the Backup repair. The problem solver can not, 
by definition, predict what the interpreter will do after the popping action is 
executed so it can not tell that Diff will be chosen to run. 
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A contrasting example is the application of Refocus Right to the same 
decrement-zero impasse. On certain problems, such as 

(4 5061 
1278 

the repair immediately violates a critic. On problem (a), the impasse occurs when 
an attempt is made to decrement the zero in the hundreds column. Refocusing 
right generates an action that would decrement the tens column. However, the six 
has been decremented by a previous borrow, so this action would violate the 
critic “don’t decrement twice. ” The problem sets up a situation where the use of 
Refocus Right causes an immediate critic violation. By definition, Refocus Right 
is filtered out as a repair to the decrement-zero impasse. 

This example with Refocus Right illustrates a new difficulty with the 
distinction between filtering and triggering. On some problem, such as that 
displayed above, Refocus Right is filtered out as a repair for the given impasse. 
However, on other problems, such as 

(b) 5069 
1278 

it is not filtered out. The procedure generated by applying Refocus Right to the 
impasse created by problem (b) is not the end-product of the derivation since it 
will reach an impasse if it is run on problems (a). That is, we do not consider the 
derivation of a procedure to have ended until the procedure can be applied to any 
problem without reaching an impasse. 

One solution to this problem is simply to let this second impasse be re- 
paired. That is, we could allow a derivation to span more than one problem. But 
this entails that all possible sequences of problems be investigated because dif- 
ferent problem sequences can generate different procedures. The sequence [b, a] 
generates procedures that the sequence [a, b] does not. 

There is no way to avoid examining the behavior of a procedure on all 
possible problems since we need to determine whether it is completely derived. 
However, we can avoid examining all possible sequetms of problems by adopt- 
ing the following constraint: 

A repair is a valid repair to an impasse only if it is not filtered out on any problem 

That is, a repair is valid only if it is universally unfiltered. To invalidate a repair, 
it is only necessary that some problem exist where the repair violates a critic. 

This definition seems to entail a search through an infinite number of 
problems, thus raising the issue of decidability. In practice, however, the search 
for problems to filter the repair is not really infinite. The crucial simplification 
depends on the fact oat preconditions and critics are local:their conditions test 
only the arguments of the action they filter, or in some cases the other cells in the 
column referred to by the arguments. Because of this locality, one can apply the 



REPAIR THEORY 399 

repair, then examine just the column effected by the action the repair generates. 
Since only a few hundred combinations of digits and blanks are possible for a 
column, it is quite feasible to determine if there exists a column such that the 
action violates a critic or precondition. Provided the preconditions and critics are 
local, this suffices for checking all possible problems for filtering. This heuristic 
argument is only meant to show that the definition is usable. It is not meant to 
describe actual application of critics by a subject during a test situation-that 
would require a performance theory. 

. This definition of validity is not without its penalties. It causes us to reject a 
repair which would otherwise have generated an observed bug, Borrow-From- 
Bottom-Instead-of-Zero. Applying the Swap Vertically repair to the decrement- 
zero impasse mentioned above generates an action that attempts to decrement the 
bottom digit of the column. This succeeds on common problems, such as (a) 
below, but violates the decrement-zero precondition on rare problems such as 
(b), where both digits in the column borrowed from are zero. 

(4 506 (b) 506 
139 109 

In a performance theory, one could regain the generation of Borrow-From- 
Bottom-Instead-of-Zero by replacing the universal quantifier of the definition 
with an assertion that the problems causing critic violation are rare enough that 
the student will have practiced the use of the repair on many problems before 
encountering a problem that causes a critic violation. The practice would “in- 
stall” the repair so that the eventual critic violation would not cause its rejection, 
but rather would trigger a secondary impasse. However, this not a performance 
theory. Notions of “sufficient practice” and “installed repairs” are beyond its 
scope, although they play a role in work to reported in (VanLehn, forthcoming). 
The definition above is the best we have been able to devise within the generative 
framework. 

2.9 Summary 

This completes the description of Repair Theory. In form, it is a process that 
generates bugs using two mechanisms: a constrained rule deletion mechanism 
acting on a representation of the correct procedure for the given skill, and a local 
problem solver with a generate-and-test architecture that repairs the impasses that 
arise during execution of the improverished procedures created by deletion. 
There are four main “classes” or choices that determine the theory’s predictions: 
(I) the representation used for the procedure that undergoes deletion, (2) the 
constraints on the deletion operator, (3) the heuristics used to generate repairs, 
and (4) the critics that are used for filtering repairs and triggering impasses. The 
most remarkable feature of the theory is perhaps its attention to principles, such 
as the independence of repairs and impasses. These are the topic of the next 
section and will be summarized at its end. 
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The remainder of the paper considers the empirical adequacy of the theory, 
and suggests some extensions. Appendix 1 details the derivations of all the 
procedures that are generated from the version of subtraction presented in Figure 
1. Each deletion is followed by the impasses, if any, that it entails. Impasses are 
followed by the results of apply each of the repair heuristics. The predictions 
stemming from this derivation are discussed in the next section. 

3. RESULTS AND DISCUSSION 

It is often thought that empirical adequacy is the only measure of a theory’s 
worth. However, it is not very difficult to’get empirical adequacy if that is the 
only goal. We propose five criteria for evaluating this theory, and by extension 
other information processing theories of cognition. 

3.1 Five Criteria for Theories 

The first criterion is of course empirical. In the case of this theory, empirical 
adequacy means generating all the observed bugs and none of the star-bugs. (A 
star-bug is a procedure that can never occur as a bug.) Star-bugs are a necessity. 
Unless some bugs are labeled a priori as being unable to occur, then something 
which could generate all procedures (e.g. an exhaustive generator of GAO graphs) 
would be empirically adequate since it would generate all the bugs. It is unfortu- 
nate that we can not assume our data base is complete in that it contains all 
possible bugs. Many of. the bugs that have shown us the most about how to 
structure the theory also turn out to be rather rare. To fix the current data base as 
an approximation of the set of all possible bugs would be to make the theory 
virtually immune to major revisions instigated by the data. The bug that triggers 
the crucial insight might be a rare one. Consequently, we must leave the door 
open for new bugs, and that necessitates taking the judgment of experts as an 
approximation of star-bugs. 

The second criterion is the “tailorability” or degrees of freedom of the 
theory. A theory that can be tailored to fit any data base is not saying much of 
interest (Pylyshyn, 1980; forthcoming). For example, the ways that Repair 
Theory can be tailored are by adding new repair heuristics, adding new critics, or 
restructuring the GAO graph to get slightly different impasses. One way to limit 
tailorability is to make the theorist pay a heavy price for such changes. That is, 
any change to increase empirical adequacy must make other predictions that may 
or may not be correct. In short, changes have entcrilrnents. For example, because 
it is an axiom of the theory that repairs are independent of impasses, adding a 
new repair heuristic in order to generate a certain bug will cause the theory to 
predict many new procedures, namely all procedures that are derived by applying 
the new heuristic to all the other impasses. Some of these predicted bugs may 
exist, in which case the addition is good. But more often, the procedures are not 
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bugs and in fact may be star-bugs. So, adding a repair heuristic may entail 
making many dubious if not incorrect predictions. By strict adherence to the 
principles of the theory, such as impasse-repair independence, tailorability can 
be limited. 

Most theories of cognition are initially stated in a certain domain, in this 
case subtraction. This is not surprising: to study thinking, the subjects must be 
thinking about something. The natural question to ask at the completion of such a 
domain-bounded study is to what extent does the theory depend on the domain. 
Thus, the third criterion is the degree of domain independence of the theory. In 
the case of Repair Theory, this means finding out what kinds of procedural skills 
are such that (a) students’ misunderstandings as they learn the skill are stable 
enough that they make systematic errors, (b) the systematic errors can be 
analyzed as bugs, and (c) the bugs are predicted by Repair Theory. 

