VIGO: Instrumental Interaction
in Multi-Surface Environments

Clemens Nylandsted Klokmose
Department of Computer Science,
University of Aarhus

Abogade 34, DK-8200 Arhus N, Denmark
clemens@cs.au.dk

ABSTRACT

This paper addresses interaction in multi-surface environ-
ments and question whether the current application-centric
approaches to user interfaces is adequate in this context and
present an alternative approach based on instrumental inter-
action. The paper presents the VIGO (Views, Instruments,
Governors and Objects) architecture and describes a prototy-
pe implementation. It then illustrates how to apply VIGO to
support distributed interaction. Finally it demonstrates how
a classical Ubicomp interaction technique, Pick-and-Drop,
can be easily implemented using VIGO.

Author Keywords

Ubiquitous Computing, Instrumental Interaction, Multi-surface

interaction, UI Architecture, Interaction Paradigm

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

INTRODUCTION

In his seminal paper on ubiquitous computing [28], Mark
Weiser envisioned how computers would take on multiple
sizes, from the small tab to the notebook-sized pad and the
large interactive wall. These devices would be used inter-
changeably and in combination: pads as “sheets” of paper
and tabs as, e.g., input devices for an interactive wall. Part of
this vision has been realized today: we now have myriads of
small devices, similar in size to the envisioned tabs and pads,
and interactive walls are on their way to becoming consumer
level products. But the seamless interplay between the mul-
tiple device surfaces that Weiser imagined is still far from
reality: the simple act of exchanging data among devices ty-
pically requires complex configuration or the use of a phy-
sical USB key rather than Rekimoto’s simple and intuitive
pick-and-drop [25]. Other examples of multi-surface inter-
actions include the use of a PDA as a personal and portable
tool palette [26] or as a remote control [20] when interacting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI 2009, April 4 - 9, 2009, Boston, USA.

Copyright 2009 ACM X-XXXXX-XXX-X/XX/xxxX...$5.00.

Michel Beaudouin-Lafon
LRI (Univ. Paris-Sud & CNRS), INRIA
Batiment 490
F-91405 Orsay, France
mbl@Ir1.fr

with an interactive whiteboard. While such techniques have
been prototyped in the lab, they are still not available to the
users at large. We believe this is due to the lack of adequate
software support to develop such interactions.

In this paper we specifically address multi-surface interacti-
on, i.e. interaction spanning the surfaces of multiple devices.
We question the adequacy of the current predominant user
interface paradigm, the application-based WIMP interacti-
on model, and its underlying architectural models such as
MVC [24] for building user interfaces going beyond a single
desktop computer. We examine the requirements for a user
interface software architecture that supports multi-surface
interaction. We argue that instrumental interaction [4] pro-
vides an appropriate framework for interaction in multi-
surface environments and introduce ubiquitous instrumen-
tal interaction. We then present VIGO (Views, Instruments,
Governors and Objects), an architecture that supports ubi-
quitous instrumental interaction and show how it is used to
create a generalized version of pick-and-drop.

UBIQUITOUS INSTRUMENTAL INTERACTION

The vision of ubiquitous computing includes the idea that
multiple users can interact with multiple devices through
a variety of interfaces, including interfaces spanning mul-
tiple surfaces. This vision challenges the traditional assump-
tion of one surface / one interface / one application that is
very deeply engrained in today’s desktop computing envi-
ronments. This assumption is also pervasive in the softwa-
re tools used today for creating interfaces — tools which are
tightly bound to the platform hosting them and to the WIMP
interaction style. These tools typically do not support the
multiplicity, dynamism, heterogeneity and distribution that
characterize the ideal of multi-surface interfaces, making it
difficult in particular to develop multi-surface interfaces.

Two central goals in creating user interfaces for multi-
surface environments are to provide users with distributed
interfaces that support fluid interaction across stationary and
mobile devices and the ability to dynamically configure tho-
se interfaces according to the available devices and users’
needs. Two major challenges in this context are: Supporting
reuse and the quality of learning across different devices [8]
(User perspective), and technically supporting the continuity
and distribution of work across multiple devices (Developer
perspective). We argue that one approach to address these

problems is to deconstruct applications and distribute the
interface across multiple surfaces rather than simply crea-
te scaled-down versions of PC applications to run on, e.g.,
Personal Digital Assistants (PDAs).

Beaudouin-Lafon [4] introduced instrumental interaction to
model WIMP and post-WIMP interfaces on desktop compu-
ters. The key idea is a conceptual separation between instru-
ments and domain objects. Instruments consist of a physi-
cal part (the input devices) and a logical part (the software
component). Instruments are mediators [7] between the user
and domain objects: The user acts on the instrument, which
transforms the user’s actions into commands that affect the
relevant domain objects and provides feedback to the instru-
ment and the user.

Instrumental interaction was inspired by the way we use
physical tools: A painter can freely add or remove brushes
from his collection, pass them around, etc.; Brushes are not
bound to painting on a canvas, they can also be used to paint
on the wall or on the hand of the painter. Computer applica-
tions do not currently support this level of flexibility: a brush
in a drawing application can rarely be removed and used in
another context, such as a text editor. Applications typically
have a predefined set of tools that is difficult or impossible
to adapt to one’s needs or taste. This lack of flexibility limits
the mobility, distribution and customizability of interfaces.
It also typically results in complex monolithic applications,
built for general-purpose personal computers, with dozens
or even hundreds of tools to cover all possible needs.

