
COGNITIVE SCIENCE 4, 37+4X (19130)

Repair Theory:
A Generative Theory

of Bugs in Procedural Skills

JOHN SEELY BROWN
KURT VANLEHN

Xeras Ptrlo Alto Kesetrrch Cenrrt

This paper describes a generative theory of bugs. It claims that all bugs of D
procedural skill con be derived by a highly constrained form of problem solving

acting on incomplete procedures. These procedures are characterized by formal
deletion operations that model incomplete learning and forgetting. The problem
solver and the deletion operator have been constrained to make it impossible to
derive “star-bugs”--xJgorithms that are so absurd that expert diagnosticians
agree that the alogorithm will never be observed as o bug. Hence, the theory not

only generates the observed bugs, it fails to generate star-bugs.

The theory has been tested on on extensive doto base of bugs for multidigit
subtraction that was collected with the aid of the diagnostic systems BUGGY and
DEBUGGY. In addition to predicting bug occurrence, by adoption of additional

hypotheses, the theory also makes predictions about the frequency and stability
of bugs, as well as the occurrence of certain lotencies in processing time during
testing. Arguments are given that the theory can be applied to domains other

than subtraction and that it con be extended to provide a theory of procedural
learning that accounts for bug acquisition. Lastly, particular care has been taken
to make the theory principled so that it can not be tailored to fit ony possible

data.

1. INTRODUCTION

This paper presents our current efforts to form a generative theory of bugs in
procedural skills. Given a procedural skill, it predicts which systematic errors or
/xcgs will occur in the behavior of students learning the skill.

1.1 Background: Bugs and “Bug Stories”

Over the past few years our group has been engaged in the task of fusing
computer science tools with modelling techniques from cognitive science in
order to construct systems for diagnosing systematic student errors. These diag-

379

380 BROWN AND VAN LEHN

nostic systems, BUGGY and more recently DEBUGGY, have been used to analyze
thousands of students’ work (Brown & Burton, 1978; Burton, 1981; VanLehn &
Friend, 1980) and have enabled us to construct an extensive catalogue of pre-
cisely defined systematic errors-or bugs for place-value subtraction. Several other
investigations of errors in arithmetic have uncovered the same “bug” phenome-
non (Buswell, 1926; Brownell, 1941; Roberts, 1968; Lankford, 1972; Cox,
1975; Ashlock, 1976; Young & O’Shea, forthcoming).

A child’s errors are said to be systematic if there exists a procedure that
produces his erroneous answers. In nearly all cases, we have found that systema-
tic errors are minor peturbations from the correct procedure for that skill. Pre-
cisely defined erroneous variations of a procedure are known as bugs. To say that
a subject “has” a certain bug is to predict not only which problems he will
answer incorrectly on a test, but also to predict the digits of those answers as
well. Because an entire test’s answers must be generated by a bug before we are
willing to say the bug exists, there is very little chance that bugs are just “ran-
dom” errors. Indeed, bugs seem to be complex, intentional actions reflecting
mistaken beliefs about the skill. This is not to say that random, unsystematic
errors do not occur. They do. But such errors have the appearance of “slips,”
where the subject did something which they did not intend to do. (Norman, 1979,
argues for the widespread existence of slips in adult performance.) The subtleties
of the slip/bug distinction and the data analysis techniques that were used to
determine the difference are discussed in VanLehn (forthcoming). For this paper,
we will assume the viability of the bug concept. Appendix 2 lists the subtraction
bugs that we have observed.

BUGGY and DEBUGGY provided both a notation for precisely describing
bugs and a powerful diagnostic tool which we used to sieve large amounts of
student data in search of still unaccounted for errors, which could then be
analyzed by hand to determine if they stemmed from a new, previously undisco-
vered bug. Now that several thousand student tests have been analyzed, we have
reached a stage where our data base of bugs is converging. We are able to
account for a substantial number of student errors and only a small number of
new bugs are being discovered.

This rather extensive data base of bugs now enables a much deeper ques-
tion to be investigated, namely, what is the cause of these bugs and why do just
they occur and not others? Whereas our earlier effort explained a student’s errors
as symptoms manifested by bugs in a correct procedure, our current effort is to
explain these known bugs in terms of a set of formal principles that transform a
procedural skill into all of its possible buggy variants. We shall call the set of
principles and the process that interprets them a generative theor?! of bugs. Using
“+” to mean “explains,” this can be graphically stated:

generative theory of bugs + bugs + systemutic errors

The challenge of a generative theory of bugs is twofold. It must generate all the
known or expected bugs for a particular skill and it must generate no others.

REPAIR THEORY 381

Many bugs appear to have a rational basis. That is, it is often easy to
construct a plausible “bug story” about how a certain bug could have been
acquired. We are not alone in this belief in rational genesis. Young and O’Shea
(forthcoming) show that models of bugs can be constructed by editing a model of
the correct skill in such a way that most of the edits have plausible, albeit
informal explanations. For example, a model of a certain, observed bug is
created by replacing the rule that normally decides when to borrow by a rule that
says to borrow always. By similar replacements, deletions and additions, models
for many common bugs can be created. However, it is not the case that every
possible edit creates a model for a bug-the theorists must carefully select the
edit. Hence, the fact that editing can produce models for bugs is just a tribute to
the expressive power and modularity of their representation language. What is
important are the bug stories that accompany and presumably constrain most of
the edits they describe. For example, in describing the edit mentioned above,
they say “Such a rule could result from a student’s believing that borrowing is an
essential part of subtraction, perhaps as a consequence of being given a series of
examples in which borrowing was always necessary.” Such bug stories are
insightful but informal. A generative theory can be viewed as formalizing such
bug stories. Indeed, before we constructed our generative theory, we constructed
multiple bug stories for each of our bugs in order to discover possible patterns
that would enable us to decide which of each bug’s stories to choose in order to
build a unified theory.

1.2 The Key Idea is Repairing Impasses

In this paper we describe our current efforts to form a generative theory of bugs,
one that is capable of explaining why we found the bugs that we did and not other
ones, one that is capable of explaining how bugs are caused, and most impor-
tantly, one that is capable of predicting what bugs will exist for procedural skills
we have not yet analyzed.

The theory is motivated by the belief that when a student has unsuccess-
fully applied a procedure to a given problem, he will attempt a repair. Let us
suppose that he is missing a fragment of some correct procedural skill, either
because he never learned the fragment or maybe he forgot it. Attempting to
rigorously follow the impoverished procedure will often lead to an impawe. That
is a situation in which some current step of the procedure dictates a primitive
action which the student believes cannot be carried out. For example, an impasse
would follow from an attempt to decrement a zero, provided the student knows
(or discovers) that the decrement primitive has as a precondition that its input
argument can’t be a zero. When a constraint or precondition gets violated the
student, unlike a typical computer program, is not apt to just quit. Instead he will
often be inventive, invoking his problem solving skills in an attempt to repair the
impasse so that he can continue to execute the procedure, albeit in a potentially
erroneous way. We believe that many bugs can best be explained as “patches”

382 BROWN AND VAN LEHN

derived from repairing a procedure that has encountered an impasse while solv-
ing a particular problem.

The key idea of the generative theory is the notion of /-ep~ir. Hence, we
refer to the theory as Repair Theory. A bug’s derivation in the theory has two
parts. The first is a series of operations that generate an incomplete procedure,
namely, a procedure that may reach an ~UI~XUS~ on certain problems. The second
part is a series of operations that represent the repair of the procedure so that it
can proceed. It is an important assertion of the theory that these two parts are
independent. That is, the kind of repair attempted depends only on the procedure
and its current impasse, not on how the incomplete procedure was derived.

This paper reports on work in progress. Although a precise theory will be
presented, it is not as empirically adequate as we would like. The first part of the
theory, namely that which generates incomplete procedures, has known in-
adequacies. However, the repair generation part appears adequate. The theory is
worth presenting now, in its naive form, because it raises many new distinctions
that have allowed us to frame several interesting theoretical and empirical ques-
tions in a sharp, clear fashion. In particular, several predictions concerning
phenomena such as processing time, bug stability and bug frequency, fall natur-
ally out of what was originally conceived of as a theory of bug occurrence.

The paper first presents the theory and gives examples of bug derivations.
The second half of the paper is a discussion of the methodology of our research
along with a careful statement of its claims and their empirical support. We have
tried to be very clear about what the core support is, and how it is extended
through adoption of hypotheses that project the claims of the theory to become
claims about other phenomena. We think such an examination of methodology is
important for understanding how complex theories of complex cognitive
phenomena can be evaluated and extended.

2. THE FORM OF THE GENERATIVE THEORY

As mentioned above, the generation of a bug has two parts: generation of an
incomplete procedure and generation of a repair to any impasse that that proce-
dure may encounter. Repair Theory defines the set of incomplete procedures by
applying a set of tleletim principles to a formal representation of the correct
procedure. The set of repairs is defined by a set of r-epctir heuristics and a set of
critics in the following manner. When an incomplete procedure is applied to a
problem and reaches an impasse, a set of repairs is performed by a gener-ure utd
test problem solver. The set of all observable repairs is characterized by the set of
repair heuristics in conjunction with a “tester” or filter which can reject certain
proposed repairs based on a set of critics. That is, the heuristics suggest repairs
and the critics veto some of them. Given this form, there are four major compo-
nents that must be designed:

REPAIR THEORY 383

1. A representation of the gi\lerl procetlural skill. In determining this, several
issues must be addressed. One concerns the representation language and its
associated interpreter. Another is the representation of the physical page which
bears the test problems. A very important issue concerns the structural decompo-
sition of the skill that is to be embedded in the chosen representation language.
The same procedural skill or method can often be decomposed in more than one
way, which can have subtle theoretical ramifications.

2. A set of principles for rleletirzg frtrgments of the correct procedure. These
principles will determine what parts of the original skill can be deleted, thereby
reflecting what parts of the procedure might become inaccessible in long term
memory or may never have been learned (given the circumstances of our testing,
it is often the case that students are given problems requiring subprocedures that
they have not been taught yet). For example, the simplest principle might assert
that any step of a procedure can be deleted; other principles might restrict the
deletions to reflect a possible learning sequence of the procedure.

The next two constituents concern the elements of the generate-and-test
problem solver charged with carrying out the requisite repairs.

3. A set of repair heuristics to propose repairs. The generator can examine the
preconditions that have been violated on a primitive and propose explicit repairs
based on a set of repair heuristics. Our later discussion of this component will
circumvent control issues of how one repair heuristic might be initially chosen
over another. Instead, we will focus on what the actual repair heuristics are and
claim that any heuristic whose repair is not rejected by the tester must generate a
bug.

4. A set of critics tofilter out some repairs. Closely allied to the generator is the
tester, which filters out those repairs that it considers to be unreasonable based on
the form of the solution stemming from the proposed patch. Again, our interest
here will be on the precise set of filtering conditions or “critics” and not so much
on the process of invoking the critics and performing the necessary backtracking.

There are several noteworthy points to the form of this theory. The most
important concerns its composite nature. We could have tried to account for all
the known bugs in a skill by searching for a set of transformations that operate on
the skill and directly produce all and only those bugs. Our theory, on the other
hand, involves two parts. The first part edits the skill as dictated by a set of
deletion principles which in themselves are not intended to explain all the sought
after bugs. Instead, each possible edit or deleted portion generates a procedural
variant which when followed (or executed) will often lead to an impasse that sets
the stage for part two, the repair process. This second part uses a set of repairs to
fix the procedure and allow it to continue.

It is the set of all vu/id reppairs (i.e. those uot filtered out b.v critics) to oil
possible impasses that is merrnt to predict the set of trll possible bugs.

384 BROWN AND VAN LEHN

2.1 The Method of Investigation

Since our primary concern is to provide a principled account of a set of buts and
to use these principles to predict bugs for skills yet to be analyzed, we invoke as
little problem solving machinery as possible to account for the data. We fully
recognize that there exists much more powerful problem solving models that
may, in fact, better capture what a student is actually thinking while inventing a
patch. We will also utilize as little of an actual process model as is possible and
instead proceed under the assumption that if a rule is applicable it will be used.
The trouble with invoking a process model is that it is hard to get a crisp
boundary on precisely what bugs will be generated by the model since, for
example, it is never certain what scheduling strategies a student might be using to
select his rules or what specialization strategies he might possess for transform-
ing a weak heuristic into a specific repair rule. We will sidestep such issues and
see just how far we can get with specific repair rules that apply universally.

It is particularly important not to interpret the deletion principles in process
model terms. We trre not drrimitzg thr~t N student knew the correct procedure,
then forgot part oj‘it. The tleletiotl principles ure tr fortwl chrrmcterixrtion of the
set of irlcomplete procedures, r~rul hence imptrsses, thtrt m-e wed and possi1d.v
repaired. One of us (VanLehn) is constructing a learning theory which can
generate that same set by simulating a student’s miscomprehension of examples
in the teaching sequence. We use a set of deletion principles operating on the
correct skill as a precise way to characterize the set of procedures that are subject
to repair while realizing that a deeper explanation for this set may be found in
theories of forgetting or mislearning.

The evaluation of a generative theory rests on its ability to generate all the
known bugs but to avoid predicting wild, improbable bugs. To expedite the
evaluation of such theories on our data base, a “workbench” has been im-
plemented on a computer. The workbench allows the construction of a repre-
sentation language and its deletion principles, then systematically applies a dele-
tion operator to every part of a correct procedure’s representation. This generates
a set of incomplete procedures, which after being repaired, are run on a highly
diagnostic screening test. Their answers are analyzed by the workbench, and the
set of known bugs, if any, that match each procedure’s behavior are reported.
Thus the workbench allows rapid comparison of representation languages, as
well as help in settling fine points in the structuring of a correct procedure’s
representation. Our experience has been that comparison of representations has
proven to be a powerful tool for zeroing in on the right skill decomposition. This
topic is treated in detail in (VanLehn, 1980).