The fourth criterion for the theory is its ability to elucidate phenomena 
other than the one studied. One need not go outside the domain for such 
phenomena. For example, Repair Theory could perhaps explain some of the 
mysteries of “bug migration.” Bug migration is a phenomenon wherein a sub- 
ject has a different bug on two tests given only a few days apart. This phenome- 
non appears to have a pattern to it, in that only certain bugs “migrate” into each 
other, and moreover, this migration appears to define an equivalence relation on 
the set of all bugs. For example, Stops-Borrow-At-Zero has been observed to 
migrate into Borrow-Across-Zero, and vice-versa. Now it just so happens that 
these two bugs can be derived from the same deletion via different repair heuris- 
tics. To explain the pattern, a “projection hypothesis” is adopted. In this case, 
the hypothesis is that bugs will migrate into each other if they are derived by 
different repairs to the same impasse. Note that without this hypothesis, Repair 
Theory has nothing to say about bug migration. Moreover, the hypothesis might 
not be quite right. One must have a projection hypothesis, but it could be wrong. 
Hence, the empirical success of the projection supports the theory, but the lack of 
empirical success does not refute it since the projection hypothesis could be 
wrong. 

The fifth criterion stems from a desire to replace Repair Theory with one 
that is even deeper and has a strong sense of explanation to it. In that arithmetic is 
certainly learned rather than innate, a learning theory seems essential to a com- 
plete understanding of the cognition involved. Repair Theory is a theory of what 
bugs exist. Its model is a process, which gives the derivation a chronology. 
However, we have never asserted that this chronology has anything to do with 
the chronology of a subject’s acquisition of a bug. The job of explaining acquisi- 
tional chronology (or perhaps difficulty) belongs to a theory of learning. Much of 
Repair Theory can be seen as groundwork for that learning theory. A number of 
principles, such as the independence of impasses and repairs, could be taken as 
constraints on the learning theory. In this light, Repair Theory succeeds to the 
extent that such principles can be abstracted from it and made available to its 
successor. 
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Having introduced the five criteria that Repair Theory will be measured by, 
the tradeoffs in its evaluation can be discussed in detail. 

3.2 Empirical Adequacy 

Repair Theory using the GAO graph, the heuristics and the critics described above 
generates 33 different subtraction procedures. GAO graphs for several other ver- 
sions of correct subtraction have been tried, including one that does subtraction 
without using scratch marks, but their predictions differed only slightly from the 
predictions of the given GAO graph. Of the 33 procedures, 21 are well docu- 
mented bugs, one is a star-bug, one is a correct procedure, and the other 10 have 
not been observed and hence are the theory’s predictions for future bug discov- 
eries. To give a sense of context, it is worth pointing out that when Repair 
Theory was first tested in September 1979, only 16 of its 33 procedures were 
known bugs. The current figures are from December 1979. So, in the intervening 
three months, 6 of the predicted bugs were actually found. We fully expect to 
find the other 10 predicted bugs eventually. The derivation of the 33 procedures, 
as well as the derivations of the procedures that are filtered out by critics, are 
summarized in Appendix 1. 

The star-bug that is generated could be blocked, but only by adding an ad 
hoc deletion blocking principle. The star-bug results from deleting the tail- 
recursive call to ColSequence (L3) so that the procedure will only process the 
units column. That in itself is not unusual, but since no other links are deleted, 
the star-bug will borrow perfectly, even when it must borrow from zero. That a 
student would have mastered borrowing and yet be unable to traverse the col- 
umns is utterly unlikeiy. Blocking this star-bug requires a new deletion blocking 
principle. Unfortunately, the new principle would have to end up mentioning 
links from different nodes, namely L3 and L5. Since the other deletion blocking 
principles mention only links from the same node, this means dropping a con- 
straint on deletion blocking principles, a move that would lead us one step closer 
to infinite tailorability. 

In this case, such a move can be justified since the deletion mechanism is a 
prime candidate for replacement by a learning-based mechanism. In other words, 
we don’t think the constraint on locality of deletion blocking principles holds 
universally, and since this leaves the principles virtually unconstrained (and 
thus infinitely tailorable), there must be something wrong with the deletion 
mechanism itself. We believe that it should be viewed as an instance of a much 
more complicated sub-theory that takes into account the fact that many of our 
subjects are in the middle of the subtraction curriculum. In short, the theory 
overgenerates by one bug, but it can be easily blocked. However, blocking the 
star-bug would leave the theory too unconstrained. Actually, the star-bug reveals 
that deletion is a fundamental inadequacy in the theory. 

The theory only generates 21 of the observed 89 bugs. This is a rather 



REPAIR THEORY 403 

severe undergeneration problem. Several extensions to the theory are possible. 
Their pros and cons will now be discussed. 

One extension is to give the problem solver more power by equiping it with 
more powerful heuristics. For example, one of the bugs that can not currently be 
derived is Diff-0-N=N. To generate this bug, which borrows normally except 
when the top digit is zero, the problem solver would have to be called before 
borrowing occurs. This means that rule LS would have to be deleted, so the 
procedure can’t borrow at all. No other deletion would do. Hence, the problem 
solver must be powerful enough to synthesize the whole borrow procedure so that 
Diff-0-N=N will borrow correctly when the top digit is not 0. However, allow- 
ing such powerful heuristics abandons one of the major principles of the theory: 
the repair generator is a loccrl problem solver. Dropping this principle allows the 
theory to be too easily tailored to the data. Also, this locality principle could turn 
out to be a very important one in a theory of learning. So, let us leave the 
problem solver weak, and search for another solution to undergeneration. 

3.3 Interrupt Conditions and the “Periodic Table” 

On considering Diff-0-N=N, the undergeneration problem isn’t that the heuris- 
tics aren’t powerful enough, but the opportunities to perform repairs are too 
infrequent. For Diff-0-N=N, the Swap repair will suffice, but the place where 
this repair should be triggered does not involve a precondition violation. Indeed, 
the needed impasse occurs just when Borrow has been entered and T = 0 is true 
(T stands for the top digit in the current column, and B stands for the bottom 
digit). What is needed is a way to interrupt the execution of the procedure just 
when the goal Borrow is set and T = 0 is true. 

What follows is an ad hoc extension to Repair Theory. We have not 
incorporated it in the theory even though it doubles the empirical coverage. To do 
so would make the theory too easily tailored. However, it is described here as a 
target for explanation. If principles can be found that generate or constrain this 
extension, the increased coverage of this extension could be had by incorporating 
them in the theory. 

Suppose the deletion operator is replaced with a new operator that simply 
affixes a condition to a goal in such a way that when the goal is entered (i.e. is 
called by some rule’s right hand side), an impasse is generated. In other words, 
the operator attaches an itrtr~upt condirion to the goal. The interrupt condition 
installation operator will produce procedures that will trigger repair in hopefully 
just the right places. 

As an attempt to avoid infinite tailorability, we wdl stipulate that if a 
condition can be an interrupt for one goal, it I~US~ be an interrupt for any goal. 
Hence, T = 0 must generate bugs when attached to any of the four non-terminal 
nodes of the GAO graph of Figure 1 (we are cheating a little here by ignoring the 
top two nodes, which do the main coiumn traversal). This constraint is analogous 
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to the stipulation that the deletion operator can delete any rule (almost-the 
deletion blocking principles define the exceptions); the interrupt condition instal- 
lation operator can install an interrupt condition on any goal (almost). 

Naturally, a list of predicfions will have to be provided for use as interrup- 
tion conditions. T = 0 will be one. The following set of nine conditions has been 
tailored, through experimentation on the workbench, to optimize the empirical 
coverage of the extended theory: 

interrupt Conditions for Triggering Repairs 

T=OT=B B=O 
T<BT=l TRUE 
B = # (DoubleZero? T) (EverDecremented?) 

The only ones whose meaning might be obscure are those in the last row. 
B =# tests whether the bottom digit is a blank. (DoubleZero? T) is true if the top 
digit and the digit immediately to its left are both zero. (EverDecremented?) is 
true whenever at least one Deer action has happened in the current problem. To 
reiterate, these predicates have been chosen to fit the data; in a sense, they are 
just as ad hoc as a list of the bugs themselves. 

Using these nine conditions as interrupts, the number of bugs generated 
increases to 43 from the 22 of Repair Theory. Since there are currently 89 bugs in 
the data base, there is still an undergeneration problem, but it is drastically 
reduced by the replacement of deletion with interrupt conditions. Unfortunately, 
we do not know how many of the procedures generated by the extended theory 
are star bugs, due to the way the extension was implemented on the workbench. 