We have adopted the principle that each piece of information in the repre-
sentation of a procedure must be used in the correct solution of at least one
problem. This principle rules out the representation of bugs as “dead code,” or
information that is accessed only in the case of a deletion. With no principles
governing the presence of dead code, allowing it would mean that the explana-

REPAIR THEORY 385

tion for a bug that involved the dead code would not be completely contained
within the theory, a situation we would like to avoid.

2.2 The Representation of the Procedure

The representation of procedures has an impact on all parts of the theory. Some
of the issues involved are the decomposition of the skill, the level of primitives,
and the language for expressing the procedure. A great deal of effort has been
spent comparing various choices along these dimensions in order to find ones that
maximize the expected empirical fit of the theory. The method used in this part of
the investigation involved extensive use of the workbench to assess the ramifica-
tions of a simplified version of the theory on the representation. The results of
this investigation are presented in a technical paper (VanLehn, 1980).

The language that was finally chosen to express procedures is a descendent
of production systems (i.e. a collection of condition-action rules, c.f. Newell &
Simon, 1972). There are several syntactic restrictions on the rules. Each rule’s
conditions must mention exactly one internal symbol (= goal). The other condi-
tions, if any, test some features of the external world (i.e. the test problem being
worked on). Each rule has exactly one action, which is either a primitive action
or a subgoal. Rules are labeled for ease of reference, but the labels play no role in
their interpretation.

Like production systems, rules are eligible to be run when their conditions
are true. When more than one rule is eligible, the following conflict resolution
strategies are applied in order until the choice is unambiguous:

Only q ow~t If this rule has been executed before, and the goal it matches this time is
the same instantiation (token) as the goal it matched last time, then eliminate.this rule

from consideration.

T/y special ccr.se rulesfirs!; If the conditions of this rule are a subset of the conditions
of some other eligible rule (i.e. the other rule is a special case of this role), then
eliminate this rule from consideration.

Stipulufecl o,-Art If there is still more than one eligible rule, then take the one that

occurs first in the list of rules.

These conflict resolution strategies are found in many production system lan-
guages (McDermott & Forgy 1978).

Unlike most production systems, rules are interpreted with a stack. When
the action of a rule is a goal, execution of that action pushes the current internal
state onto the goal stack, and the new goal becomes current. Only rules matching
the current goal are eligible to run. Goals have a type-like construction that
controls when they are exited (i.e. when the stack pops). Two types are AND and
OR. What the AND type means is to “exit only when all my rules have been
executed.” The OR type means to “exit as soon as one of my rules has been
executed. ”

The control structure described thus far is isomorphic to that found in

386 BROWN AND VAN LEHN

And/Or graphs (except that the “try special cases first” conflict resolution
strategy is not used-a minor difference). The nodes and. links of AO graphs
correspond, respectively, to the goals and rules of this language. However, this
language provides a generalization of the And and Or types of AO graphs. The
generalization of these two types is to allow a goal to exit when a given conrlirion

is true. This exit condition is named the “satisfaction condition” of the goal.
Rules of a goal are executed in sequence until either the goal’s satisfaction
condition becomes true, or all the applicable rules have been tried. Note that this
is not an iteration construct-an “until” loop-since a rule can only be executed
once. The AND types become satisfaction conditions consisting of the constant
FALSE. Since rules are executed until the satisfaction condition becomes true
(which it never does for the AND) or all the rules have been tried, giving the
AND goal FALSE as the satisfaction condition means that it always executes all its
rules. Conversely, OR'S become the constant TRUE-the goal exists after just one
rule is executed. The language is named Generalized And/Or graphs (GAO
graphs).

An important concept in the representation is “focus of attention.” By this
term, we mean where the procedure is in the problem, that is, its “current
location” on the test page. Focus is strongly associated with subgoals. Focus can
only be shifted by calling a subgoal-there is no assignment statement for focus.
Similarly, when control returns to a goal after a subgoal that it called is finished,
focus is restored as well. (In computer science terms, focus is bound locally. In
fact, focus is represented syntactically by giving arguments to goals just like the
arguments of procedures. For example, the SubCol goal which processes a
column has three arguments named TC, BC and AC which are bound by the caller
to the top, bottom and answer cells of the current column.) Thus, there are no
calls to a focus shifting function to move focus back to the initiating column after
a borrow is completed. Instead, focus is restored automatically when the goal
stack pops. In short, the procedure’s control location and its external location are
maintained in exactly the same manner.

Figure 1 shows the GAO graph for a standard version of subtraction taught
in the United States. Since it will be used for examples throughout this paper, it is
worth a moment to explain it. The Sub goal simply initializes the column traver-
sal to start with the units column. ColSequence is the loop across columns,
expressed recursively of course since there are no loop constructions in the
language. SubCol processes a column. If the bottom cell is blank, it writes the
contents of the top cell in the answer (L4). If the top digit is less than the bottom
digit, it calls the Borrow subgoal (L5). Otherwise, it calls the primitive Diff
which writes the difference on the top and bottom digits in the answer (L6).

The Borrow goal is a conjunction of borrowing into the column originating
the borrow (L8-Add10 is a primitive), and borrowing from the column (L7). By
convention, borrowing-from occurs before borrowing-into. Borrowing from the
next column is easy if its top digit is non-zero; the digit is decremented by the

REPAIR THEORY 387

The syntax is:

Goal (eoalf argu~re~~rs) Sarisfacrion Condition: @al’s sarisfacrion cor~dilior~
label: {rule k corld/lions} ---> m/e’s acrion
orher rulesforachieeing /he goal...

The rules for the version of subtraction used in this paper are:

Sub () Satisfaction Condition: TRUE
Ll: I} ---> (ColScqucnce RightmostTopCelI

RightmosrBotromCcll RightmostAnswerCell)

ColS;;luenc;TzFC AC) Satisfaction Condition: (Blank? (Next TC))
(SubCol TC AC AC)

L3: {} ---> (ColScquence (Next TC) (Next BC) (Next AC))

SubC;i (TC BC AC) Sarisfaction Condition: (NOT (Blank? AC))
{(Blank? BC)} ---> (WriteAns TC AC)

L5: $L:e;? TC BC)) ---> (Borrow TC)
L6: (Diff TC BC AC)

Borrow (TC) Sarisfaction Condition: FALSE
Ll: {) --->
LS: {} --->

(BorrowFrom (Next TC))
(Add10 TC)

BorrowFrom (TC) Satisfaction Condition: TRUE
L9: (BorrowFromZero TC) L1o: Iy-~f,“? WI --->

(Deer TC)

BorrowFromZero (TC) Satisfaction Condition: FALSE
Lll: {} ---> (Write9TC)
L12: {} ---> (BorrowFrom (Next TC) j

TC. BC and AC are variables. Their names are mneumonic for their contents, which happen to be
the cop. bottom and answer cells of a column.

The primitive actions and their associated preconditions are listed below. All of their arguments are
cells. The actions cxpccting digits in certain arguments have c precondition chat those cells not be
blank.

Diff -- Subtracts the digit contained in its second argument frcm the digit contained in its first
argument and wriccs the result in the third argument. The second argumenr can not be larger than
the first argument.

Deer -- Subtracts one from the digit contained in its argument and writes the result back in the
same cell. The inpur digit must be larger than zero.

Writchns -- W’ritcs the digit contained in its first argument in its second argument

Add10 -- Adds ten to chc digit contnincd in its argument and writes the result back in the same cell.

Write9 -- Writes a nine in irs argument Ihc cell can not be blank originally.

Figure 1. A GAO graph for D standard version of subtraction

primitive Deer (LlO). If the digit is zero, it is changed to a nine (Lll) and
BorrowFrom is called recursively (L12) to try to decrement the next column.
When borrowing is completed, control returns to SubCol. Because SubCol’s

388 BROWN AND VAN LEHN

satisfaction condition is not true yet, L6 runs and Diff takes the column dif-
ference .

Although there are many other versionslof subtraction, and several other
ways to express this version in the GAO language, the decomposition of figure 1
has been found to optimize the empirical predictions of the theory.

This concludes the discussion of the representation. As mentioned earlier,
there are arguments for each of the architectural features of GAO graphs. These
arguments are long and subtle enough to deserve a paper of their own (VanLehn,
1980).

2.3 Deletion

Concomitant with the development of the representation, a variety of deletion
principles were tried. The one that performed the best was deletion of rules.

When a rule is deleted, its sister rules will often be executed in its place,
which frequently leads to an impasse. For example, when L4 of Figure 1 has
been deleted, and the procedure is run on. the problem

27
-4

an impasse is reached in the tens column because the interpreter chases L6, the
only rule that applies given that L4 is gone. Running L6 results in calling the
primitive action Diff. Diff takes a column difference by taking the difference of
its first two arguments’ contents and writing the result in the cell pointed to by the
third argument. But Diff has a precondition that neither of its arguments be
blank. Since this precondition is violated when Diff is called on the tens column,
the procedure is at an impasse. This impasse can be repaired in a variety of ways.
For example, the procedure could simply do nothing instead of take the column
difference (the “no-op” repair heuristic). Control would return from Diff, and
ultimately the procedure would terminate normally leaving 3 as the answer. This
way of repairing the impasse generates the bug Quit-When-Bottom-Blank. (The
bug names were published (Brown and Burton, 1978) before Repair Theory was
developed, so some of the names are a little inappropriate.)

Not all deletions lead to impasses. For example, when L12 is deleted, the
only action that is executed during a borrow across zero is the action Write9,
which scratches out a zero and writes a 9 over it. No preconditions are violated,
so no repairs are needed. The resulting procedure is the bug Borrow-From-Zero.
A test item answered by this procedure would look like

207
128
179

Unconstrained deletion overgenerates. That is, deleting certain links Leads to

REPAIR THEORY 389

procedures that we have never observed, and moreover, the procedures are so
counter-intuitive that we strongly believe they never will be observed. Such
procedures are called “star-bugs” after the linguistic convention of putting a star
before sentences judged to be unacceptable. Deleting LlO would generate a
star-bug. The procedure resulting from the deletion never violates a precondition
and hence is not repaired. It has the strange property that it only borrows cor-
rectly when the borrow is from zereregular, “simple” borrows are not done.
A test item solved by this star-bug would be

3075
1298
2787

Intuitively, it seems implausible to delete the ordinary case while leaving the
special case intact since presumably the ordinary case had been mastered some
time before the special case had been taught. Indeed, in VanLehn’s learning
theory (forthcoming), learning the rule that is a special case of another rule, in
that its conditions are a super-set of the other rule’s conditions, requires the prior
existence of the ordinary-case rule. Hence, a deletion blocking principle can be
derived from a somewhat more plausible principle, namely, that a new rule is
forgotten more readily than an old one (or, recalling that the testee’s are often in
the middle of the subtraction curriculum, that rules are taught in the order that
they can be learned). In short, there is a basis in learning for the following
principle:

A Deleriorr Blockir~g Principle

If hw rules have the scrme goal md one is a special case of rhe orher rule (i.e. irs
condifions are <I superset of rhe more general rule’s condiriom), rhen the general rule
cm no/ be deleted unless rhe special cue rule is deleted m well.

Since L9 is a special case of LlO, the latter can not be deleted in isolation, and
hence the star-bug mentioned earlier is not generated. It may seem that incor-
porating a special-case predicate into the theory is ad hoc and unmotivated, but
this is not the case. Special case checking is needed anyway by the interpreter to
sequence rules (c.f. the preceding discussion of conflict resolution).

The deletion blocking principle is in fact just the tip of the learning theory
iceberg. We now believe that a better way to generate incomplete procedures
would involve a complicated derivation that mimics in part the learning sequence
of the subject prior to the point of testing. In this light deleting when constrained
by the deletion blocking principle can be seen as an elegant, simple way to derive
the incomplete procedures of subjects who never mis-learn anything, but have
only learned (or remembered) part of the total algorithm. Further comments on
this view will be made after discussion of the problem solver that generates
repairs.

390 BROWN AND VAN LEHN

2.4 Examples of Repair Generation

We believe that a student following a procedure that specifies that a particular
primitive is now to be executedbut which can’t be, for whatever reason, is apt to
invent some repair to circumvent his current dilemma. For example, suppose he
is trying to perform a column subtract with a larger number from a smaller
number and he can’t because there is no appropriate entry in his facts table (or
because he knows he can’t). What might he do? One obvious repair might be to
skip trying to execute that primitive action and move on to the next step of the
procedure. Another repair might be to simply quir doing the problem. Yet
another repair might be to snip the,focu.s lw-ticu//y before calling Diff-that is,
if it doesn’t work taking the bottom digit from the top one, try swapping them
around. And a last example might involve his being very clever and resorting to
invoking the counting-based subtraction procedure that he originally used to
generate or understand the facts table. For example, he might reason that if he
had five apples and Tommy took seven away, then he certainly wouldn’t have
any apples left. Or he might count backwards from five in synchrony with
counting up from seven, ending as the former becomes zero. Either way, the
overall effect of reverting to the “semantics ” of the facts table is to arrive at zero
as the column’s answer.

Examples of simple repairs. In a moment, the details of how repairs are
created will be presented. But first, we will go through some examples to see
how repair-generated bugs produce erroneous answers.

Suppose that rule L5 (see Figure 1) is deleted. This is the rule that says to
borrow when the top digit is too small. If L5 is deleted, then L6, the rule for
processing ordinary columns, will be executed on every column, including larger
from smaller (LFS) columns where one ought to borrow. LFS columns violate a
precondition of Diff (the action called by L6), namely that the first input number
be larger than the second input number. This precondition violation is an im-
passe, and the problem solver is called in to repair it.

Several bugs can be generated by repairing this impasse in different ways.
A natural repair is to skip the primitive whose precondition is violated. In this
example, the so-called “No-op.’ repair heuristic (because it replaces the primi-
tive with a null operation) generates a bug named Blank-Instead-of-Borrow.
Since Diff is simply skipped when its precondition is violated, the bug does not
write an answer in an LFs column.

Other repairs to the same impasse generate other bugs. If the “Quit” repair
heuristic is used, then the bug is Doesn’t-Borrow, because the problem is given
up as soon as a LFS column is encountered. A more complicated repair heuristic is
to swap cells when they are in the same column (as they are in this case). When
this “Swap Vertically” repair heuristic is used, the bug Smaller-From-Larger
results. This bug takes the absolute difference of each column’s digits.

An even more complicated repair heuristic is used to generate the Zero-

REPAIR THEORY 391

Instead-of-Borrow bug. This bug answers all LFS columns with zero. It is gener-
ated by forgetting about the facts table and revtirting to the counting procedure
that underlies it. As mentioned above, there are several procedural “semantics”
for the facts table that return zero when invoked with such arguments. We call
the repair “Dememoize” because it is the inverse of the computer programing
technique of “memorizing” a function by replacing it with a table that pairs its
inputs with the outputs it would generate if it had been run.

In short, four procedures are generated by repairing the same impasse four
different ways. We can summarize these procedures as:

Repairs Bugs

Skip

Quit

Swap Vertically

Dememoize

Blank-Instead-of-Borrow

Doesn’t-Borrow

Smaller-From-Larger

Zero-lnsteod-of-Borrow

These four heuristics can be used in conjunction with the deletion of L8 to
generate four more procedures. L8 is the rule that adds ten to the top of the
column being borrowed into. When L8 is deleted, the procedure does the decre-
ment part of borrow correctly but fails to add ten to the top digit of the column
which caused the borrow. Hence, after borrowing is done, and rule L6 is run,
Diff is entered with the column in its original LFS state. Hence, the precondition
that was mentioned above is violated, and an impasse occurs. Repairing this
impasse with the same four repair heuristics generate four new procedures:

Repairs Bugs

Skip

Quit

Swap Vertically

Dememoire

*Blank-With-Borrow

Doesn’t-Borrow

Smaller-From-Larger-With-Borrow

Zero-After-Borrow

The first procedure, *Blank-With-Borrow, is a star-bug. By convention, star-
bugs’ names are preceded with astericks. Star-bugs have not occurred and are
judged by experts to be so absurd that they will never occur. They should not be
generated by the theory. In this case, the generation of *Blank-With-Borrow is
blocked by a critic which filters out repairs that leave blanks in the interior of the
answer. This critic also filters out the observed bug Blank-Instead-of-Borrow,
which is generated by deleting L5, as illustrated just above. In order to avoid
generating the star-bug, it was necessary to forgo generation of a good bug.
Critics, and this tradeoff in particular, will be discussed shortly.

Examples of compound repairs. Sometimes the repair to one impasse
creates a procedure that has a second impasse. Repairing the second impasse can
result in bug, but on occasion the resulting procedure reaches a third impasse.

392 BROWN AND VAN LEHN

Although such a derivation could in principle go on forever, we have yet to see a
bug that required more than three repairs in its derivation.

To illustrate such compound repairs, suppose that rule L9 is deleted. L9 is
the rule that tells the procedure how to borrow from zero. When it is deleted, and
the procedure is given a problem that requires borrowing across zero, LlO will
run instead of the missing L9. Since LlO is the ordinary borrow rule, Decrement
will be called with zero as its input. This violates one of its preconditions.
Although many repairs lead immediately to bugs, a compound derivation can be
illustrated by supposing that this impasse is repaired by the heuristic “Backup. ”
Backup is a well known strategy in problem solving: one backs up control to the
last point where a choice was made. In this case, control moves up through
Borrow, which is an AND goal, and settles on SubCol. The effect of this shifting
of attention is to skip the Decrement operation and the Add10 operation. In other
words, instead of trying to decrement a zero, the procedure forgets about borrow-
ing entirely and returns to examining the LFS column, which is still in its original
form. Since the borrowing rule L5 has already once for this instantiation of
SubCol, it can not be run again, so the ordinary column processing rule L6 is run,
and Diff’s precondition is violated. The four repair heuristics mentioned above
now generate these procedures:

Repoirs Bugs

Skip ?Blank-Instead-of-Borrow-From-Zero
Quit Borrow-Won’t-Recurse

Swap Vertically Smaller-From-Larger-Instead-of-Borrow-From-Zero
Dememoize Zero-lnsteod-of-Borrow-From-Zero

Due to the critic that objects to blanks inside answers, the procedure ?Blank-
Instead-of-Borrow-From-Zero is filtered out. In this case, no harm nor good is
done, since it is neither an observed bug nor a star-bug. Procedures that are
possible bugs (i.e. the experts do not consider them absurd enough to be star-
bugs) but have not been observed are preceded by “?“.

In short, with just three deletions and four repair heuristics, we have
generated eleven different procedures (Doesn’t-Borrow is generated two dif-
ferent ways), eight of which are observed bugs. An important point to notice is
that repair is not always a simple process because the repair of the original
impasse can create secondary impasses.

Another important point is that there is not a one-to-one correspondence
between deletions and impasses: some deletions leave procedures that do not
violate any preconditions. For example, if rule L7 is deleted, the resulting proce-
dure never does the decrementing half of borrowing, but only the add-ten half.
This procedure does not violate and preconditions, and hence no repairs are
generated. This is the bug Borrow-No-Decrement. This repair-less generation of
bugs is not common. Only two of the nine possible deletions of rules in Figure 1
lead to impasse-free procedures. Hence, of all the bugs generated from this GAO
graph, the derivations of all but two involve some repair.

REPAIR THEORY 393

2.5 The Problem Solver Is Local

The architecture of the problem solver is very simple. First, a repair heuristic
proposes that a certain action be done instead of the primitive action that is stuck.
Second, the preconditions of the new action are checked. If a precondition is
violated, the repair is unusable. Also, each critic checks to see if its condition
would be violated by executing the action. If a critic is violated, the repair is
rejected as well (in the discussion section, we consider what the impact of
relaxing this last restriction would be on the empirical coverage of the theory). If
neither a precondition nor a critic is violated, the repair occurs and the procedure
derived from this repair is predicted to occur as a bug.

There are several ways that this architecture makes the problem solver
weak. First, there is no ability to “look ahead” and see what the effects of a
proposed repair might be some number of steps further in the problem. If there
were such an ability, then the problem solver could avoid having to do secondary
repairs by looking ahead far enough to see the secondary impasses such as the
ones involved in the compound repair mentioned above. However, bugs involv-
ing compound repairs have occurred, so it seems the problem solver should have
no ability to look ahead. In other words, the “vision” of the problem solver is
local-it can only see the current state of the interpreter and the subtraction
problem.

A second restriction is that the problem solver can propose only a single
action. That is, the solver can’t generate a repair that is a new goal, complete
with new rules for satisfying it. It can propose a primitive action (see VanLehn
1980 for a discussion of the “grain size” of the primitive actions) or a “known”
goal, such as Borrow. In other words, its repairs are small. Because of the local
“vision” of the problem solver and the restriction that its repairs be small, the
problem solver is called a loyal problem solver.

2.6 A Set of Repair Heuristics

The following set of repair heuristics seems fairly optimal. The empirical ade-
quacy of the theory given this set will be discussed in the discussion section of
the paper. We introduce the heuristics here, grouped under some suggestive
headings, in order to discuss some theoretical points:

Four Wed Methods or Genetwl Purpose Heuristics

1. Escape nrd Flee
a) Skip
b) Quit
c) Backup to last choice

II. Relocate/refocus the operntiorl
a) Swap Vertically

394 BROWN AND VAN LEHN

b) Refocus Left
c) Refocus Right

111. Use ~111 upertrtiotl hit uwked itf L/II trd0go~r.s .situotiot~&w
a) Use Increment (from carrying) for Decrement
b) Use a top-row operation (i.e. AddlO, Write9 or Decrement) to replace

another top-row operation.
c) Use a column operation (i.e. SubBlank, Diff) to replace another column

operation.
IV. Demenioi;e

The headings are meant to suggest that the repair heuristics are really just
instances of more general purpose heuristics. Take the third category for exam-
ple. The repair heuristic Increment for Decrement is just an instance of a general
heuristic: if incrementing worked in an analogous situation, namely the “left
half” of the regrouping operation of addition, then it ought to work here, in the
“left half” of the regrouping operation of subtraction.

In one sense, it is quite heartening that the repair heuristics that fit best
empirically can be viewed as instances of more general problem solving heuris-
tics. It is a little easier to believe that students bring a few powerful heuristics,
perhaps developed elsewhere, to subtraction than that they bring a diverse set of
special purpose subtraction repair heuristics. Indeed, we propose to constrain the
power of the theory by stipulating that all repair heuristics be tlo~oin i,rrlepe/r-
dent in that they could plausibly be derived from general purpose problem solv-
ing strategies. Although this is not very constraining, it allows us to hope that
equivalent repair heuristics will be found when the theory is applied to a new
domain. There will be more discussion of this point later.

There is a tradeoff in designing a set of repair heuristics. Too few heuristics
means an inability to generate some known bugs. But too many heuristics means
predicting nonbugs. For example, there is a bug called Stutter-Subtract where the
student reacts to nonrectangular problems by subtracting the last digit in the
bottom row from top digits that are over blanks. Here is an example of Stutter-
Subtract’s solution to a problem:

7654
31

4323

The Repair Theory analysis of this bug involves deleting the rule L4. Since this is
the rule that handles blanks in the bottom row, deleting it causes Diff to be
entered with a blank as its second argument, which causes a precondition viola-
tion. To generate Stutter-Subtract, we need a repair heuristic, Refocus Right.
(This heuristic searches horizontally, moving rightward from the place where
Diff expected to find its second argument. It stops at the first cell which is
nonblank, and gives the digit to Diff as the second argument.) In short, Refocus

REPAIR THEORY 395

Right seems necessary for generating Stutter-Subtract. However Refocus Right
can now be used to repair other precondition violations as well. Suppose, for
example, that it is used to repair the zero precondition of Decrement. This would
generate a procedure that instead of borrowing across zero would decrement the
column borrowed i~rro. This bug has never been observed, and seems rather
implausible. In short, one has a choice of failing to generate Stutter-Subtract, or
generating bugs that have not been observed.

We have chosen to accept the intuitively more plausible position that repair
heuristics are just special cases of general purpose problem solving heuristics,
and therefore we accept Refocus Right as a legitimate repair. To deal with the
overgeneration, we propose to use a set of cr7tic.s that test and filter out proposed
repairs.

2.7 Critics

In the generate-and-test architecture of the problem solver that creates repairs,
the “test” or filter component is driven by a collection of critics. A critic signals
that something about the current state is unusual. For example, decrementing a
digit that is the result of a previous decrement triggers a certain critic.

Critics, most likely, are tacitly acquired by the student’s observing and
abstracting the patterns that all computations appear to satisfy-especially those
that were produced by the teacher working through example subtraction prob-
lems. These abstractions fall naturally into several categories. The most obvious
of these concern the form of what gets written (the answer and the scratch
marks). Some examples of critics in this category are:

I. Form-of-the-Writing Critics (or Constraints)

I. Don’t leave a blank in the middle of the answer.
2. Don’t have more than one digit per column in the answer.
3. Don’t decrement a digit that is the result of a decrement.

Another category of critics has to do with the information flow. They could also
be induced from examples, or they may perhaps have been deduced from more
general beliefs about procedures. Some examples are:

II. Information Theoretic Critics

1. Don’t change a column after its answer is written (or more generally. each opera-

tion must make a difference to the answer)
2. Don’t borrow twice for the same LFS column (or more generally. avoid infinite

loops).

Originally, critics were included in the theory in order to prevent overgeneration.
When a procedure has been modified by repair, it may violate some critics. Such
procedures can not, by hypothesis, become bugs. Thus, for example, the No-op
repairs which lead to the unobserved procedures *Blank-With-Borrow and
?Blank-Instead-of-Borrow-From-Zero would be rejected because they leave a

396 BROWN AND VAN LEHN

blank in the answer, thus violating the “No blanks inside the answer” critic.
Critics explain why such procedures have not been observed.

After critics were incorporated in the theory, it was noted that the function
of filtering repairs was also being performed by the preconditions of the primi-
tives. That is, a repair heuristic sometimes generates an action that violates a
precondition, in which case it can not be used. For example, when L4 is deleted,
an attempt is made to execute Diff when the bottom cell in the column is blank.
This violates the precondition that Diff’s inputs must be digits. Repairing this
impasse with Swap Vertically’ produces an attempt to execute Diff with the other
input blank. Since this violates a precondition (in fact, the same precondition),
the Swap Vertically repair is reject. In short, preconditions also filter repairs, just
as critics do.

Since both critics and preconditions filter repairs, symmetry suggested that
violating a critic ought to create an impasse just as violating a preconditions does.
We tested this hypothesis, and found that indeed some bugs could be generated
from impasses triggered by critics. It had escaped our attention earlier since such
bugs are much less common than precondition-triggered bugs.

An example of a critic-triggered impasse involves the bug Don’t-
Decrement-Zero. This bug does borrowing across zero by changing the zero to a
ten instead of a nine. It cannot be generated from the version of subtraction of
Figure 1, but is generated instead from another common version. Whereas the
version of Figure 1 does borrowing across zero by changes the zeros to nines as it
moves to the left, the version needed here changes the zeros to tens as it moves
left, then decrements them to nine as it moves right. (This version is in fact the
one most often taught in school, and the version of Figure I is an optimization of
it.) To generate Don’t-Decrement-Zero, one deletes the rule that decrements the
newly written ten to nine as the procedure moves rightward. Hence, the net effect
is a procedure that changes zeros to tens as it borrows across them.

This deletion creates a procedure that does not violate any preconditions.
But it does violate a critic on certain problems. When the procedure must borrow
across a zero that is over another zero, such as

504
108

it first changes the upper zero to ten. When it later comes to processing the tens
column, it subtracts zero from ten and attempts to write ten in the answer. Since
ten is two digits long, there is a critic violation.

Most of the repair heuristics are inapplicable, but two succeed in generat-
ing bugs. The first is to form an analogy to addition: the units digit of ten is
written in the answer and the tens digit is carried to the next column. This
generates the bug Don’t-Decrement-Zero-Carrying-Answer-Overflow. The bug
Don’t-Decrement-Zero is generated by a hitherto unmentioned repair heuristic,
namely simply ignoring the critic violation. In this case, the action generated is

REPAIR THEORY 397

just to write ten as the column’s answer. The “Ignore” repair heuristic can only
be applied to critic-triggered impasses, which is why it wasn’t mentioned earlier.
Preconditions of primitives, almost by definition, can not be ignored.