Figure 2 contains a “periodic table” of the procedures generated by the 
extended theory, (It is so named because it displays a pattern but doesn’t explain 
it, just as the periodic table of elements does.) It demonstrates the independence 
of impasses and repair heuristics in a particularly graphic manner. The impasses 
are displayed along the vertical axis, and the repair heuristics (some of them) 
along the horizontal axis. Each cell of the matrix represents the procedure formed 
by putting the given interrupt condition on the given goal, thus establishing an 
impasse, and applying the given repair heuristic to that impasse. In the matrix, a 
cell has a “B” in it if the procedure is a known bug or “OK” if it is the correct 
procedure. If the procedure violates a critic, “C” appears in the cell. The empty 
cells of the table are procedures that no critic triggers on and yet have not been 
observed. The point of the periodic table is that each row has more than one 
entry, and each column has more than one entry. This illustrates the indepen- 
dence of impasses and repairs. 

One problem with extending the theory with interrupt conditions is that 
there are no constraints on the set of interrupt condition predicates, and thus the 
extended theory is too easily tailored to fit the data. A second problem is that the 
extension degrades the theory’s domain independence. The predicates of the 
interrupt conditions are specific to subtraction (e.g. EverDecrement? mentions 
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decrementing). Hence, they are not as domain independent as the repair heuris- 
tics and the critics. 

A solution to both these problems is to genercrre the interrupt predicates 
instead of just postulating their existence. Since there are only nine predicates in 
the class, and the whole GAO graph is available as a potential source, it isn’t very 
difficult to devise some operators to generate the class. In fact, it is so errs!’ fhlrt 
we can’t tell which of severul nltemcrtive schemes is right, in the sense that it will 
produce accurate predictions when the theory is applied in a new domain. Our 
strategy is to look outside the theory for constraints on the choice of a scheme to 
generate the interrupt conditions. Hopefully, the generation of interrupt condi- 
tions will fall out of the learning mechanisms. To show how this might come 
about, consider the following story for how the interrupt condition T = 0 might 
be acquired. 

Suppose that a subject (actually our model of the subject) is missing 
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L9-the subject hasn’t learned about borrowing across zero. Suppose further that 
he doesn’t realize that T = 0 is a precondition of decrementing. When he 
encounters a decrement-zero impasse, he will attempt to subtract one from zero, 
perhaps by counting backwards, and discovers that he can not do so. That is, he 
discovers the precondition. Now he not only has the opportunity to abstract and 
remember his repair, but also to abstract and store the newly discovered precon- 
dition. Suppose that he abstracts the precondition, but in the process, he over- 
generalizes and thinks T = 0 is an exception not only to the “left half” of 
borrowing, but to the “right half” as well. That is, he generalizes from “you 
can’t borrowfiwr~ zero” to “you can’t borrow irrto zero.” The next time he 
processes a column of the form O-N, he believes he has a precondition violation, 
and hence does a repair. If he applied Swap Vertically, for example, the bug 
Diff-0-N=N would be generated. Applying the Dememoize repair heuristic gen- 
erates the bug Diff-0-N=O. So, this approach-overgeneralizing 
preconditions-can generate interrupt conditions. 

This approach to generating interrupt conditions is being explored and will 
be reported in (VanLehn, forthcoming). If it is successful, the effects of the ad 
hoc extension discussed above can be had by making a principled extension to 
Repair Theory. 

3.4 Acquisition of Critics 

Another approach to solving the undergeneration problem that is independent of 
the interrupt condition extension involves the critics. The proposal is to drop the 
stipulation that critics ~IIZ~CI~S filter out repairs. This amounts to saying that not all 
subjects have all critics. The approach seems at first sight an admirable one since 
at least one bug, Blank-Instead-of-Borrow, is generated only to be blocked by a 
critic, namely “don’t leave blanks in the middle of the answer.” Since this critic 
depends only on the form of the answer, it would veto the bug no matter how the 
bug is generated. The only way to let this bug exist is to turn off the critic. 
However, making critics optional increases tailorability drastically. To block a 
certain star-bug, *Blank-With-Borrow, one invokes the critic. To allow the 
observed bug, Blank-Instead-of-Borrow, one ignores it. 

The only way out of the dilemma is to try to say which subjects have which 
critics. This could probably be done in the context of a learning theory. The basic 
intuition is that since borrowing is taught early in the curriculum, it is plausible 
that the subject will not have abstracted the critic and hence Blank-Instead-of- 
Borrow can be safely generated. However, if one had gotten as far as learning 
how to borrow across zero, then such naivete would be extremely unlikely. Since 
the star-bug *Blank-With-Borrow knows how to borrow across zero, a subject 
who could generate it would also have the critic, and hence would filter it out. In 
short, it looks like a learning theory is once again necessary to increase the 
empirical adequacy of the theory. 
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3.5 Domain Independence 

In the case of Repair Theory, domain independence can be tested quite clearly. 
One picks a new domain, say multidigit multiplication or addition of fractions. 
The theorist devises a collection of GAO graphs that decompose the multiplication 
procedure in slightly different ways. If necessary, the repair heuristics are 
adapted to the new domain, but they remain specializations of the same weak 
methods. Those critics that are domain independent, notably the information 
theoretic ones, can be taken over; other critics can be added later. Each GAO 

graph is run through the deletion/repair program and produces a collection of 
predicted bugs. These bugs are used to initialize DEBUGGY’S data base. DEBUGGY 

is then run over the test results of a large number of subjects. Any subjects 
possessing predicted bugs will be found and their work checked by hand. After a 
sufficiently large number of bugs are verified, the procedures that did not occur 
are examined by expert (multiplication) diagnosticians to see if any star-bugs 
were generated. Carrying out this programme and \vel-$vi/lg ifs predictiom with- 
out major overhaul of the theory would demonstrate domain independence. 

The theory has been designed to be relatively domain independent, but it 
has not yet been put to the test. We expect it to be able to predict the bugs that 
occur during the learning of mathematical skills, such as arithmetic, algebra or 
calculus. Representation problems in other branches of mathematics involving 
spatial reasoning may prove too difficult. Other procedural skills, such as operat- 
ing reactors or computer systems, or controlling air traffic, are not out of the 
question. 

There is a pretheoretic constraint on the choice of the domain, namely that 
it be possible to observe bugs during the skill’s acquisition. Pragmatically, this 
means that the procedure has to be short enough that a student can solve enough 
test problems in a testing session to exhibit any systematic errors that may exist. 
Spreading the diagnosis across several testing sessions is not advisable since bugs 
can be highly unstable (see the discussion of bug migration below), making 
systematicity difficult to observe across sessions. A second problem is that 
devising a highly diagnostic set of test problems is extremely difficult, even for 
expert teachers. Some technical aids for developing diagnostic tests are discussed 
in (Burton, 1981). 

3.6 A Projection to Bug Frequency 

Repair Theory is a theory of which bugs occur. Two closely related kinds of data 
involve how often a bug occurs in the population (bug frequency), and how long 
a subject keeps a bug (bug stability). It turns out that some interesting aspects of 
these phenomena are qualitative ones. Hence, we can begin to speculate on how 
Repair Theory projects to these phenomena without getting involved in statistical 
calculation. 

As menioned above, it is necessary to adopt a projection hypothesis to 
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make the theory applicable to a phenomenon other than the one it was designed 
for. In the case of the frequency of occurrence of bugs, the obvious hypothesis 
to adopt is to assign each impasse and each repair heuristic a probability of occur- 
rence. The indepencence assumption of Repair Theory, when mapped over to the 
frequency domain by the projection hypothesis, predicts that the frequency of a 
bug should be the product of the probabilities of its impasse and its repair. 

However, complexities arise due to bugs derived without repair (i.e. there 
was no impasse) or by using multiple repairs. Adjustments would also have to’be 
made for filtering of repairs by preconditions and critics. Also, only a dozen bugs 
occur frequently enough that their relative frequencies can be reliably compared. 
Given these difficulties, we don’t expect to be able to verify the predictions in 
any rigorous way. Nonetheless, we have observed that the No-op, Swap and 
Refocus Left repairs are by far the most common, and that their relative fre- 
quency appears to be consistently higher than the other repairs across a variety of 
impasses. If this observation is correct, then support for the independence of 
impasses and repairs has been found in the frequency data. At the conclusion of 
the current testing program, we may be able to,present some data that support this 
informal observation. 

There is a very interesting pattern in the frequency data that has defied 
explanation until just recently. It involves the so-called “compound bugs” 
(Brown & Burton, 1978. The frequency data used below is contained in an 
appendix to a technical report superseded by that article. Copies of the appendix 
are available from the present authors. More comprehensive frequency data will 
be published in VanLehn & Friend, 1980). Some subjects are diagnosed as 
having two or more bugs at the same time. One such compound bug, for exam- 
ple, is Diff-0-N=N co-occurring with Borrow-Across-Zero. Compound bugs are 
quite common. 

However, bugs do not compound independently. That is, a successful 
model could not be constructed wherein primitive bugs are assigned a probability 
of occurrence such that the probability of a compound bug’s occurrence is the 
product of its constituents’ probabilities. For example, Borrow-From-Zero is 
much more common in isolation than Borrow-Across-Zero. However, the com- 
pound 

t 

Borrow-From-Zero, Diff-0-N=N] IS much less common than the com- 
pound Borrow-Across-Zero, Diff-0-N=N]. This could not be predicted by a 
simple linear model of bug compounding. 

Repair Theory provides such a variety of structure that it is not difficult 
to devise explanations for examples of nonlinear compounding. The particular 
example cited above, however, has defied explanation until just recently, when 
the search for a way to generate interrupt conditions led to the following tentative 
explanation. 

Suppose that the story given previously for the generation of Diff-0-N=N 
from preconditions is correct. That is, the discovery that one can’t decrement a 
zero is overgeneralized to become a T=O interrupt on borrowing irrfo as zero as 
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well as borrowing Finn a zero. Hence, Diff-0-N=N is derived from a 
decrement-zero impasse. But the decrement-zero impass would itself have to be 
repaired as well. Hence, Diff-0-N=N is derived at the same time as some 
decrement zero bug. 

This story predicts that Diff-0-N=N will occur more commonly with 
decrement-zero bugs than in isolation or with other bugs. From the limited 
frequency data on hand now, this appears to be the case. In particular, since 
Borrow-Across-Zero is a decrement-zero bug, but Borrow-From-Zero is not (its 
most common derivation is probably deletion of L12, which creates no im- 
passes), we have an explanation for the nonlinear compounding example men- 
tioned above. The story also predicts that decrement-zero bugs will occur much 
more commonly with O-N bugs than they do in isolation-another apparently true 
prediction. 

In short, we believe the structure of Repair Theory is sufficiently rich so 
that successful projections into the frequency data can be developed. The prob- 
lem in such a study would be, of course, to find some way to avoid infinite 
tailorability. A formal projection of the theory would be a major theoretical 
endeavor. 

3.7 A Projection to Bug Stability 

The study of bug stability is essentially a study of memory. To make Repair 
Theory contact this new topic, we once again need a projection hypothesis. One 
projection hypothesis involves the concept of cl pnrch r-ete~tion stmegy. A patch 
is the instantiation of a repair heuristic for a given impasse. A patch retention 
strategy determines when to commit repairs to memory. Let us assume that in 
addition to long term memory, there is some kind of memory which is sufficient 
to store a patch for the duration of a test (call it “intermediate term memory”). 
Given these two kinds of memory, a subject could have basically three stragegies 
for the creation and storage of patches: 

Patch Retention Strategies: 

I. At the first occurance of a certain impasse on a test, create a patch and use it 
throughout the test by sorting it in intermediate term memory (ITM). How- 
ever, don’t bother to put the patch in long term memory (LTM). 

2. Same as the above, but put the patch in LTM. 

3. At some or all of the occurances of the impasse, don’t use the patch that was 
(perhaps) stored in ITM, but instead create a new patch, use it and perhaps 
store it in ITM. 

If a subject always follows the first patch retention strategy, wherein he remem- 
bers a bug only for the length of the test, then we would expect to see a 
phenomenon we call “bug migration.” When the subject is given two tests a 
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couple of days apart (long enough to wipe out ITM but short enough that very 
little learning intervenes), we would observe a consistent bug on the first test and 
a consistent bur different bug on the second test. The first bug has “migrated” 
into the second bug. Repair Theory predicts that bugs which migrate into each 
other will be related in that they are different repairs to the same impasse. For 
example, Borrow-Across-Zero would migrate into Stops-Borrow-At-Zero, but 
not into Borrow-From-Zero. We have anecdotal evidence for this phenomenon, 
and are currently conducting a pilot experiment to verify bug migration. 

If a subject follows the second strategy of memorizing patches, then we 
would expect to find subjects with the same bug several months apart. Such 
subjects have been found. 

If a subject follows the third patch retention strategy of changing patches in 
the middle of a test, we would expect to find a phenomenon called “tinkering”. 
This means we would see a certain bug for part of a test, then a related bug for 
another part of the test, and so on. However, all *the hugs would have to be 
derivahie as different repairs to the same impasse. It is this constraint that all the 
bugs on the test be derived from the same impasse that separates tinkering from 
pure noise. Tinkering is difficult to spot because such subjects are not assigned a 
diagnosis by DEBUGGY since they are not consistently following a bug. However, 
by intensive hand examination of a small fraction of the data base, a few exam- 
ples of tinkering have been found. We are in the process of designing analytic 
tools to help us find more. 

In summary, there is some informal evidence that all three patch retention 
strategies exist. Their existance would be strong evidence of the veracity of 
Repair Theory, but the fact that the theory can already make such precise predic- 
tions confirms its worth. 

New Distinctions for Bugs. The notion of a patch retention strategy 
suggests that the empirical phenomenon of bugs is not necessarily just like the 
computer science notion of a bug. Since bugs in computer programs are just as 
stable as the rest of the program, it was assumed that the rules that encode bugs in 
procedural skills are just as stable as the correct parts of the skill. That is, we had 
been blinded by our metaphor. Indeed, bug stability was such an inherent part of 
our computational viewpoint that our first reaction to data suggesting bug migra- 
tion was shock and disbelief. We now see that a subtraction bug may be systema- 
tic and yet not stable. So, the patch retention strategy concept extends the 
original notion of bug that was used to describe systematic, stable behavior 
(strategy two) to include systematic but unstable behavior (strategy one, bug 
migration). 

3.8 A Projection to Latency 

There is a third phenomenon that could help us understand Repair Theory better. 
Children sometimes stop in the middle of a problem and appear to think very hard 
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about something. Often, they are just doing the mental equivalent of counting on 
their fingers in order to reconstruct a subtraction fact. However, it is possible that 
some of the thoughtful pauses might be due to problem solving. These pauses 
could provide support for a strong equivalence between the interpretation/repair 
coroutine and the cognitive mechanisms used by students to work problems. 

We propose the projection hypothesis that running the local problem solver 
takes more resources than running the GAO interpreter. Hence, a repair event will 
be signalled by a significant pause between two steps in a subject’s performance. 
This pause will occur the first time the impasse occurs on the test (and perhaps on 
subsequent occurrences if the subject is tinkering), and moreover the step follow- 
ing the pause must be generable by some repair to that impasse. Although a timed 
protocol of a third grader’s activity is guaranteed to have many superfluous 
pauses, the stringent conditions surrounding the pauses we are looking for may 
enable us to find them. 

Apparatus has been constructed to automatically collect such protocols. If 
it turns out to be impossible to find such pauses, the theory would not be 
overturned. Instead, it is likely that the projection hypothesis is wrong, namely, 
the local problem solver runs just as fast as the interpreter. 

3.9 Toward a Theory of Bug Acquisition 

There is no doubt that learning should play an active role in a theory of bugs since 
bugs develop during a period when the subjects are learning the skill. However, 
learning is a very difficult phenenomenon to study due to the longitudinal nature 
of the data, questions of motivation, and the variability of the subjects’ prior 
knowledge. And yet choices must be made about representation, primitives, 
process architecture and so on. It is very difficult to make these choices on an 
empirical basis especially given only the difficult data that a direct study of 
learning provides. A major service that a generative theory of bugs, which is 
based on comparatively clean data, could perform would be to give credibility to 
a set of principles that constrain a theory of skill acquisition. We believe the 
principles of Repair Theory do just that. 