The symmetry between preconditions and critics is to be built into the
theory as a principle:

Any condition which can trigger impasses can filter repairs, and vice-versa

This principle serves to constraint the class of critics. A new critic can not be
added to the class unless it can function both as a repair filter and as a trigger for
impasses. That is. adding a critic to block a certain star-bug may cause a different
star-bug to be generated via an impasse triggered by the new critic.

2.8 Filtering Repairs versus Triggering Secondary Impasses

(This subsection discusses some technical details of the theory and can be skip-
ped by the general reader.) Suppose a repair has just generated an action, and the
action violates a critic. Since a critic can both filter repairs and trigger impasses,
which will it do‘?

A convention is needed. The convention captures the intuition that the
student will not use a repair if he can tell there is something wrong with using it
(It the time he is cotr.sitle,-irr<q uhether to ll.se it However, if he can successfully
apply it before running into trouble, he will not backup and reject the repair but
instead will repair the impasse at hand. This is an intuition about the performance
of repair, but it can be captured with a locality constraint on the theory:

Given a repair and a procedure that has an impasse generated by running it on a certain

problem, if application of the repair heuristic to the impasse generates an action whose
execution would inwrcdiu/e/\ ~~iolrrre a critic or a precondition, then that repair is

,fi/rewt/ OUI as a repair of that impasse.

This definition is essentially a formal expression of the locality of the problem
solver. It says that the problem solver can not look ahead to see future violations
of critics and preconditions. Filtering occurs only when a violation is detected
concerning the proposed action in the context of the current state. For example,
the Backup repair to the “Don’t decrement zero” impasse, which was discussed
in section 2.4, generates an action that pops the goal stack. This popping action
does not violate any critics or preconditions, so the repair is not filtered. Of
course, when the stack is reset, the interpreter chases a rule that executes Diff on
the original LFS column, which violates a precondition as mentioned in section
2.4. But this violation can not be “seen” by the local problem solver at the time
it is considering whether to use the Backup repair. The problem solver can not,
by definition, predict what the interpreter will do after the popping action is
executed so it can not tell that Diff will be chosen to run.

398 BROWN AND VAN LEHN

A contrasting example is the application of Refocus Right to the same
decrement-zero impasse. On certain problems, such as

(4 5061
1278

the repair immediately violates a critic. On problem (a), the impasse occurs when
an attempt is made to decrement the zero in the hundreds column. Refocusing
right generates an action that would decrement the tens column. However, the six
has been decremented by a previous borrow, so this action would violate the
critic “don’t decrement twice. ” The problem sets up a situation where the use of
Refocus Right causes an immediate critic violation. By definition, Refocus Right
is filtered out as a repair to the decrement-zero impasse.

This example with Refocus Right illustrates a new difficulty with the
distinction between filtering and triggering. On some problem, such as that
displayed above, Refocus Right is filtered out as a repair for the given impasse.
However, on other problems, such as

(b) 5069
1278

it is not filtered out. The procedure generated by applying Refocus Right to the
impasse created by problem (b) is not the end-product of the derivation since it
will reach an impasse if it is run on problems (a). That is, we do not consider the
derivation of a procedure to have ended until the procedure can be applied to any
problem without reaching an impasse.

One solution to this problem is simply to let this second impasse be re-
paired. That is, we could allow a derivation to span more than one problem. But
this entails that all possible sequences of problems be investigated because dif-
ferent problem sequences can generate different procedures. The sequence [b, a]
generates procedures that the sequence [a, b] does not.

There is no way to avoid examining the behavior of a procedure on all
possible problems since we need to determine whether it is completely derived.
However, we can avoid examining all possible sequetms of problems by adopt-
ing the following constraint:

A repair is a valid repair to an impasse only if it is not filtered out on any problem

That is, a repair is valid only if it is universally unfiltered. To invalidate a repair,
it is only necessary that some problem exist where the repair violates a critic.

This definition seems to entail a search through an infinite number of
problems, thus raising the issue of decidability. In practice, however, the search
for problems to filter the repair is not really infinite. The crucial simplification
depends on the fact oat preconditions and critics are local:their conditions test
only the arguments of the action they filter, or in some cases the other cells in the
column referred to by the arguments. Because of this locality, one can apply the

REPAIR THEORY 399

repair, then examine just the column effected by the action the repair generates.
Since only a few hundred combinations of digits and blanks are possible for a
column, it is quite feasible to determine if there exists a column such that the
action violates a critic or precondition. Provided the preconditions and critics are
local, this suffices for checking all possible problems for filtering. This heuristic
argument is only meant to show that the definition is usable. It is not meant to
describe actual application of critics by a subject during a test situation-that
would require a performance theory.

. This definition of validity is not without its penalties. It causes us to reject a
repair which would otherwise have generated an observed bug, Borrow-From-
Bottom-Instead-of-Zero. Applying the Swap Vertically repair to the decrement-
zero impasse mentioned above generates an action that attempts to decrement the
bottom digit of the column. This succeeds on common problems, such as (a)
below, but violates the decrement-zero precondition on rare problems such as
(b), where both digits in the column borrowed from are zero.

(4 506 (b) 506
139 109

In a performance theory, one could regain the generation of Borrow-From-
Bottom-Instead-of-Zero by replacing the universal quantifier of the definition
with an assertion that the problems causing critic violation are rare enough that
the student will have practiced the use of the repair on many problems before
encountering a problem that causes a critic violation. The practice would “in-
stall” the repair so that the eventual critic violation would not cause its rejection,
but rather would trigger a secondary impasse. However, this not a performance
theory. Notions of “sufficient practice” and “installed repairs” are beyond its
scope, although they play a role in work to reported in (VanLehn, forthcoming).
The definition above is the best we have been able to devise within the generative
framework.

2.9 Summary

This completes the description of Repair Theory. In form, it is a process that
generates bugs using two mechanisms: a constrained rule deletion mechanism
acting on a representation of the correct procedure for the given skill, and a local
problem solver with a generate-and-test architecture that repairs the impasses that
arise during execution of the improverished procedures created by deletion.
There are four main “classes” or choices that determine the theory’s predictions:
(I) the representation used for the procedure that undergoes deletion, (2) the
constraints on the deletion operator, (3) the heuristics used to generate repairs,
and (4) the critics that are used for filtering repairs and triggering impasses. The
most remarkable feature of the theory is perhaps its attention to principles, such
as the independence of repairs and impasses. These are the topic of the next
section and will be summarized at its end.

400 BROWN AND VAN LiHN

The remainder of the paper considers the empirical adequacy of the theory,
and suggests some extensions. Appendix 1 details the derivations of all the
procedures that are generated from the version of subtraction presented in Figure
1. Each deletion is followed by the impasses, if any, that it entails. Impasses are
followed by the results of apply each of the repair heuristics. The predictions
stemming from this derivation are discussed in the next section.

3. RESULTS AND DISCUSSION

It is often thought that empirical adequacy is the only measure of a theory’s
worth. However, it is not very difficult to’get empirical adequacy if that is the
only goal. We propose five criteria for evaluating this theory, and by extension
other information processing theories of cognition.

3.1 Five Criteria for Theories

The first criterion is of course empirical. In the case of this theory, empirical
adequacy means generating all the observed bugs and none of the star-bugs. (A
star-bug is a procedure that can never occur as a bug.) Star-bugs are a necessity.
Unless some bugs are labeled a priori as being unable to occur, then something
which could generate all procedures (e.g. an exhaustive generator of GAO graphs)
would be empirically adequate since it would generate all the bugs. It is unfortu-
nate that we can not assume our data base is complete in that it contains all
possible bugs. Many of. the bugs that have shown us the most about how to
structure the theory also turn out to be rather rare. To fix the current data base as
an approximation of the set of all possible bugs would be to make the theory
virtually immune to major revisions instigated by the data. The bug that triggers
the crucial insight might be a rare one. Consequently, we must leave the door
open for new bugs, and that necessitates taking the judgment of experts as an
approximation of star-bugs.

The second criterion is the “tailorability” or degrees of freedom of the
theory. A theory that can be tailored to fit any data base is not saying much of
interest (Pylyshyn, 1980; forthcoming). For example, the ways that Repair
Theory can be tailored are by adding new repair heuristics, adding new critics, or
restructuring the GAO graph to get slightly different impasses. One way to limit
tailorability is to make the theorist pay a heavy price for such changes. That is,
any change to increase empirical adequacy must make other predictions that may
or may not be correct. In short, changes have entcrilrnents. For example, because
it is an axiom of the theory that repairs are independent of impasses, adding a
new repair heuristic in order to generate a certain bug will cause the theory to
predict many new procedures, namely all procedures that are derived by applying
the new heuristic to all the other impasses. Some of these predicted bugs may
exist, in which case the addition is good. But more often, the procedures are not

REPAIR THEORY 401

bugs and in fact may be star-bugs. So, adding a repair heuristic may entail
making many dubious if not incorrect predictions. By strict adherence to the
principles of the theory, such as impasse-repair independence, tailorability can
be limited.

Most theories of cognition are initially stated in a certain domain, in this
case subtraction. This is not surprising: to study thinking, the subjects must be
thinking about something. The natural question to ask at the completion of such a
domain-bounded study is to what extent does the theory depend on the domain.
Thus, the third criterion is the degree of domain independence of the theory. In
the case of Repair Theory, this means finding out what kinds of procedural skills
are such that (a) students’ misunderstandings as they learn the skill are stable
enough that they make systematic errors, (b) the systematic errors can be
analyzed as bugs, and (c) the bugs are predicted by Repair Theory.

The fourth criterion for the theory is its ability to elucidate phenomena
other than the one studied. One need not go outside the domain for such
phenomena. For example, Repair Theory could perhaps explain some of the
mysteries of “bug migration.” Bug migration is a phenomenon wherein a sub-
ject has a different bug on two tests given only a few days apart. This phenome-
non appears to have a pattern to it, in that only certain bugs “migrate” into each
other, and moreover, this migration appears to define an equivalence relation on
the set of all bugs. For example, Stops-Borrow-At-Zero has been observed to
migrate into Borrow-Across-Zero, and vice-versa. Now it just so happens that
these two bugs can be derived from the same deletion via different repair heuris-
tics. To explain the pattern, a “projection hypothesis” is adopted. In this case,
the hypothesis is that bugs will migrate into each other if they are derived by
different repairs to the same impasse. Note that without this hypothesis, Repair
Theory has nothing to say about bug migration. Moreover, the hypothesis might
not be quite right. One must have a projection hypothesis, but it could be wrong.
Hence, the empirical success of the projection supports the theory, but the lack of
empirical success does not refute it since the projection hypothesis could be
wrong.

The fifth criterion stems from a desire to replace Repair Theory with one
that is even deeper and has a strong sense of explanation to it. In that arithmetic is
certainly learned rather than innate, a learning theory seems essential to a com-
plete understanding of the cognition involved. Repair Theory is a theory of what
bugs exist. Its model is a process, which gives the derivation a chronology.
However, we have never asserted that this chronology has anything to do with
the chronology of a subject’s acquisition of a bug. The job of explaining acquisi-
tional chronology (or perhaps difficulty) belongs to a theory of learning. Much of
Repair Theory can be seen as groundwork for that learning theory. A number of
principles, such as the independence of impasses and repairs, could be taken as
constraints on the learning theory. In this light, Repair Theory succeeds to the
extent that such principles can be abstracted from it and made available to its
successor.

402 BROWN AND VAN LEHN

Having introduced the five criteria that Repair Theory will be measured by,
the tradeoffs in its evaluation can be discussed in detail.

3.2 Empirical Adequacy

Repair Theory using the GAO graph, the heuristics and the critics described above
generates 33 different subtraction procedures. GAO graphs for several other ver-
sions of correct subtraction have been tried, including one that does subtraction
without using scratch marks, but their predictions differed only slightly from the
predictions of the given GAO graph. Of the 33 procedures, 21 are well docu-
mented bugs, one is a star-bug, one is a correct procedure, and the other 10 have
not been observed and hence are the theory’s predictions for future bug discov-
eries. To give a sense of context, it is worth pointing out that when Repair
Theory was first tested in September 1979, only 16 of its 33 procedures were
known bugs. The current figures are from December 1979. So, in the intervening
three months, 6 of the predicted bugs were actually found. We fully expect to
find the other 10 predicted bugs eventually. The derivation of the 33 procedures,
as well as the derivations of the procedures that are filtered out by critics, are
summarized in Appendix 1.

The star-bug that is generated could be blocked, but only by adding an ad
hoc deletion blocking principle. The star-bug results from deleting the tail-
recursive call to ColSequence (L3) so that the procedure will only process the
units column. That in itself is not unusual, but since no other links are deleted,
the star-bug will borrow perfectly, even when it must borrow from zero. That a
student would have mastered borrowing and yet be unable to traverse the col-
umns is utterly unlikeiy. Blocking this star-bug requires a new deletion blocking
principle. Unfortunately, the new principle would have to end up mentioning
links from different nodes, namely L3 and L5. Since the other deletion blocking
principles mention only links from the same node, this means dropping a con-
straint on deletion blocking principles, a move that would lead us one step closer
to infinite tailorability.

In this case, such a move can be justified since the deletion mechanism is a
prime candidate for replacement by a learning-based mechanism. In other words,
we don’t think the constraint on locality of deletion blocking principles holds
universally, and since this leaves the principles virtually unconstrained (and
thus infinitely tailorable), there must be something wrong with the deletion
mechanism itself. We believe that it should be viewed as an instance of a much
more complicated sub-theory that takes into account the fact that many of our
subjects are in the middle of the subtraction curriculum. In short, the theory
overgenerates by one bug, but it can be easily blocked. However, blocking the
star-bug would leave the theory too unconstrained. Actually, the star-bug reveals
that deletion is a fundamental inadequacy in the theory.