Some of these principles serve to constrain the architecture of the learning 
model. For example, the loccrlir?, constraint on Repair Theory’s problem solver 
could be adopted. The prohibitions against multi-step lookahead and creation of 
non-primitive nodes when adopted by the learning model could perhaps explain 
why skills are best taught incrementally, one step at a time. That is, the locality 
constraint provides a precise hypothesis about how to make the learning model 
incremental. 

The overall architecture of Repair Theory-deletions, repairs and 
critics-serves to break the problem of forming a learning theory into several 
subproblems and to define constraints that tentative models for each must satisfy. 
In particular, a learning theory would need to 
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1, Replicate the effects of the deletion operator and the deletion blocking princi- 
ples with a method for generating incomplete procedures that is based on the 
teaching sequence of the skill. More importantly, this ~o~rlrl /rrtrX-e the method 
of’grtiemtiq iiicmiplete pi~~etlwes ~iiwc ~qvirt~ol i/i the .sm7sc hit it STYMIE 

wt lm~ to hr rq\i.wtl (as tlir tleletiou hlockitig principles wo~~ltl) to Iw 
con.si.stcwt uitli twb’ tcwcliiyg .sqwticr.s. 

2. Provide a mechanism to generate interrupt conditions, or at least the bugs that 
interrupt conditions can generate. 

3. Provide an explanation for how critics are abstracted from examples or 
specialized from domain independent heuristics in such a way that some of 
the critics can be missing early in the teaching sequence. 

These subproblems have been mentioned before as critical for improving 
the adequacy of Repair Theory. Solving them in the context of a theory of bug 
acquisition will hopefully allow a unified account wherein their solutions share 
qualitative if not structural properties with each other and with Repair Theory’s 
local problem solver. The attempt to unify these structures while preserving the 
principles of Repair Theory will lead to a learning theory that has limited tailora- 
bility and excellent support from the bug occurance data while making interest- 
ing, precise predictions about learning that can hopefully be verified without 
enormous longitudinal studies. 

Lastly, we expect a learning theory to provide an account for most of the 
bugs that Repair Theory has not been able to generate. There are several bugs 
which have cogent, albeit informal, explanations as cases of mis-abstraction. As 
an example, consider the bug Always-Borrow-Left. This bug always decrements 
the leftmost, top digit of a problem regardless of where the column that caused 
the borrow is. Suppose that the subject who has this bug was tested at a point in 
his schooling where he had only practiced borrowing on two column problems. 
In such problems, the correct digit to decrement is exactly the leftmost, top digit. 
The subject has not yet had problems of the proper form to descriminate between 
the “leftmost” abstraction and the “left-adjacent” abstraction. A learning 
theory that learns procedures from examples could perhaps predict that such 
mis-abstraction bugs will occur when the learning process is incomplete. In 
short, it appears that the solution to the undergeneration problem of Repair 
Theory could best be attacked by developing a learning theory for procedures. 

3.10 Summary and Concluding Remarks 

The major constraints on Repair Theory (presented in Section 2) are listed below: 

1. Repairs are independent of impasses. Any repair heuristic can be run on 
any impasse. Unless a critic or precondition filters it out, the repair will lead to a 
bug. 
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2. Critics and preconditions can both filter repairs and cause impasses. If a 
critic is hypothesized for one purpose, it must be usable for the other as well. 

3. The problem solver can not look ahead. A repair is filtered only if the 
action generated by it immediately violates a critic or a precondition. 

4. The problem solver can generate only primitive actions or calls to extant 
subgoals. 

5. The rules that represents the correct procedure can not have dead code. 
Each rule must be used during the correct solution of at least one subtraction 
problem. 

6. Any rule can be deleted, unless deletion is blocked by a deletion block- 
ing principle. 

7. Deletion blocking principles must be motivated by the learning se- 
quence of the skill. 

8. The repair heuristics must be specializations of domain-independent 
weak methods. For example, they can not mention the primitives of subtaction 
explicitly. 

The purpose of these principles is to constrain the tailorability of the 
theory. Without them, the theory would have so many degrees of freedom that it 
could be fit to any data, and consequently would lose predictive power. 

Since the theory is not able to generate all the known bugs, two extensions 
have been suggested. One is to replace deletion with interrupt conditions, and the 
other is to make critics optional. Both of these extensions are ad hoc in that they 
drastically increase the tailorability of the theory. Hehce, they have not been 
incorporated in the current theory but instead are being incorporated in a 
learning-based theory that is being built on top of Repair Theory. The empirical 
results of Repair Theory and the interrupt condition extension are: 

Repair Theory lntempt Conditions 

bs 21 
star-bugs 1 
correct procedures 1 

predicted bugs 10 

totat 33 

43 
unknown 
10 

unknown 

180 (apprx.) 

The theory can be projected to make predictions about several kinds of perfor- 
mance data, namely the frequency and co-occurrence of bugs, their stability 
between tests and even during tests, and the temporal latencies in the perfor- 
mance of subjects working problems. 

The theory has been designed to be relatively domain independent, but as 
yet it has not been applied to domains other than place-value subtraction. Inves- 
tigating new domains is an important direction for further research. 
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Perhaps one of the most important functions of a theory is to create new 
distinctions, new ways to look at the world. The distinctions created by this 
theory are based on a particularly active form of misunderstanding by the child. 
Since students were clearly not being taught the bugs, they must have been 
performing some form of invention. Overgeneralization and similar forms of 
misleaming just do not seem powerful enough to explain the existence of many 
bugs. Repair Theory formalized this intuition by making a clear distinction 
between incomplete procedures which are generated by mislearning or forget- 
ting, and the inventions that are necessary to account for certain bugs. 

But formalization for its own sake leads nowhere. Crucially, the formaliza- 
tion of repairs vs. misleaming has spawned a host of new general distinctions 
such as “impass, ’ ’ “repair heuristic, ” “critic” and “patch retention strategy” 
which may be of service in theories of wholly unrelated phenomena. In particu- 
lar, the notion of unstable but systematic errors may prove quite useful. 

Lastly, the struggle for empirical adequacy has forced us into building a 
whole inventory of theory formation tools. The prime tool is DEBUGGY-the data 
analysis tool that enables the whole investigation. Using the bugs uncovered by 
DEBUGGY, the workbench plays the role of the naive informant in linguistics-in 
a matter of days, a new version of the theory could be subjected to testing. This 
fast turn around time allowed us to methodically test a variety of representations 
and other details whose effects are very subtle. 

At this stage in our research, we are struck by how different the theory is 
from our initial intuitive approach of spinning hypothetical “stories” concerning‘ 
how each bug might have been produced. We quickly discovered that there were 
numerous possible stories for each bug. Was there a consistent basis to all those 
stories? This theory is a partial answer to that qyestuib, 
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Appendix 1 
Procedures Generated. by the Current Version of Repair 

Theory 

Deletions refer to the rules of the GAO graph of Figure 1. The names of repair 
heuristics are abbreviated. Although most of the abbreviations will be clear, two 
require some explanation. FAdd means to import an analogous action from 
addition. FSelf means to use an analogous action from subtraction. FSelf will not 
use an action from the subtree rooted by the deleted rule. This represents the 
constraint that one can not form an analogy to an action that has not yet been 
learned. For example, when L9 is deleted, Write9 can not be used by FSelf. 
Because L9 enters the subskill of borrowing across zero, which is the only part of 
the algorithm where Write9 is used, we can assume that Write9 has not yet been 
learned. 

*indicates a “star-bug”, a procedure that is so absurd that we doubt it will ever occur. 

?indicates a bug that has not occurred. 

Unmarked bugs have occurred. 

Delete 11: 

Delete 12: 

Delete 13: 

Delete 14: 

Ignore: 

Noop: 

Quit: 

Backup: 

swap: 

Left: 

Right: 

FAdd: 

Dememo: 

F&If: 

Delete L5: 

Ignore: 

Noop: 

Quit: 

Backup: 

swap: 

Left: 

416 

Impasse: None. 

Can’t-Subtract 

Deletion is,blocked by the Stipulated Orders deletion blocking principle 

(sea VanLehn 1980). 

Impasse: None. 