The theory only generates 21 of the observed 89 bugs. This is a rather

REPAIR THEORY 403

severe undergeneration problem. Several extensions to the theory are possible.
Their pros and cons will now be discussed.

One extension is to give the problem solver more power by equiping it with
more powerful heuristics. For example, one of the bugs that can not currently be
derived is Diff-0-N=N. To generate this bug, which borrows normally except
when the top digit is zero, the problem solver would have to be called before
borrowing occurs. This means that rule LS would have to be deleted, so the
procedure can’t borrow at all. No other deletion would do. Hence, the problem
solver must be powerful enough to synthesize the whole borrow procedure so that
Diff-0-N=N will borrow correctly when the top digit is not 0. However, allow-
ing such powerful heuristics abandons one of the major principles of the theory:
the repair generator is a loccrl problem solver. Dropping this principle allows the
theory to be too easily tailored to the data. Also, this locality principle could turn
out to be a very important one in a theory of learning. So, let us leave the
problem solver weak, and search for another solution to undergeneration.

3.3 Interrupt Conditions and the “Periodic Table”

On considering Diff-0-N=N, the undergeneration problem isn’t that the heuris-
tics aren’t powerful enough, but the opportunities to perform repairs are too
infrequent. For Diff-0-N=N, the Swap repair will suffice, but the place where
this repair should be triggered does not involve a precondition violation. Indeed,
the needed impasse occurs just when Borrow has been entered and T = 0 is true
(T stands for the top digit in the current column, and B stands for the bottom
digit). What is needed is a way to interrupt the execution of the procedure just
when the goal Borrow is set and T = 0 is true.

What follows is an ad hoc extension to Repair Theory. We have not
incorporated it in the theory even though it doubles the empirical coverage. To do
so would make the theory too easily tailored. However, it is described here as a
target for explanation. If principles can be found that generate or constrain this
extension, the increased coverage of this extension could be had by incorporating
them in the theory.

Suppose the deletion operator is replaced with a new operator that simply
affixes a condition to a goal in such a way that when the goal is entered (i.e. is
called by some rule’s right hand side), an impasse is generated. In other words,
the operator attaches an itrtr~upt condirion to the goal. The interrupt condition
installation operator will produce procedures that will trigger repair in hopefully
just the right places.

As an attempt to avoid infinite tailorability, we wdl stipulate that if a
condition can be an interrupt for one goal, it I~US~ be an interrupt for any goal.
Hence, T = 0 must generate bugs when attached to any of the four non-terminal
nodes of the GAO graph of Figure 1 (we are cheating a little here by ignoring the
top two nodes, which do the main coiumn traversal). This constraint is analogous

404 BROWN AND VAN LEHN

to the stipulation that the deletion operator can delete any rule (almost-the
deletion blocking principles define the exceptions); the interrupt condition instal-
lation operator can install an interrupt condition on any goal (almost).

Naturally, a list of predicfions will have to be provided for use as interrup-
tion conditions. T = 0 will be one. The following set of nine conditions has been
tailored, through experimentation on the workbench, to optimize the empirical
coverage of the extended theory:

interrupt Conditions for Triggering Repairs

T=OT=B B=O
T<BT=l TRUE
B = # (DoubleZero? T) (EverDecremented?)

The only ones whose meaning might be obscure are those in the last row.
B =# tests whether the bottom digit is a blank. (DoubleZero? T) is true if the top
digit and the digit immediately to its left are both zero. (EverDecremented?) is
true whenever at least one Deer action has happened in the current problem. To
reiterate, these predicates have been chosen to fit the data; in a sense, they are
just as ad hoc as a list of the bugs themselves.

Using these nine conditions as interrupts, the number of bugs generated
increases to 43 from the 22 of Repair Theory. Since there are currently 89 bugs in
the data base, there is still an undergeneration problem, but it is drastically
reduced by the replacement of deletion with interrupt conditions. Unfortunately,
we do not know how many of the procedures generated by the extended theory
are star bugs, due to the way the extension was implemented on the workbench.

Figure 2 contains a “periodic table” of the procedures generated by the
extended theory, (It is so named because it displays a pattern but doesn’t explain
it, just as the periodic table of elements does.) It demonstrates the independence
of impasses and repair heuristics in a particularly graphic manner. The impasses
are displayed along the vertical axis, and the repair heuristics (some of them)
along the horizontal axis. Each cell of the matrix represents the procedure formed
by putting the given interrupt condition on the given goal, thus establishing an
impasse, and applying the given repair heuristic to that impasse. In the matrix, a
cell has a “B” in it if the procedure is a known bug or “OK” if it is the correct
procedure. If the procedure violates a critic, “C” appears in the cell. The empty
cells of the table are procedures that no critic triggers on and yet have not been
observed. The point of the periodic table is that each row has more than one
entry, and each column has more than one entry. This illustrates the indepen-
dence of impasses and repairs.

One problem with extending the theory with interrupt conditions is that
there are no constraints on the set of interrupt condition predicates, and thus the
extended theory is too easily tailored to fit the data. A second problem is that the
extension degrades the theory’s domain independence. The predicates of the
interrupt conditions are specific to subtraction (e.g. EverDecrement? mentions

REPAIR THEORY

Impasses Repairs
when what Noop Ouit SVJap L&l FAdd Fsen

I

T<B
T<B
T<B
B=#
B= #
B= t
T=O
T=O
T=O
T=l
T=l
T=l
T=l
T=B
T=B
T=B
T=B
EvD
EvD
EvD
EvD

SC B+C
BF B
BFZ
SC B
B B
BFZ B
SC C
BF
BFZ B
SC C
B C
BF
BFZ OK
SC C
B OK
BF
BFZ
SC B
B C
BF B
BFZ

= bug
q critic

B

B
B

B

OK

OK

B

B B+C
B C B

C
B OK

:K C NA
C B B

B
B+C C

B+C B

C C NA
C

OK OK OK

OK OK NA
B

C B
B B
B+C C NA

C
c c ct.

OK

C
B
B
B+C
B

C
OK

:K
C
C
C
B
C
C

SC = SubCol
B = Borrow

405

OK = correct procedure BF = BorrowFrom
NA = not applicable BFZ = BorrowFromZero

Figure 2. The “Periodic Toble”

decrementing). Hence, they are not as domain independent as the repair heuris-
tics and the critics.

A solution to both these problems is to genercrre the interrupt predicates
instead of just postulating their existence. Since there are only nine predicates in
the class, and the whole GAO graph is available as a potential source, it isn’t very
difficult to devise some operators to generate the class. In fact, it is so errs!’ fhlrt
we can’t tell which of severul nltemcrtive schemes is right, in the sense that it will
produce accurate predictions when the theory is applied in a new domain. Our
strategy is to look outside the theory for constraints on the choice of a scheme to
generate the interrupt conditions. Hopefully, the generation of interrupt condi-
tions will fall out of the learning mechanisms. To show how this might come
about, consider the following story for how the interrupt condition T = 0 might
be acquired.

Suppose that a subject (actually our model of the subject) is missing

406 BROWN AND VAN LEHN

L9-the subject hasn’t learned about borrowing across zero. Suppose further that
he doesn’t realize that T = 0 is a precondition of decrementing. When he
encounters a decrement-zero impasse, he will attempt to subtract one from zero,
perhaps by counting backwards, and discovers that he can not do so. That is, he
discovers the precondition. Now he not only has the opportunity to abstract and
remember his repair, but also to abstract and store the newly discovered precon-
dition. Suppose that he abstracts the precondition, but in the process, he over-
generalizes and thinks T = 0 is an exception not only to the “left half” of
borrowing, but to the “right half” as well. That is, he generalizes from “you
can’t borrowfiwr~ zero” to “you can’t borrow irrto zero.” The next time he
processes a column of the form O-N, he believes he has a precondition violation,
and hence does a repair. If he applied Swap Vertically, for example, the bug
Diff-0-N=N would be generated. Applying the Dememoize repair heuristic gen-
erates the bug Diff-0-N=O. So, this approach-overgeneralizing
preconditions-can generate interrupt conditions.

This approach to generating interrupt conditions is being explored and will
be reported in (VanLehn, forthcoming). If it is successful, the effects of the ad
hoc extension discussed above can be had by making a principled extension to
Repair Theory.

3.4 Acquisition of Critics

Another approach to solving the undergeneration problem that is independent of
the interrupt condition extension involves the critics. The proposal is to drop the
stipulation that critics ~IIZ~CI~S filter out repairs. This amounts to saying that not all
subjects have all critics. The approach seems at first sight an admirable one since
at least one bug, Blank-Instead-of-Borrow, is generated only to be blocked by a
critic, namely “don’t leave blanks in the middle of the answer.” Since this critic
depends only on the form of the answer, it would veto the bug no matter how the
bug is generated. The only way to let this bug exist is to turn off the critic.
However, making critics optional increases tailorability drastically. To block a
certain star-bug, *Blank-With-Borrow, one invokes the critic. To allow the
observed bug, Blank-Instead-of-Borrow, one ignores it.

The only way out of the dilemma is to try to say which subjects have which
critics. This could probably be done in the context of a learning theory. The basic
intuition is that since borrowing is taught early in the curriculum, it is plausible
that the subject will not have abstracted the critic and hence Blank-Instead-of-
Borrow can be safely generated. However, if one had gotten as far as learning
how to borrow across zero, then such naivete would be extremely unlikely. Since
the star-bug *Blank-With-Borrow knows how to borrow across zero, a subject
who could generate it would also have the critic, and hence would filter it out. In
short, it looks like a learning theory is once again necessary to increase the
empirical adequacy of the theory.

REPAIR THEORY 407

3.5 Domain Independence

In the case of Repair Theory, domain independence can be tested quite clearly.
One picks a new domain, say multidigit multiplication or addition of fractions.
The theorist devises a collection of GAO graphs that decompose the multiplication
procedure in slightly different ways. If necessary, the repair heuristics are
adapted to the new domain, but they remain specializations of the same weak
methods. Those critics that are domain independent, notably the information
theoretic ones, can be taken over; other critics can be added later. Each GAO

graph is run through the deletion/repair program and produces a collection of
predicted bugs. These bugs are used to initialize DEBUGGY’S data base. DEBUGGY

is then run over the test results of a large number of subjects. Any subjects
possessing predicted bugs will be found and their work checked by hand. After a
sufficiently large number of bugs are verified, the procedures that did not occur
are examined by expert (multiplication) diagnosticians to see if any star-bugs
were generated. Carrying out this programme and \vel-$vi/lg ifs predictiom with-
out major overhaul of the theory would demonstrate domain independence.

The theory has been designed to be relatively domain independent, but it
has not yet been put to the test. We expect it to be able to predict the bugs that
occur during the learning of mathematical skills, such as arithmetic, algebra or
calculus. Representation problems in other branches of mathematics involving
spatial reasoning may prove too difficult. Other procedural skills, such as operat-
ing reactors or computer systems, or controlling air traffic, are not out of the
question.

There is a pretheoretic constraint on the choice of the domain, namely that
it be possible to observe bugs during the skill’s acquisition. Pragmatically, this
means that the procedure has to be short enough that a student can solve enough
test problems in a testing session to exhibit any systematic errors that may exist.
Spreading the diagnosis across several testing sessions is not advisable since bugs
can be highly unstable (see the discussion of bug migration below), making
systematicity difficult to observe across sessions. A second problem is that
devising a highly diagnostic set of test problems is extremely difficult, even for
expert teachers. Some technical aids for developing diagnostic tests are discussed
in (Burton, 1981).

3.6 A Projection to Bug Frequency

Repair Theory is a theory of which bugs occur. Two closely related kinds of data
involve how often a bug occurs in the population (bug frequency), and how long
a subject keeps a bug (bug stability). It turns out that some interesting aspects of
these phenomena are qualitative ones. Hence, we can begin to speculate on how
Repair Theory projects to these phenomena without getting involved in statistical
calculation.

As menioned above, it is necessary to adopt a projection hypothesis to

408 BROWN AND VAN LEHN

make the theory applicable to a phenomenon other than the one it was designed
for. In the case of the frequency of occurrence of bugs, the obvious hypothesis
to adopt is to assign each impasse and each repair heuristic a probability of occur-
rence. The indepencence assumption of Repair Theory, when mapped over to the
frequency domain by the projection hypothesis, predicts that the frequency of a
bug should be the product of the probabilities of its impasse and its repair.

However, complexities arise due to bugs derived without repair (i.e. there
was no impasse) or by using multiple repairs. Adjustments would also have to’be
made for filtering of repairs by preconditions and critics. Also, only a dozen bugs
occur frequently enough that their relative frequencies can be reliably compared.
Given these difficulties, we don’t expect to be able to verify the predictions in
any rigorous way. Nonetheless, we have observed that the No-op, Swap and
Refocus Left repairs are by far the most common, and that their relative fre-
quency appears to be consistently higher than the other repairs across a variety of
impasses. If this observation is correct, then support for the independence of
impasses and repairs has been found in the frequency data. At the conclusion of
the current testing program, we may be able to,present some data that support this
informal observation.

There is a very interesting pattern in the frequency data that has defied
explanation until just recently. It involves the so-called “compound bugs”
(Brown & Burton, 1978. The frequency data used below is contained in an
appendix to a technical report superseded by that article. Copies of the appendix
are available from the present authors. More comprehensive frequency data will
be published in VanLehn & Friend, 1980). Some subjects are diagnosed as
having two or more bugs at the same time. One such compound bug, for exam-
ple, is Diff-0-N=N co-occurring with Borrow-Across-Zero. Compound bugs are
quite common.

However, bugs do not compound independently. That is, a successful
model could not be constructed wherein primitive bugs are assigned a probability
of occurrence such that the probability of a compound bug’s occurrence is the
product of its constituents’ probabilities. For example, Borrow-From-Zero is
much more common in isolation than Borrow-Across-Zero. However, the com-
pound

t

Borrow-From-Zero, Diff-0-N=N] IS much less common than the com-
pound Borrow-Across-Zero, Diff-0-N=N]. This could not be predicted by a
simple linear model of bug compounding.