*Only-Do-Units-Column 

Impasse: Diff called with blank cell as second argument. 

inapplicable 

Quit-When-Bottom-Blank 

Quit-When-Bottom-Blank 

inapplicable 

filtered out by “Can’t subtract blanks” 

filtered out by “Can’t subtract blanks” 

Stutter-Subtract 

the correct procedure is regenerated 

inapplicable 

inapplicable 

Impasse: Diff called with T<B. 

inupplicoble 

filtered out by “No blanks inside the answer” 

Doesn’t-Borrow 

inappliarble 

Smaller-From-Larger 

filtered out by “Can’t subtract blanks” and “Don’t subtract when TCB” 
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Right: 

FAdd: 

Dememo: 

FSelf: 

Delete 16: Deletion blocked by Special Case deletion blocking principle. 

Delete L7: Impasse: None. 

Borrow-No-Decrement 

Delete LB: 

Ignore: 

Noop: 

Quit: 

Bockup: 

swap: 

Left: 

Right: 

FAdd: 

Dememo: 

FSelf: 

Delete 19: 

Ignore: 

Noop: 

Quit: 

Backup: 

swap: 

Ldt: 

Right: 

FAdd: 

Dememo: 

FSelf: 

filtered out by “Can’t subtract blanks” and “Don’t subtract when T<B” 

?Add-lnsteod-of-Borrow 

Zero-Instead-of-Borrow 

(SubBlank): ?Write-Toplnsteod-of-Borrow 

Impossa: Diff called with T<B after borrow hos been completed. 

inapplicable 

filtered out by “No blanks inside the answer” 

Doesn’t-borrow 

inapplicable 

Smaller-From-Larger-With-Borrow 

filtered out by “Can’t subtract blanks” and “Don’t subtract when T<B” 

filtered out by “Con’t subtract blanks” and “Don’t subtract when TiB” 

?Add-With-Borrow 

Zero-After-Borrow 

(SubBlank): ?Write-Top-With-Borrow 

Impasse: Deer colled with T=O. 

inapplicable 

Stops-Borrow-At-Zero 

Borrow-Won’t-Recurse 

Second impasse: called with T<B. Occurs on all problems. 

Ignore: inapplicable 

Noop: filtered out by “No blanks inside the answer” 

Quit: Borrow-Won’t-Recurse 

Backup: inapplicable 

swap: Smaller-From-Larger-lnsteod-of-Borrow-From-Zero 

Left: filtered out by “Don’t subtract with T<B” 

Right: filtered by “Can’t subtract blanks” B “Don’t sub- 

tract when T<B” 

FAdd: 

Dememo: 

F&If: 

?Add-Instead-of-Borrow-From-Zero 

Zero-Instead-of-Borrow-From-Zero 

(SubBlank): ?WritcTop-Insteod-of-Borrow-From- 

Zero 

filtered out by “Don’t decrement zero” 

generates the some impasses and procedures as deleting 111 

filtered out by “Don’t decrement twice”, “Don’t decrement blanks,” 

and “Don’t change o column after its answer is written.” 

Borrow-Add-Decrement-lnsteod-of-Zero 

Stops-Borrow-At-Zero 

(AddlO): Second Impasse: On problems where the zero that was bor- 

rowed from is over a zero, Diff trys to write o two digit number (10) os 

the answer, violating the answer overflow critic. A similar impasse 

occurs with zeros over blanks. 

Ignore: Borrow-From-Zero-Is-Ten 

Noop: filtered by “No blanks inside the answer” 

Quit: ?Borrow-From-Zero-Is-Ten-Quit-Answer-Overflow 

Bockup: inopplicoble 
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Delete L IO: 

De&e 11 1: 

Ignore: 

Noop: 

Quit: 

Bockup: 

swap: 

Left: 

Right: 

FAdd: 

Dememo: 

F&If: 

Delete L 12: 

Swap: inapplicable 

Left: filtered cut by “No answer overflows” 

Right: filtered out by “No answer overflows” 

FAdd: Borrow-From-Zero-Is-Ten-Carrying-Answer-Overflow 

Dememo: . inapplicable 

FSelf: inapplicable 

Deletion is blocked by Special Case deletion blocking principle. 

Impasse: Deleting 111 creates a procedure that does not change zeros 

to nines when borrowing c~ross zero. Consequently, a borrow is often 

needed in these “touched zero” columns. This borrow trys to decrement 

the same digit that was decremented on the first borrow, violating the 

“Don’t decrement twice” critic. 

Borrow-Across-Zero 

Borrow-Across-Zero-Touched-Zero-Is-Ten 

?Borrow-Across-Zero-Quit-On-Touched-Zero 

Second Impasse: Diff called with T<B. 

Ignore: inapplicable 

Noop: filtered by “No blanks inside the answer” 

Quit: ?Borrow-Across-Zero-Quit-On-Touched-Zero 

Backup: inapplicable 

swap: Borrow-Across-Zero-Touched-0-N = N 

Left: filtered out by “Don’t subtract when T<B” 

Right: filtered by “Can’t subtract blanks” (L “Don’t sub- 

tract when T<B” 

FAdd: Borrow-Across-Zero-Touched-O-N = N 

Dememo: Borrow-Across-ZerwTouched-O-N=0 

F&If: (SubBlank): Borrow-Across-Zero-Touched-O-N=‘0 

filtered out by “Don’t decrement zero” and “Can’t decrement a blank” 

filtered out by “Can’t decrement CI blank” 

filtered out by “Don’t decrement zero” 

?a subtle variant of Stops-Borrow-At-Zero 

inapplicable 

(Add 10): ?Borrow-Across-Zero-Add 1 0-For-Double-Deer 

Impasse: None. 

Borrow-From-Zero 



Appendix 2 
Description of Procedural Errors (Bugs) 

0-N=O/AFTEWBORROW 

When a column has a 1 that was changed to CI 0 by a previous borrow, the student writes 0 as the 

answer to that column. (914 - 486 = 508) 

0-N=N/AFTER/BORROW 

When a column has a 1 that was changed to o 0 by D previous borrow, the student writes the 

bottom digit ~1s the cmswer to that column. (512 - 136 = 436) 

l-l =O/AFTEWBORROW 

If a column starts with 1 in both top and bottom and is borrowed from, the student writes 0 as the 

answer to that column. (812 - 518 = 304) 

l-1 = l/AFmh0RR0~ 

If CJ column starts with 1 in both top and bottom and is borrowed from, the student writes 1 CIS the 

answer to that column. (812 - 518 = 314) 

ADD/BORROW/CARRY/SUB 

The student adds instead of subtracting but he subtracts the carried digit instead of adding it. (54 

- 38 = 72) 

ADD/BORROW/DECREMENT 

Instead of decrementing the student odds 1, carrying to the next column if necessary. 

863 893 

-134 -104 

749 809 

ADD/BORROWIDECREMENT/WlTtiOUT/CARRY 

Instead of decrementing the student adds 1. If this oddition results in 10 the student does not carry 

but simply writes both digits in the some space. 

863 8 93 

-134 -1 04 

749 7109 

ADD/INSTEAD/OF/SUB 

The student adds instead of subtracting. (32 - 15 = 47) 

ADD/NOCARRY/INSTEADOF/SUB 

The student adds instead of subtracting. If carrying is required he does not add the carried digit. 

(47 - 25 = 62) 

ALWAYS/BORROW 

The student borrows in every column regardless of whether P is necessary. (488 - 299 = 1159) 

ALWAYS/BORROW/LEFT 

The student borrows from the leftmost digit instead of borrowing from the digit immediately to the 

left.(733 - 216 = 427) 

419 
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BlANK/INSTEADOF/BORROW 

When o borrow is needed the student simply skips the column and goes on to the next (425 - 283 

= 22) 

BORROW/ACROSS/TOP/SMALLER/DECREMENTING/TO 

When decrementing a column in which the top is smaller thon the bottom, the student odds 10 to the 

top digit, decrements the column being borrowed into and borrow from the next column to the left. 

Also the student skips any column which hos a 0 over o 0 or a blank in the borrowing process. 

183 513 

- 95 -268 

97 254 

BORROW/ACROSS/ZERO 

When borrowing across o 0, the student skips over the 0 to borrow from the next column. If this 

muses him to have to borrow twice he decrements the some number both times. 