Repair Theory provides such a variety of structure that it is not difficult
to devise explanations for examples of nonlinear compounding. The particular
example cited above, however, has defied explanation until just recently, when
the search for a way to generate interrupt conditions led to the following tentative
explanation.

Suppose that the story given previously for the generation of Diff-0-N=N
from preconditions is correct. That is, the discovery that one can’t decrement a
zero is overgeneralized to become a T=O interrupt on borrowing irrfo as zero as

REPAIR THEORY 409

well as borrowing Finn a zero. Hence, Diff-0-N=N is derived from a
decrement-zero impasse. But the decrement-zero impass would itself have to be
repaired as well. Hence, Diff-0-N=N is derived at the same time as some
decrement zero bug.

This story predicts that Diff-0-N=N will occur more commonly with
decrement-zero bugs than in isolation or with other bugs. From the limited
frequency data on hand now, this appears to be the case. In particular, since
Borrow-Across-Zero is a decrement-zero bug, but Borrow-From-Zero is not (its
most common derivation is probably deletion of L12, which creates no im-
passes), we have an explanation for the nonlinear compounding example men-
tioned above. The story also predicts that decrement-zero bugs will occur much
more commonly with O-N bugs than they do in isolation-another apparently true
prediction.

In short, we believe the structure of Repair Theory is sufficiently rich so
that successful projections into the frequency data can be developed. The prob-
lem in such a study would be, of course, to find some way to avoid infinite
tailorability. A formal projection of the theory would be a major theoretical
endeavor.

3.7 A Projection to Bug Stability

The study of bug stability is essentially a study of memory. To make Repair
Theory contact this new topic, we once again need a projection hypothesis. One
projection hypothesis involves the concept of cl pnrch r-ete~tion stmegy. A patch
is the instantiation of a repair heuristic for a given impasse. A patch retention
strategy determines when to commit repairs to memory. Let us assume that in
addition to long term memory, there is some kind of memory which is sufficient
to store a patch for the duration of a test (call it “intermediate term memory”).
Given these two kinds of memory, a subject could have basically three stragegies
for the creation and storage of patches:

Patch Retention Strategies:

I. At the first occurance of a certain impasse on a test, create a patch and use it
throughout the test by sorting it in intermediate term memory (ITM). How-
ever, don’t bother to put the patch in long term memory (LTM).

2. Same as the above, but put the patch in LTM.

3. At some or all of the occurances of the impasse, don’t use the patch that was
(perhaps) stored in ITM, but instead create a new patch, use it and perhaps
store it in ITM.

If a subject always follows the first patch retention strategy, wherein he remem-
bers a bug only for the length of the test, then we would expect to see a
phenomenon we call “bug migration.” When the subject is given two tests a

410 BROWN AND VAN LEHN

couple of days apart (long enough to wipe out ITM but short enough that very
little learning intervenes), we would observe a consistent bug on the first test and
a consistent bur different bug on the second test. The first bug has “migrated”
into the second bug. Repair Theory predicts that bugs which migrate into each
other will be related in that they are different repairs to the same impasse. For
example, Borrow-Across-Zero would migrate into Stops-Borrow-At-Zero, but
not into Borrow-From-Zero. We have anecdotal evidence for this phenomenon,
and are currently conducting a pilot experiment to verify bug migration.

If a subject follows the second strategy of memorizing patches, then we
would expect to find subjects with the same bug several months apart. Such
subjects have been found.

If a subject follows the third patch retention strategy of changing patches in
the middle of a test, we would expect to find a phenomenon called “tinkering”.
This means we would see a certain bug for part of a test, then a related bug for
another part of the test, and so on. However, all *the hugs would have to be
derivahie as different repairs to the same impasse. It is this constraint that all the
bugs on the test be derived from the same impasse that separates tinkering from
pure noise. Tinkering is difficult to spot because such subjects are not assigned a
diagnosis by DEBUGGY since they are not consistently following a bug. However,
by intensive hand examination of a small fraction of the data base, a few exam-
ples of tinkering have been found. We are in the process of designing analytic
tools to help us find more.

In summary, there is some informal evidence that all three patch retention
strategies exist. Their existance would be strong evidence of the veracity of
Repair Theory, but the fact that the theory can already make such precise predic-
tions confirms its worth.

New Distinctions for Bugs. The notion of a patch retention strategy
suggests that the empirical phenomenon of bugs is not necessarily just like the
computer science notion of a bug. Since bugs in computer programs are just as
stable as the rest of the program, it was assumed that the rules that encode bugs in
procedural skills are just as stable as the correct parts of the skill. That is, we had
been blinded by our metaphor. Indeed, bug stability was such an inherent part of
our computational viewpoint that our first reaction to data suggesting bug migra-
tion was shock and disbelief. We now see that a subtraction bug may be systema-
tic and yet not stable. So, the patch retention strategy concept extends the
original notion of bug that was used to describe systematic, stable behavior
(strategy two) to include systematic but unstable behavior (strategy one, bug
migration).

3.8 A Projection to Latency

There is a third phenomenon that could help us understand Repair Theory better.
Children sometimes stop in the middle of a problem and appear to think very hard

REPAIR THEORY 411

about something. Often, they are just doing the mental equivalent of counting on
their fingers in order to reconstruct a subtraction fact. However, it is possible that
some of the thoughtful pauses might be due to problem solving. These pauses
could provide support for a strong equivalence between the interpretation/repair
coroutine and the cognitive mechanisms used by students to work problems.

We propose the projection hypothesis that running the local problem solver
takes more resources than running the GAO interpreter. Hence, a repair event will
be signalled by a significant pause between two steps in a subject’s performance.
This pause will occur the first time the impasse occurs on the test (and perhaps on
subsequent occurrences if the subject is tinkering), and moreover the step follow-
ing the pause must be generable by some repair to that impasse. Although a timed
protocol of a third grader’s activity is guaranteed to have many superfluous
pauses, the stringent conditions surrounding the pauses we are looking for may
enable us to find them.

Apparatus has been constructed to automatically collect such protocols. If
it turns out to be impossible to find such pauses, the theory would not be
overturned. Instead, it is likely that the projection hypothesis is wrong, namely,
the local problem solver runs just as fast as the interpreter.

3.9 Toward a Theory of Bug Acquisition

There is no doubt that learning should play an active role in a theory of bugs since
bugs develop during a period when the subjects are learning the skill. However,
learning is a very difficult phenenomenon to study due to the longitudinal nature
of the data, questions of motivation, and the variability of the subjects’ prior
knowledge. And yet choices must be made about representation, primitives,
process architecture and so on. It is very difficult to make these choices on an
empirical basis especially given only the difficult data that a direct study of
learning provides. A major service that a generative theory of bugs, which is
based on comparatively clean data, could perform would be to give credibility to
a set of principles that constrain a theory of skill acquisition. We believe the
principles of Repair Theory do just that.

Some of these principles serve to constrain the architecture of the learning
model. For example, the loccrlir?, constraint on Repair Theory’s problem solver
could be adopted. The prohibitions against multi-step lookahead and creation of
non-primitive nodes when adopted by the learning model could perhaps explain
why skills are best taught incrementally, one step at a time. That is, the locality
constraint provides a precise hypothesis about how to make the learning model
incremental.

The overall architecture of Repair Theory-deletions, repairs and
critics-serves to break the problem of forming a learning theory into several
subproblems and to define constraints that tentative models for each must satisfy.
In particular, a learning theory would need to

412 BROWN AND VAN LEHN

1, Replicate the effects of the deletion operator and the deletion blocking princi-
ples with a method for generating incomplete procedures that is based on the
teaching sequence of the skill. More importantly, this ~o~rlrl /rrtrX-e the method
of’grtiemtiq iiicmiplete pi~~etlwes ~iiwc ~qvirt~ol i/i the .sm7sc hit it STYMIE

wt lm~ to hr rq\i.wtl (as tlir tleletiou hlockitig principles wo~~ltl) to Iw
con.si.stcwt uitli twb’ tcwcliiyg .sqwticr.s.

2. Provide a mechanism to generate interrupt conditions, or at least the bugs that
interrupt conditions can generate.

3. Provide an explanation for how critics are abstracted from examples or
specialized from domain independent heuristics in such a way that some of
the critics can be missing early in the teaching sequence.

These subproblems have been mentioned before as critical for improving
the adequacy of Repair Theory. Solving them in the context of a theory of bug
acquisition will hopefully allow a unified account wherein their solutions share
qualitative if not structural properties with each other and with Repair Theory’s
local problem solver. The attempt to unify these structures while preserving the
principles of Repair Theory will lead to a learning theory that has limited tailora-
bility and excellent support from the bug occurance data while making interest-
ing, precise predictions about learning that can hopefully be verified without
enormous longitudinal studies.

Lastly, we expect a learning theory to provide an account for most of the
bugs that Repair Theory has not been able to generate. There are several bugs
which have cogent, albeit informal, explanations as cases of mis-abstraction. As
an example, consider the bug Always-Borrow-Left. This bug always decrements
the leftmost, top digit of a problem regardless of where the column that caused
the borrow is. Suppose that the subject who has this bug was tested at a point in
his schooling where he had only practiced borrowing on two column problems.
In such problems, the correct digit to decrement is exactly the leftmost, top digit.
The subject has not yet had problems of the proper form to descriminate between
the “leftmost” abstraction and the “left-adjacent” abstraction. A learning
theory that learns procedures from examples could perhaps predict that such
mis-abstraction bugs will occur when the learning process is incomplete. In
short, it appears that the solution to the undergeneration problem of Repair
Theory could best be attacked by developing a learning theory for procedures.

3.10 Summary and Concluding Remarks

The major constraints on Repair Theory (presented in Section 2) are listed below:

1. Repairs are independent of impasses. Any repair heuristic can be run on
any impasse. Unless a critic or precondition filters it out, the repair will lead to a
bug.

REPAIR THEORY 413

2. Critics and preconditions can both filter repairs and cause impasses. If a
critic is hypothesized for one purpose, it must be usable for the other as well.

3. The problem solver can not look ahead. A repair is filtered only if the
action generated by it immediately violates a critic or a precondition.

4. The problem solver can generate only primitive actions or calls to extant
subgoals.

5. The rules that represents the correct procedure can not have dead code.
Each rule must be used during the correct solution of at least one subtraction
problem.

6. Any rule can be deleted, unless deletion is blocked by a deletion block-
ing principle.

7. Deletion blocking principles must be motivated by the learning se-
quence of the skill.

8. The repair heuristics must be specializations of domain-independent
weak methods. For example, they can not mention the primitives of subtaction
explicitly.

The purpose of these principles is to constrain the tailorability of the
theory. Without them, the theory would have so many degrees of freedom that it
could be fit to any data, and consequently would lose predictive power.

Since the theory is not able to generate all the known bugs, two extensions
have been suggested. One is to replace deletion with interrupt conditions, and the
other is to make critics optional. Both of these extensions are ad hoc in that they
drastically increase the tailorability of the theory. Hehce, they have not been
incorporated in the current theory but instead are being incorporated in a
learning-based theory that is being built on top of Repair Theory. The empirical
results of Repair Theory and the interrupt condition extension are:

Repair Theory lntempt Conditions

bs 21
star-bugs 1
correct procedures 1

predicted bugs 10

totat 33

43
unknown
10

unknown

180 (apprx.)

The theory can be projected to make predictions about several kinds of perfor-
mance data, namely the frequency and co-occurrence of bugs, their stability
between tests and even during tests, and the temporal latencies in the perfor-
mance of subjects working problems.

The theory has been designed to be relatively domain independent, but as
yet it has not been applied to domains other than place-value subtraction. Inves-
tigating new domains is an important direction for further research.

414 BROWN AND VAN LEHN

Perhaps one of the most important functions of a theory is to create new
distinctions, new ways to look at the world. The distinctions created by this
theory are based on a particularly active form of misunderstanding by the child.
Since students were clearly not being taught the bugs, they must have been
performing some form of invention. Overgeneralization and similar forms of
misleaming just do not seem powerful enough to explain the existence of many
bugs. Repair Theory formalized this intuition by making a clear distinction
between incomplete procedures which are generated by mislearning or forget-
ting, and the inventions that are necessary to account for certain bugs.

But formalization for its own sake leads nowhere. Crucially, the formaliza-
tion of repairs vs. misleaming has spawned a host of new general distinctions
such as “impass, ’ ’ “repair heuristic, ” “critic” and “patch retention strategy”
which may be of service in theories of wholly unrelated phenomena. In particu-
lar, the notion of unstable but systematic errors may prove quite useful.

Lastly, the struggle for empirical adequacy has forced us into building a
whole inventory of theory formation tools. The prime tool is DEBUGGY-the data
analysis tool that enables the whole investigation. Using the bugs uncovered by
DEBUGGY, the workbench plays the role of the naive informant in linguistics-in
a matter of days, a new version of the theory could be subjected to testing. This
fast turn around time allowed us to methodically test a variety of representations
and other details whose effects are very subtle.

At this stage in our research, we are struck by how different the theory is
from our initial intuitive approach of spinning hypothetical “stories” concerning‘
how each bug might have been produced. We quickly discovered that there were
numerous possible stories for each bug. Was there a consistent basis to all those
stories? This theory is a partial answer to that qyestuib,

ACKNOWLEDGMENTS

This research would have been impossible without the support of Richard Burton
and Jamesine Friend. We have benefitted from discussions with many people
including Richard Young, Alan Collins, Tom Moran, and Tim O’Shea. The
strong encouragement of Zenon Pylyshyn, James Greeno, and Lauren Resnick is
greatly appreciated. VanLehn is supported by grant NOO14-78-C-0022 from the
Office of Naval Research to the Learning Research and Development Center,
University of Pittsburgh.

REFERENCES

Ashlock, R. B. Error pcmvns in compurorion. Columbus, Ohio: Bell and Howell, 1976.
Brown, J. S. & Burton, R. B. Diagnostic models for procedural bugs in basic mathematical skills.

Cqnirive Science, 1978. 2, 155-192.

REPAIR THEORY 415

Brown, J. S. & VanLehn, K. Towards a generative theory of bugs. Proceedings of the Wingspread
Conference. Madison: University of Wisconsin, Wisconsin Research and Development Cen-
ter for Individualized Schooling. 1980.

Brownell, W. A. The evaluation of learning in arithmetic. In A~i/h~rc&c’ in Ge~te,-rr/ Etl~cccrrion. 16th

Yearbook of the National Council of Teachers of Mathematics. Washington, D.C.:
N.C.T.M., 1941.

Burton, R.B. DEBUCGY: Diagnosis of errors in basic mathematical skills. In D. H. Sleeman & J. S.
Brown (Eds.) /~rrr//i~e~rr ttrroring s!sfr,tt.s. London: Academic Press, I98 1

Buswell, G. T. Diog~tosric srdie.\ in trrifhmeric. Chicago: University of Chicago Press. 1926.
Cox. L. S. Diagnosing and remediating systematic errors in addition and subtraction computations.

The Arirhmeric Trrrcher, February 1975.
Lankford, F. G. Some computational strategies of seventh grade pupils. ERIC reports. School of

Education, Virginia University, 1972.
McDermott, J. & Forgy, C. L. Production system conflict resolution strategies. In D. A. Watemian

& F. Hayes-Roth (Eds.), ftrrrern-directed ir,ference S~SIEI~S. New York: Academic Press.
1978.

Newell, A. & Simon, H. A.. Hrohcrn prohlet~~ .so/r,ing, Englewood Cliffs. N. J.: Prentice-Hall, 1972.
Norman, D. A. Slips of the Mind and an Outline for a Theory of Action (CHIP report No. 88). La

Jolla: University of California. Center for Human Information Processing. 1979.

Pylyshyn. 2. W. Computation and Cognition: Issues in the foundations of cognitive science. The

Behtrr*io,n/ md Ertritt Sciertce.r , 1980.
Pylyshyn, 2. W. Contprtrctrim (m(/ Cqgniriotr, forthcoming.
Roberts, G. H The failure strategies of third grade arithmetic pupils. 771e Arirhrtleric Tedrer. May,

1968.
VanLehn, K. On the representation of procedures in Repair Theory. Pittsburgh: Umverhity of

Pittsburgh. Learning Research and Development Laboratory technical report, 1980.

VanLehn, K. & Friend, J. Results from DEBUGGY: An analysis of systematic subtraction errors. Palo
Alto California: Xerox Palo Alto Science Center technical report, 1980.

VanLehn, K. A rheorv of/m,q trcyui.ririou. Doctoral dissertation, Massachusetts Institute of Technol-
ogy. forthcoming.

Young, R. M. & O’Shea. T. Errors in Children‘s Subtraction. Submitted for publication, forthcom-

ing.

Appendix 1
Procedures Generated. by the Current Version of Repair

Theory

Deletions refer to the rules of the GAO graph of Figure 1. The names of repair
heuristics are abbreviated. Although most of the abbreviations will be clear, two
require some explanation. FAdd means to import an analogous action from
addition. FSelf means to use an analogous action from subtraction. FSelf will not
use an action from the subtree rooted by the deleted rule. This represents the
constraint that one can not form an analogy to an action that has not yet been
learned. For example, when L9 is deleted, Write9 can not be used by FSelf.
Because L9 enters the subskill of borrowing across zero, which is the only part of
the algorithm where Write9 is used, we can assume that Write9 has not yet been
learned.

*indicates a “star-bug”, a procedure that is so absurd that we doubt it will ever occur.

?indicates a bug that has not occurred.

Unmarked bugs have occurred.

Delete 11:

Delete 12:

Delete 13:

Delete 14:

Ignore:

Noop:

Quit:

Backup:

swap:

Left:

Right:

FAdd:

Dememo:

F&If:

Delete L5:

Ignore:

Noop:

Quit:

Backup:

swap:

Left:

416

Impasse: None.

Can’t-Subtract

Deletion is,blocked by the Stipulated Orders deletion blocking principle

(sea VanLehn 1980).

Impasse: None.

*Only-Do-Units-Column

Impasse: Diff called with blank cell as second argument.

inapplicable

Quit-When-Bottom-Blank

Quit-When-Bottom-Blank

inapplicable

filtered out by “Can’t subtract blanks”

filtered out by “Can’t subtract blanks”

Stutter-Subtract

the correct procedure is regenerated

inapplicable

inapplicable

Impasse: Diff called with T<B.

inupplicoble

filtered out by “No blanks inside the answer”

Doesn’t-Borrow

inappliarble

Smaller-From-Larger

filtered out by “Can’t subtract blanks” and “Don’t subtract when TCB”

REPAIR THEORY 417

Right:

FAdd:

Dememo:

FSelf:

Delete 16: Deletion blocked by Special Case deletion blocking principle.

Delete L7: Impasse: None.

Borrow-No-Decrement

Delete LB:

Ignore:

Noop:

Quit:

Bockup:

swap:

Left:

Right:

FAdd:

Dememo:

FSelf:

Delete 19:

Ignore:

Noop:

Quit:

Backup:

swap:

Ldt:

Right:

FAdd:

Dememo:

FSelf:

filtered out by “Can’t subtract blanks” and “Don’t subtract when T<B”

?Add-lnsteod-of-Borrow

Zero-Instead-of-Borrow

(SubBlank): ?Write-Toplnsteod-of-Borrow

Impossa: Diff called with T<B after borrow hos been completed.

inapplicable

filtered out by “No blanks inside the answer”

Doesn’t-borrow

inapplicable

Smaller-From-Larger-With-Borrow

filtered out by “Can’t subtract blanks” and “Don’t subtract when T<B”

filtered out by “Con’t subtract blanks” and “Don’t subtract when TiB”

?Add-With-Borrow

Zero-After-Borrow

(SubBlank): ?Write-Top-With-Borrow

Impasse: Deer colled with T=O.

inapplicable

Stops-Borrow-At-Zero

Borrow-Won’t-Recurse

Second impasse: called with T<B. Occurs on all problems.

Ignore: inapplicable

Noop: filtered out by “No blanks inside the answer”

Quit: Borrow-Won’t-Recurse

Backup: inapplicable

swap: Smaller-From-Larger-lnsteod-of-Borrow-From-Zero

Left: filtered out by “Don’t subtract with T<B”

Right: filtered by “Can’t subtract blanks” B “Don’t sub-

tract when T<B”

FAdd:

Dememo:

F&If:

?Add-Instead-of-Borrow-From-Zero

Zero-Instead-of-Borrow-From-Zero

(SubBlank): ?WritcTop-Insteod-of-Borrow-From-

Zero

filtered out by “Don’t decrement zero”

generates the some impasses and procedures as deleting 111

filtered out by “Don’t decrement twice”, “Don’t decrement blanks,”

and “Don’t change o column after its answer is written.”

Borrow-Add-Decrement-lnsteod-of-Zero

Stops-Borrow-At-Zero

(AddlO): Second Impasse: On problems where the zero that was bor-

rowed from is over a zero, Diff trys to write o two digit number (10) os

the answer, violating the answer overflow critic. A similar impasse

occurs with zeros over blanks.

Ignore: Borrow-From-Zero-Is-Ten

Noop: filtered by “No blanks inside the answer”

Quit: ?Borrow-From-Zero-Is-Ten-Quit-Answer-Overflow

Bockup: inopplicoble

418 BROWN AND VAN LEHN

Delete L IO:

De&e 11 1:

Ignore:

Noop:

Quit:

Bockup:

swap:

Left:

Right:

FAdd:

Dememo:

F&If:

Delete L 12:

Swap: inapplicable

Left: filtered cut by “No answer overflows”

Right: filtered out by “No answer overflows”

FAdd: Borrow-From-Zero-Is-Ten-Carrying-Answer-Overflow

Dememo: . inapplicable

FSelf: inapplicable

Deletion is blocked by Special Case deletion blocking principle.

Impasse: Deleting 111 creates a procedure that does not change zeros

to nines when borrowing c~ross zero. Consequently, a borrow is often

needed in these “touched zero” columns. This borrow trys to decrement

the same digit that was decremented on the first borrow, violating the

“Don’t decrement twice” critic.

Borrow-Across-Zero

Borrow-Across-Zero-Touched-Zero-Is-Ten

?Borrow-Across-Zero-Quit-On-Touched-Zero

Second Impasse: Diff called with T<B.

Ignore: inapplicable

Noop: filtered by “No blanks inside the answer”

Quit: ?Borrow-Across-Zero-Quit-On-Touched-Zero

Backup: inapplicable

swap: Borrow-Across-Zero-Touched-0-N = N

Left: filtered out by “Don’t subtract when T<B”

Right: filtered by “Can’t subtract blanks” (L “Don’t sub-

tract when T<B”

FAdd: Borrow-Across-Zero-Touched-O-N = N

Dememo: Borrow-Across-ZerwTouched-O-N=0

F&If: (SubBlank): Borrow-Across-Zero-Touched-O-N=‘0

filtered out by “Don’t decrement zero” and “Can’t decrement a blank”

filtered out by “Can’t decrement CI blank”

filtered out by “Don’t decrement zero”

?a subtle variant of Stops-Borrow-At-Zero

inapplicable

(Add 10): ?Borrow-Across-Zero-Add 1 0-For-Double-Deer

Impasse: None.

Borrow-From-Zero

Appendix 2
Description of Procedural Errors (Bugs)

0-N=O/AFTEWBORROW

When a column has a 1 that was changed to CI 0 by a previous borrow, the student writes 0 as the

answer to that column. (914 - 486 = 508)

0-N=N/AFTER/BORROW

When a column has a 1 that was changed to o 0 by D previous borrow, the student writes the

bottom digit ~1s the cmswer to that column. (512 - 136 = 436)

l-l =O/AFTEWBORROW

If a column starts with 1 in both top and bottom and is borrowed from, the student writes 0 as the

answer to that column. (812 - 518 = 304)

l-1 = l/AFmh0RR0~

If CJ column starts with 1 in both top and bottom and is borrowed from, the student writes 1 CIS the

answer to that column. (812 - 518 = 314)

ADD/BORROW/CARRY/SUB

The student adds instead of subtracting but he subtracts the carried digit instead of adding it. (54

- 38 = 72)

ADD/BORROW/DECREMENT

Instead of decrementing the student odds 1, carrying to the next column if necessary.

863 893

-134 -104

749 809

ADD/BORROWIDECREMENT/WlTtiOUT/CARRY

Instead of decrementing the student adds 1. If this oddition results in 10 the student does not carry

but simply writes both digits in the some space.

863 8 93

-134 -1 04

749 7109

ADD/INSTEAD/OF/SUB

The student adds instead of subtracting. (32 - 15 = 47)

ADD/NOCARRY/INSTEADOF/SUB

The student adds instead of subtracting. If carrying is required he does not add the carried digit.

(47 - 25 = 62)

ALWAYS/BORROW

The student borrows in every column regardless of whether P is necessary. (488 - 299 = 1159)

ALWAYS/BORROW/LEFT

The student borrows from the leftmost digit instead of borrowing from the digit immediately to the

left.(733 - 216 = 427)

419

BROWN AND VAN LEHN

BlANK/INSTEADOF/BORROW

When o borrow is needed the student simply skips the column and goes on to the next (425 - 283

= 22)

BORROW/ACROSS/TOP/SMALLER/DECREMENTING/TO

When decrementing a column in which the top is smaller thon the bottom, the student odds 10 to the

top digit, decrements the column being borrowed into and borrow from the next column to the left.

Also the student skips any column which hos a 0 over o 0 or a blank in the borrowing process.

183 513

- 95 -268

97 254

BORROW/ACROSS/ZERO

When borrowing across o 0, the student skips over the 0 to borrow from the next column. If this

muses him to have to borrow twice he decrements the some number both times.

904 904

- 7 -237

007 577

6ORROW/ACROSS/ZERO/OVERIBLANK

When borrowing across o 0 over o blank, the student skips to the next column to decrement. (402

- 6 = 306)

BORROW/ACROSS/ZERO/OVER/ZERO

Instead of borrowing across o 0 that is over o 0, the student does not change the 0 but decrements

the next column to the left instead. (802 - 304 = 308)

0ORROW/ACROSS/ZERO/UCHED/O-N=O

Instead of borrowing across o 0, the student does not change the 0 but decrements the next column

on the left instead. Also, if borrowing is needed in a column headed by o zero that should hove

been changed, the student writes zero in the answer instead. (802 - 324 = 508)

BORROW/ACROSS/ZEROtTOUCHED/O-N=N

lnsteod of borrowing across o 0, the student does not change the 0 but decrements the next column

to the left instead. Also, if borrowing is needed in o column headed by o zero that should hove

been changed, the student writes the bottom digit in the answer instead. (802 - 324 = 528)

BORROW/ACROSS/ZERO/TOUCHED/ZERO/IS/TEN

Instead of borrowing across o 0, the student does not change the 0 but decrements the next column

to the left instead. Also, if borrowing is needed in o column headed by a zero thot should hove

been chon&d, the student odds ten to the zero but does no decrementing. (802 - 324 = 588)

BORROWIADDIDECREMENT/INSTEADOF/ZERO

lnsteod of borrowing across o 0, the student changes the 0 to 1 and doesn’t decrement any column

to the left. (307 - 108 = 219)

BORRO~/ADD/IS/TEN

The student changes the number that causes the borrow into 10 instead of adding 10 to it. (83 - 29

= 51)

BORROW/DECREMENTINGITO/BY/EXTRAS

When there is o borrow across O’s, the student does not odd 10 to the column he is doing but

instead adds 10 minus the number of G’s borrowed across.