904 904 

- 7 -237 

007 577 

6ORROW/ACROSS/ZERO/OVERIBLANK 

When borrowing across o 0 over o blank, the student skips to the next column to decrement. (402 

- 6 = 306) 

BORROW/ACROSS/ZERO/OVER/ZERO 

Instead of borrowing across o 0 that is over o 0, the student does not change the 0 but decrements 

the next column to the left instead. (802 - 304 = 308) 

0ORROW/ACROSS/ZERO/UCHED/O-N=O 

Instead of borrowing across o 0, the student does not change the 0 but decrements the next column 

on the left instead. Also, if borrowing is needed in a column headed by o zero that should hove 

been changed, the student writes zero in the answer instead. (802 - 324 = 508) 

BORROW/ACROSS/ZEROtTOUCHED/O-N=N 

lnsteod of borrowing across o 0, the student does not change the 0 but decrements the next column 

to the left instead. Also, if borrowing is needed in o column headed by o zero that should hove 

been changed, the student writes the bottom digit in the answer instead. (802 - 324 = 528) 

BORROW/ACROSS/ZERO/TOUCHED/ZERO/IS/TEN 

Instead of borrowing across o 0, the student does not change the 0 but decrements the next column 

to the left instead. Also, if borrowing is needed in o column headed by a zero thot should hove 

been chon&d, the student odds ten to the zero but does no decrementing. (802 - 324 = 588) 

BORROWIADDIDECREMENT/INSTEADOF/ZERO 

lnsteod of borrowing across o 0, the student changes the 0 to 1 and doesn’t decrement any column 

to the left. (307 - 108 = 219) 

BORRO~/ADD/IS/TEN 

The student changes the number that causes the borrow into 10 instead of adding 10 to it. (83 - 29 

= 51) 

BORROW/DECREMENTINGITO/BY/EXTRAS 

When there is o borrow across O’s, the student does not odd 10 to the column he is doing but 

instead adds 10 minus the number of G’s borrowed across. 

308 3008 

-139 -1359 

168 1647 
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BORROW/DIFF/O-N=NSSMALL-LARGE=0 

The student doesn’t borrow. For columns of the form 0 - N he writes N as the answer. Otherwise 

he writes 0. (304 - 179 = 270) 

BORROW/DON’T/DECREMENT/TOP/SMALLER 

The student will not dwement a column if the top number is smaller thon the bottom number. 
732 732 

-484 -434 

258 298 

Wrong CWWCt 

BORROW/DON’T/DECREMENT/UNLES.S/BOTl’OM&MLLER 

The student will not decrement a column unless the bottom number is smaller than the top number. 

732 732 

-484 -434 

250 300 

BORROW/FROM/ALL/ZERO 

lnstwd of borrowing across O’s, the student &nges all the O’s to 9’s but does not continue 

borrowing from the column to the left. (3006 - 1807 = 2199) 

BORROWIFROM/BOl-TOM 

The student borrows from the bottom row instwd of the top one. 

07 a27 

-28 -208 

79 839 

BORROW/FROM&OTTO&‘INSTEAD/OF/ZERO 

When borrowing from a column of the form 0 - N, the student decrements the bottom number 

instead of the 0. 

600 108 

- 249 - 49 

379 79 

BORROW/FROM/LARGER 

When borrowing, the student decrements the larger digit in the column regardless of whether it is 

on the top or the bottom. (872 - 294 = 598) 

BORROW/FROM/ONE/IS/NINE 

When borrowing from o 1, the student treats the 1 (IS if it were 10, decrementing it to o 9. (316 - 

139 = 267) 

BORROW/FROM/ONE/ISITEN 

When borrowing from a 1, the student changes the 1 to 10 instead of to 0. (414 - 277 = 237) 

BORROWIFROMIZERO 

lnstwd of borrowing across a 0, the student changes the 0 to 9 but does not continue borrowing 

from the column to the left. 

306 3006 103 

-187 -1807 - 45. 

219 1299 158 

BORROW/FROM/ZERO/ISITEN 

When borrowing ocross 0, the student changes the 0 to 10 ond does not decrement any digit to the 

left. (604 - 235 = 479) 
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BORROW/FROMIZEROllS/TEN/CARRYING/ANSWER/OVERFLOW 

When borrowing across 0, the student changes the 0 to 10 and does not decrement any digit to the 

left. However, if the newly crwted 10 is over zero, the student carries instead of trying to write ten 

in the answer. (604 - 205 = 509) 

BORROW/FROM/ZERO&LEFT/OK . 

Instead of borrowing across o 0, the student changes the 0 to 9 but does not continue borrowing 

from the column to the left. However if the digit to the left of the 0 is over o blank then the student 

does the correct thing. 

306 3006 103 203 

-167 -1807 - 45 - 45 

219 1299 58 158 

wrong Wrong correct correct 

BORROW/FROMIZEROBLEFT/TEN/OK 

Instead of borrowing across o 0, the student changes the 0 to 9 but does not continue borrowing 

from the column to the left. However if the digit to the left of the 0 is o 1 over o blank then the 

student does the correct thing. 

306 103 203 

-187 - 45 - 45 

219 58 258 

wrong Correct wrong 

BORROW/IGNORE/ZERO/OVER/BLANK 

When borrowing across o 0 over o blank, the student treats the column with the zero os if it weren’t 

there. 

505 508 

- 7 - 7 

48 501 

wrong correct 

BORROW/INTO/ONE=TEN 

When o borrow is caused by o 1, the student changes the 1 to o 10 instead of adding 10 to it. (71 

- 38 = 32) 

When borrowing the student odds 10 correctly but doesn’t change any column to the left. (62 - 44 

= 28) 

BORROW/ONCE/THENISMALLER/FROt&‘LARGER 

The student will borrow only once per exercise. From then on he subtracts the smaller from the 

larger digit in each column regardless of their positions. (7127 - 2389 = 4278) 

BORROW/ONCE/WITHOLJT/RECURSE 

The student will borrow only once per problem. After that, if another borrow is required the student 

adds the 10 correctly but does not decrement. If there is o borrow across o 0 the student changes 

the 0 to 9 but does not decrement the digit to the left of the 0. 

535 408 

-278 -239 

357 269 

BORROW/ONLYIFROtvUTOPISh4ALLER 

When borrowing, the student tries to find o column in which the top number is smaller than the 

bottom. If there is one he decrements that, otherwise he borrows correctly. (9283 - 3566 = 5627) 
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BORROW/ONLY/ONCE 

When there ore several borrowers, the student decrements only with the first borrower. (535 - 
278 = 357). 

BORROW/SKIP/EQUAL 

When decrementing. the student skips over columns in which the top digit and the bottom digit ore 

the s~lme. (923 - 427 = 406) 

BORROW/TENIPLUSINEXT/DiGlT/lNTO/ZERO 

When o borrow is caused by CI 0 the student does not add 10 correctly. What he does instead is 

add 10 plus the digit in the next column to the left. He will give answers like this: (50 ~ 38 = 17) 

BORROW/TREAT/ONE/AS/ZERO 

When borrowing from 1, the student treats the 1 ~1s if it were 0; that is, he changes the 1 to 9 and 

decrements the number to the left of the 1. (313 - 159 = 144) 

BORROW/UNIT/DIFF 

The student borrows the difference between the top digit and the bottom digit of the current 

column. In other words, he borrows iust enough to do the subtraction, which then olwoys results in 

0. (86 - 29 = 30) 

BORROWIWON’TIRECURSE 

Instead of borrowing across o 0, the student stops doing the exercise. (8035 - 2662 = 3) 

BORROWEDIFROM4DON’TIBORROW 

When there ore two borrows in CI row the student does the first borrow correctly but with the second 

borrow he does not decrement (he does add 10 correctly). (143 - 88 = 155) 

CAN’T/SUBTRACT 

The student skips the entire problem. (8 - 3 = ) 

DECREMENT/ALUONIMULTIPLE/ZERO 

When borrowing across CI 0 and the borrow is caused by 0, the student changes the right 0 to 9 

instead of 10. (600 - 142 = 457) 

DECREMENT/BY/TWO/OVER/TWO 

When borrowing from o column of the form N - 2, the student decrements the N by 2 instead of 1. 

(83 - 29 = 44) 

DECREMENT/LEFTMOST/ZERO/ONLY 

When borrowing across two or more O’s the student changes the leftmost of the row of O’s to 9 but 

changes the other O’s to 10’s. He will give uwvers like: (1003 - 958 = 1055) 

DECREMENT/MULTIPLE/ZEROS/BY/NUMBER/TO/RIGHT 

When borrowing across O’s the student changes the rightmost 0 to D 9, changes the next 0 to 8, etc. 

(8002 - 1714 = 6188) 

DECREMENT/ON/FIRST/BORROW 

The first column that requires o borrow is decremented before the column subtract is done. (832 - 

265 = 566) 

DECREMENT/ONE/TO/ELEVEN 

Instead of decrementing o 1, the student changes the 1 to an 11. (314 - 6 = 2118) 

DIFF/O-N =0 

When the student encounters a column of the form 0 - N he doesn’t borrow; instead he writes 0 as 

the column answer. (40 - 21 = 20) 
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DIFF/O-N=N 

When the student encounters a column of the form 0 - N, he doesn’t borrow. lnsteod he mites N 

as the answer. (80 - 27 = 67) 

DIFF/O-N=N/WHENIEUJRROW/FROMI7.ERO 

When borrowing across a 0 and the borrow is caused by o 0, the student doesn’t borrow. lnsteod 

he wites the bottom number OS the column answer. He will borrow correctly in the next column or in 

other circumstances. 

100 400 

- 32 -240 

72 160 

DIFF/l-N=l 

When o column has the form 1 - N thqstudent mites 1 OS the column answer. (51 - 27 = 31) 

DIFF/N-0=0 

The student thinks that N - 0 is 0. (57 - 20 = 30) 

DIFF/N-N = N 

Whenever there is o column that has the some number on the top and the bottom, the student mites 

that number os the answer. (83 - 13 = 73) 

DOESN’T/BORROW 

The student stops doing the exercise when a borrow is required. (833 - 262 = 1) 

DON’T/DECREMENT/SECOND/ZERO 

When borrowing across o 0 and the borrow is covsed by o 0, the student changes the 0 he is 

borrowing across into o 10 insteod of Q 9. (700 - 258 = 452) 

DON’T/DECREMENT/ZERO 

When borrowing across a 0, the student changes the 0 to 10 instead of 9. (506 - 318 = 198) 

DON’T/DECREMENT/ZERO/CARRYING/ANSWEWOVERFLOW 

When borrowing across a 0, the student changes the 0 to 10 instead of 9. Howqer, if the newly 

created to is over o zero, the student carries instead of witing o ten as the ens- for that column. 

(506 - 308 = 2013) 

DON’T/DECREMENT/ZERO/OVER/BLANK 

When borrowing across o 0 that is over o blank, the student skips over the 0 ond decrements the 

next digit to the left. (305 - 9 = 106) 

DON’T/DECREMENT/ZERO/OVER/ZERO 

When borrowing across a 0 that is over another 0, the student skips over the 0 and decrements the 

next digit to the left. (305 - 107 = 208) 

WN’T/DECREMENTIZERO/UNTIU~~TT~MI~LANK 

When borrowing across o 0, the student changes the 0 to a 10 instead of a 9 unless the 0 is over a 

blank, in which core he does the correct thing. 

506 304 

-318 - 9 

198 295 

Wrong correct 

DOUBLE/DECREMENT/ONE 

When borrowing from a 1, the student treats the 1 os o 0 (changes the 1 to 9 ond continues 

borrowing to the left. (813 - 515 = 288) 
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FORGET/BORROW/OVER/BLANKS 

The student doesn’t decrement a number that is over a blank. (347 - 9 = 348) 

IGNORE/LEFTMOST/ONE/OVER/BLANK 

When the left column of the exercise has a 1 that is over a blank, the student ignores that column. 

(143 - 22 = 21) 

IGNORE/ZERO/OVER/BLANK 

Whenever there is column that has a 0 over a blank, the student ignores that column. (907 - 5 = 

92) 

INCREMENT/OVER/LARGER 

When borrowing from a column in which the top is smaller than the bottom, the student increments 

instead of decrementing. (833 - 277 = 576) 

INCREMENT/ZERO/OVER/BLANK 

When borrowing across a 0 over a blank, the student increments the 0 instead of decrementing. 

(402 - 6 = 416) 

N-9 =N-l/AFTER/BORROW 

If a column is of the form N - 9 and has been borrowed from, when the student does that column 

he subtracts 1 instead of subtracting 9. (834 - 796 = 127) 

N-N= l/AFTER/BORROW 

If a column had the form N 1 N and was borrowed from, the student writes 1 as the answer to that 

column. (944 - 348 = 616) 

N-N=P/PLUS/DECREMENT 

When o column has the same number on the top and the bottom the student mites 9 OS the answer 

and decrements the next column to the left even though borrowing is not necessary. (94 - 34 = 

59) 

ONCE/BORROW/ALWAYS/BORROW 

Once CI student has borrowed he continues to borrow in every remaining column in the exercise. 

(488 - 229 = 1159) 

C?UIT/WHEN/BOllOM/BLANK 

When the bottom number has fewer digits than the top number, the student quits as soon as the 

bottom number runs cut. (439 - 4 = 5) 

SIMPLE/PROBLEMISTUTTER/SUBTRACT 
When the bottom number is a single digit and the top number has two or more digits, the student 

repeatedly subtracts the single bottom digit from each digit in the top number. (348 - 2 = 126) 

SMALLERIFROMILARGER 

The student doesn’t borrow; in each column he subtracts the smaller digit from the larger one. (81 

- 38 = 57) 

SMALLEWFROMIlARGER/INSTEAD/OF/BORROW/FROM/ZERO 

The student does not borrow across 0. Instead he will subtract the smaller from the larger digit. 

306 306 

- B -148 

302 162 

SMALLEWFRO~L4RGER/WHEN/BORROWED/FROM 

When there are two borrows in a row the student does the first one correctly but for the second one 

he does not borrow; instead he subtracts the smaller from the larger digit regardless of order. (824 

- 157 = 747) 
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SMALLEWFROMIlARGER/WITn/BORROW 

When borrowing the student decrements correctly, then subtracts the smaller digit from the larger 

OS if he had not borrowed at all. (73 - 24 = 411) 

STOPS/BORROW/AT/MULTIPLE/ZERO 

Instead of borrowing across several &s, the student adds 10 to the column he’s doing but doesn’t 

change any column to the left. (4004 - 9 = 4005) 

STOPS/BORROW/AT/ZERO 

Instead of borrowing across o 0, the student adds 10 to the column he’s doing but doesn’t 

decrement from o column to the left. (404 - 187 = 227) 

STUTTER/SUBTRACT 

When there are blanks in the bottom number, the student subtracts the leftmost digit of the bottom 

number in every column that has o blank. (4369 - 22 = 2147) 

SUBIBOTTOMIFROMITOP 

The student always subtracts the top digit from the bottom digit. If the bottom digit is smaller, he 

decrements the top digit and adds 10 to the bottom before subtracting. If the bottom digit is zero, 

however, he writes the top digit in the answer. If the top digit is 1 greater than the bottom he writes 

9. He will give anwers like this. (4723 - 3065 = 9742) 

SUB/COPY/LEAST/BOTTOM/MOST/TOP 

The student does not subtract. Instead he copies digits from the exercise to fill in the answer space. 

He copies the leftmost digit from the top number and the other digits from the bottom number. He 

will give answers like this: (648 - 231 = 631) 

SUB/ONE/OVER/BLANKS 

When there are blanks in the bottom number, the student subtracts 1 from the top digit. (548 - 2 

= 436) 

TREAT/TOP/ZERO/AS/NINE 

When a borrow is caused by o 0, the student doesn’t borrow. Instead he treats the 0 as if it were cz 

9. (30 - 4 = 39) 

TREAT/TOP/ZERO/AS/TEN 

When o borrow is cowed by a 0, the student adds 10 to it correctly but doesn’t change any column 

to the left. (40 - 27 = 23) 

TREAT/ZERO/AS/NOTHING 

The rtvdent ignores 0’s. (407 - 5 = 42) 

ZERO/AFTER/BORROW 

When o column requires o borrow, the student decrements correctly but writes 0 as the answer. (65 

- 48 = 10) 

ZERO/INSTEAD/OF/BORROW/FROM/ZERO 

The student won’t borrow if he has to borrow across 0. Instead he will write 0 OS the answer to the 

column requiring the borrow. 

702 702 

- a -348 

700 630 

ZERO/INSTEAD/OF/BORROW 

The student doesn’t borrow; he writes 0 os the answer instead. (42 - 16 = 30) 