308 3008

-139 -1359

168 1647

REPAIR THEORY 421

BORROW/DIFF/O-N=NSSMALL-LARGE=0

The student doesn’t borrow. For columns of the form 0 - N he writes N as the answer. Otherwise

he writes 0. (304 - 179 = 270)

BORROW/DON’T/DECREMENT/TOP/SMALLER

The student will not dwement a column if the top number is smaller thon the bottom number.
732 732

-484 -434

258 298

Wrong CWWCt

BORROW/DON’T/DECREMENT/UNLES.S/BOTl’OM&MLLER

The student will not decrement a column unless the bottom number is smaller than the top number.

732 732

-484 -434

250 300

BORROW/FROM/ALL/ZERO

lnstwd of borrowing across O’s, the student &nges all the O’s to 9’s but does not continue

borrowing from the column to the left. (3006 - 1807 = 2199)

BORROWIFROM/BOl-TOM

The student borrows from the bottom row instwd of the top one.

07 a27

-28 -208

79 839

BORROW/FROM&OTTO&‘INSTEAD/OF/ZERO

When borrowing from a column of the form 0 - N, the student decrements the bottom number

instead of the 0.

600 108

- 249 - 49

379 79

BORROW/FROM/LARGER

When borrowing, the student decrements the larger digit in the column regardless of whether it is

on the top or the bottom. (872 - 294 = 598)

BORROW/FROM/ONE/IS/NINE

When borrowing from o 1, the student treats the 1 (IS if it were 10, decrementing it to o 9. (316 -

139 = 267)

BORROW/FROM/ONE/ISITEN

When borrowing from a 1, the student changes the 1 to 10 instead of to 0. (414 - 277 = 237)

BORROWIFROMIZERO

lnstwd of borrowing across a 0, the student changes the 0 to 9 but does not continue borrowing

from the column to the left.

306 3006 103

-187 -1807 - 45.

219 1299 158

BORROW/FROM/ZERO/ISITEN

When borrowing ocross 0, the student changes the 0 to 10 ond does not decrement any digit to the

left. (604 - 235 = 479)

422 BROWN AND VAN LEHN

BORROW/FROMIZEROllS/TEN/CARRYING/ANSWER/OVERFLOW

When borrowing across 0, the student changes the 0 to 10 and does not decrement any digit to the

left. However, if the newly crwted 10 is over zero, the student carries instead of trying to write ten

in the answer. (604 - 205 = 509)

BORROW/FROM/ZERO&LEFT/OK .

Instead of borrowing across o 0, the student changes the 0 to 9 but does not continue borrowing

from the column to the left. However if the digit to the left of the 0 is over o blank then the student

does the correct thing.

306 3006 103 203

-167 -1807 - 45 - 45

219 1299 58 158

wrong Wrong correct correct

BORROW/FROMIZEROBLEFT/TEN/OK

Instead of borrowing across o 0, the student changes the 0 to 9 but does not continue borrowing

from the column to the left. However if the digit to the left of the 0 is o 1 over o blank then the

student does the correct thing.

306 103 203

-187 - 45 - 45

219 58 258

wrong Correct wrong

BORROW/IGNORE/ZERO/OVER/BLANK

When borrowing across o 0 over o blank, the student treats the column with the zero os if it weren’t

there.

505 508

- 7 - 7

48 501

wrong correct

BORROW/INTO/ONE=TEN

When o borrow is caused by o 1, the student changes the 1 to o 10 instead of adding 10 to it. (71

- 38 = 32)

When borrowing the student odds 10 correctly but doesn’t change any column to the left. (62 - 44

= 28)

BORROW/ONCE/THENISMALLER/FROt&‘LARGER

The student will borrow only once per exercise. From then on he subtracts the smaller from the

larger digit in each column regardless of their positions. (7127 - 2389 = 4278)

BORROW/ONCE/WITHOLJT/RECURSE

The student will borrow only once per problem. After that, if another borrow is required the student

adds the 10 correctly but does not decrement. If there is o borrow across o 0 the student changes

the 0 to 9 but does not decrement the digit to the left of the 0.

535 408

-278 -239

357 269

BORROW/ONLYIFROtvUTOPISh4ALLER

When borrowing, the student tries to find o column in which the top number is smaller than the

bottom. If there is one he decrements that, otherwise he borrows correctly. (9283 - 3566 = 5627)

REPAIR THEORY 423

BORROW/ONLY/ONCE

When there ore several borrowers, the student decrements only with the first borrower. (535 -
278 = 357).

BORROW/SKIP/EQUAL

When decrementing. the student skips over columns in which the top digit and the bottom digit ore

the s~lme. (923 - 427 = 406)

BORROW/TENIPLUSINEXT/DiGlT/lNTO/ZERO

When o borrow is caused by CI 0 the student does not add 10 correctly. What he does instead is

add 10 plus the digit in the next column to the left. He will give answers like this: (50 ~ 38 = 17)

BORROW/TREAT/ONE/AS/ZERO

When borrowing from 1, the student treats the 1 ~1s if it were 0; that is, he changes the 1 to 9 and

decrements the number to the left of the 1. (313 - 159 = 144)

BORROW/UNIT/DIFF

The student borrows the difference between the top digit and the bottom digit of the current

column. In other words, he borrows iust enough to do the subtraction, which then olwoys results in

0. (86 - 29 = 30)

BORROWIWON’TIRECURSE

Instead of borrowing across o 0, the student stops doing the exercise. (8035 - 2662 = 3)

BORROWEDIFROM4DON’TIBORROW

When there ore two borrows in CI row the student does the first borrow correctly but with the second

borrow he does not decrement (he does add 10 correctly). (143 - 88 = 155)

CAN’T/SUBTRACT

The student skips the entire problem. (8 - 3 =)

DECREMENT/ALUONIMULTIPLE/ZERO

When borrowing across CI 0 and the borrow is caused by 0, the student changes the right 0 to 9

instead of 10. (600 - 142 = 457)

DECREMENT/BY/TWO/OVER/TWO

When borrowing from o column of the form N - 2, the student decrements the N by 2 instead of 1.

(83 - 29 = 44)

DECREMENT/LEFTMOST/ZERO/ONLY

When borrowing across two or more O’s the student changes the leftmost of the row of O’s to 9 but

changes the other O’s to 10’s. He will give uwvers like: (1003 - 958 = 1055)

DECREMENT/MULTIPLE/ZEROS/BY/NUMBER/TO/RIGHT

When borrowing across O’s the student changes the rightmost 0 to D 9, changes the next 0 to 8, etc.

(8002 - 1714 = 6188)

DECREMENT/ON/FIRST/BORROW

The first column that requires o borrow is decremented before the column subtract is done. (832 -

265 = 566)

DECREMENT/ONE/TO/ELEVEN

Instead of decrementing o 1, the student changes the 1 to an 11. (314 - 6 = 2118)

DIFF/O-N =0

When the student encounters a column of the form 0 - N he doesn’t borrow; instead he writes 0 as

the column answer. (40 - 21 = 20)

424 BROWN AND VAN LEHN

DIFF/O-N=N

When the student encounters a column of the form 0 - N, he doesn’t borrow. lnsteod he mites N

as the answer. (80 - 27 = 67)

DIFF/O-N=N/WHENIEUJRROW/FROMI7.ERO

When borrowing across a 0 and the borrow is caused by o 0, the student doesn’t borrow. lnsteod

he wites the bottom number OS the column answer. He will borrow correctly in the next column or in

other circumstances.

100 400

- 32 -240

72 160

DIFF/l-N=l

When o column has the form 1 - N thqstudent mites 1 OS the column answer. (51 - 27 = 31)

DIFF/N-0=0

The student thinks that N - 0 is 0. (57 - 20 = 30)

DIFF/N-N = N

Whenever there is o column that has the some number on the top and the bottom, the student mites

that number os the answer. (83 - 13 = 73)

DOESN’T/BORROW

The student stops doing the exercise when a borrow is required. (833 - 262 = 1)

DON’T/DECREMENT/SECOND/ZERO

When borrowing across o 0 and the borrow is covsed by o 0, the student changes the 0 he is

borrowing across into o 10 insteod of Q 9. (700 - 258 = 452)

DON’T/DECREMENT/ZERO

When borrowing across a 0, the student changes the 0 to 10 instead of 9. (506 - 318 = 198)

DON’T/DECREMENT/ZERO/CARRYING/ANSWEWOVERFLOW

When borrowing across a 0, the student changes the 0 to 10 instead of 9. Howqer, if the newly

created to is over o zero, the student carries instead of witing o ten as the ens- for that column.

(506 - 308 = 2013)

DON’T/DECREMENT/ZERO/OVER/BLANK

When borrowing across o 0 that is over o blank, the student skips over the 0 ond decrements the

next digit to the left. (305 - 9 = 106)

DON’T/DECREMENT/ZERO/OVER/ZERO

When borrowing across a 0 that is over another 0, the student skips over the 0 and decrements the

next digit to the left. (305 - 107 = 208)

WN’T/DECREMENTIZERO/UNTIU~~TT~MI~LANK

When borrowing across o 0, the student changes the 0 to a 10 instead of a 9 unless the 0 is over a

blank, in which core he does the correct thing.

506 304

-318 - 9

198 295

Wrong correct

DOUBLE/DECREMENT/ONE

When borrowing from a 1, the student treats the 1 os o 0 (changes the 1 to 9 ond continues

borrowing to the left. (813 - 515 = 288)

REPAIR THEORY 425

FORGET/BORROW/OVER/BLANKS

The student doesn’t decrement a number that is over a blank. (347 - 9 = 348)

IGNORE/LEFTMOST/ONE/OVER/BLANK

When the left column of the exercise has a 1 that is over a blank, the student ignores that column.

(143 - 22 = 21)

IGNORE/ZERO/OVER/BLANK

Whenever there is column that has a 0 over a blank, the student ignores that column. (907 - 5 =

92)

INCREMENT/OVER/LARGER

When borrowing from a column in which the top is smaller than the bottom, the student increments

instead of decrementing. (833 - 277 = 576)

INCREMENT/ZERO/OVER/BLANK

When borrowing across a 0 over a blank, the student increments the 0 instead of decrementing.

(402 - 6 = 416)

N-9 =N-l/AFTER/BORROW

If a column is of the form N - 9 and has been borrowed from, when the student does that column

he subtracts 1 instead of subtracting 9. (834 - 796 = 127)

N-N= l/AFTER/BORROW

If a column had the form N 1 N and was borrowed from, the student writes 1 as the answer to that

column. (944 - 348 = 616)

N-N=P/PLUS/DECREMENT

When o column has the same number on the top and the bottom the student mites 9 OS the answer

and decrements the next column to the left even though borrowing is not necessary. (94 - 34 =

59)

ONCE/BORROW/ALWAYS/BORROW

Once CI student has borrowed he continues to borrow in every remaining column in the exercise.

(488 - 229 = 1159)

C?UIT/WHEN/BOllOM/BLANK

When the bottom number has fewer digits than the top number, the student quits as soon as the

bottom number runs cut. (439 - 4 = 5)

SIMPLE/PROBLEMISTUTTER/SUBTRACT
When the bottom number is a single digit and the top number has two or more digits, the student

repeatedly subtracts the single bottom digit from each digit in the top number. (348 - 2 = 126)

SMALLERIFROMILARGER

The student doesn’t borrow; in each column he subtracts the smaller digit from the larger one. (81

- 38 = 57)

SMALLEWFROMIlARGER/INSTEAD/OF/BORROW/FROM/ZERO

The student does not borrow across 0. Instead he will subtract the smaller from the larger digit.

306 306

- B -148

302 162

SMALLEWFRO~L4RGER/WHEN/BORROWED/FROM

When there are two borrows in a row the student does the first one correctly but for the second one

he does not borrow; instead he subtracts the smaller from the larger digit regardless of order. (824

- 157 = 747)

426 BROWN AND VAN LEHN

SMALLEWFROMIlARGER/WITn/BORROW

When borrowing the student decrements correctly, then subtracts the smaller digit from the larger

OS if he had not borrowed at all. (73 - 24 = 411)

STOPS/BORROW/AT/MULTIPLE/ZERO

Instead of borrowing across several &s, the student adds 10 to the column he’s doing but doesn’t

change any column to the left. (4004 - 9 = 4005)

STOPS/BORROW/AT/ZERO

Instead of borrowing across o 0, the student adds 10 to the column he’s doing but doesn’t

decrement from o column to the left. (404 - 187 = 227)

STUTTER/SUBTRACT

When there are blanks in the bottom number, the student subtracts the leftmost digit of the bottom

number in every column that has o blank. (4369 - 22 = 2147)

SUBIBOTTOMIFROMITOP

The student always subtracts the top digit from the bottom digit. If the bottom digit is smaller, he

decrements the top digit and adds 10 to the bottom before subtracting. If the bottom digit is zero,

however, he writes the top digit in the answer. If the top digit is 1 greater than the bottom he writes

9. He will give anwers like this. (4723 - 3065 = 9742)

SUB/COPY/LEAST/BOTTOM/MOST/TOP

The student does not subtract. Instead he copies digits from the exercise to fill in the answer space.

He copies the leftmost digit from the top number and the other digits from the bottom number. He

will give answers like this: (648 - 231 = 631)

SUB/ONE/OVER/BLANKS

When there are blanks in the bottom number, the student subtracts 1 from the top digit. (548 - 2

= 436)

TREAT/TOP/ZERO/AS/NINE

When a borrow is caused by o 0, the student doesn’t borrow. Instead he treats the 0 as if it were cz

9. (30 - 4 = 39)

TREAT/TOP/ZERO/AS/TEN

When o borrow is cowed by a 0, the student adds 10 to it correctly but doesn’t change any column

to the left. (40 - 27 = 23)

TREAT/ZERO/AS/NOTHING

The rtvdent ignores 0’s. (407 - 5 = 42)

ZERO/AFTER/BORROW

When o column requires o borrow, the student decrements correctly but writes 0 as the answer. (65

- 48 = 10)

ZERO/INSTEAD/OF/BORROW/FROM/ZERO

The student won’t borrow if he has to borrow across 0. Instead he will write 0 OS the answer to the

column requiring the borrow.

702 702

- a -348

700 630

ZERO/INSTEAD/OF/BORROW

The student doesn’t borrow; he writes 0 os the answer instead. (42 - 16 = 30)