While instrumental interaction was developed in the con-
text of desktop interfaces, the concepts are more general and
apply particularly well to multi-surface interaction. We call
Ubiquitous Instrumental Interaction our extension of instru-
mental interaction to this context. In Ubiquitous Instrumen-
tal Interaction, the instrument is an explicit construct rather
than a descriptive concept. Ubiquitous instruments should
be exchangeable among users, they should work in a similar
way on different devices, sometimes across multiple devi-
ces, and they should be technically separated from the ob-
jects they operate on. Instruments should be applicable to
domain objects and on device surfaces when and where it
makes sense, even if they were not designed to do so in the
first place. The objects that users interact with through in-
struments should be able to migrate across device surfaces,
support multiple views, and be manipulatable by an instru-
ment in ways not necessarily anticipated by the object. Note
that this does not preclude an instrument from “breaking” an
object, i.e. to make it unusable by other instruments'. Final-
ly, instruments should themselves be objects and therefore
be manipulatable by other instruments.

While we recognize the need for specific instruments that
work only with certain objects on certain surfaces for per-
forming specialized operations, we also want to support the
ability for instruments to be more open-ended and usable in

!'This may be useful, for example in the board game that we des-
cribe later, where a player may want to create art with the pieces
rather than play the game.

ways not anticipated by their designers. For example, pick-
and-drop is a very flexible and generic instrument capable
of picking up an object of any type on any of the surfaces
available to the user and dropping it onto another object on
another surface. A color picker is another example of a gene-
ric instrument that can be used in many contexts. It typically
works with a color palette that displays the set of available
colors, but can also be generalized to pick the color of any
object with a color attribute. A last example is an annotati-
on instrument that can add annotations to any object, e.g. by
supporting hand drawing on any surface or adding electronic
Post-it Notes to any object. Such flexibility supports what I1-
lich [14] calls convivial use: “Tools foster conviviality to the
extent to which they can easily be used, by anybody, as often
or as seldom as desired, for the accomplishment of a purpo-
se chosen by the user. The use of such tools by one person
does not restrain another from using them equally.”

Architectural Requirements

Implementing Ubiquitous Instrumental Interaction requires
a software architecture that enables the flexibility that we
have described above in the context of a distributed infra-
structure. We believe that a software architecture based on
small-grain components that can be reconfigured according
to the users’ needs or the available devices is the most ap-
propriate. We identify two main requirements for this archi-
tecture:

Decoupling: Objects and instruments should be separate
components that communicate through a simple protocol al-
lowing instruments to query and modify objects. For exam-
ple, any object that provides a 2D surface can be used by a
pen instrument to add annotations. Such decoupling will fa-
cilitate the distribution and replication of objects, or parts of
objects, across multiple devices.

Integration: Despite the fact that interaction may involve
multiple surfaces, multiple processes and multiple machines,
the system should appear as a single consistent entity from
the user perspective. The ability to use the same instrument
with objects of different types should be seamless and in ge-
neral the system should support a seamless user experience.

RELATED WORK

While most research on multi-device interaction has focused
on migrating applications across devices, especially through
model-based approaches [18], little research has addressed
true multi-surface interaction, i.e. interactions that involve
multiple surfaces. Notable exceptions include the Pebbles
project [20] and Demeure et al.’s work on distributed user
interfaces [9].

Some systems have attempted to provide a generic soluti-
on to interact with applications in a multi-device computing
environment. XWeb [23] and The SpeakEasy Recombinant
Computing Framework [21] are probably the closest to our
work in that respect. XWeb decouples internet services from
their user interface to facilitate access from multiple kinds of
devices by introducing device-independent widgets that spe-
cify the possible values of a service’s data items, e.g., a date

or time. In SpeakEasy services can provide their own user
interfaces to be aggregated on the client. The goal of XWeb
and SpeakEasy however is to automatically transform user
interfaces for different devices, while we focus instead on
a uniform interaction model to create custom interfaces that
leverage the capabilities of the environment.

Other systems, such as the iStuff toolkit [2], are designed to
explore multi-device interaction but do not embody a speci-
fic interaction model. Cameleon-RT [3] on the other hand is
areference model rather than an implementation framework.
It focuses on the automatic adaptation of plastic interfaces
while we focus on adaptability by the users.

More generally, architectures for Ubicomp systems have fo-
cused mainly on middleware to support system requirements
such as distribution, discovery, fault-tolerance or context-
awareness, but do not address the specific needs of interac-
tion (see, for example, [17]). The BEACH architecture [27]
is a rare exception as it addresses interaction explicitly alt-
hough it seems limited to classical interaction techniques ba-
sed on mouse and gesture input.

Architecture models for user interfaces have a long history,
with the MVC (Model-View-Controller) design pattern [15]
being by far the most widespread solution. A well-known
problem with MVC is the strong dependency between the
view and controller that limits reusability. Abstraction-Link-
View (ALV) [13] was designed for sharing a common model
(the abstraction) among multiple networked clients potenti-
ally each with their own view, but is otherwise quite similar
to MVC. None of the existing patterns however make in-
struments explicit, instead they promote a widget-based type
of interaction. Finally Document-Presentation-Instruments
(DPI) [6] is a document-centric software architecture based
on instrumental interaction. Like our approach the goal it de-
couples instruments from the target objects, however DPI is
a desktop-based framework and does not address the distri-
bution of objects and instruments across multiple machines.

THE VIGO ARCHITECTURE

We now present VIGO (Views, Instruments, Governors and
Objects), the architecture that we have designed to imple-
ment Ubiquitous Instrumental Interaction. VIGO is an al-
ternative to MVC designed to create distributed interfaces
based on the principles described in the previous section.

Figure 1 presents the VIGO architecture. Objects are pre-
sented to the user through views. Users manipulate objects
through instruments, which query views to identify the ob-
jects being designated. In order to manipulate an object, an
instrument queries the governors attached to that object to
validate its manipulations. Governors, on the other hand, ob-
serve object changes to implement potential side effects. Fi-
nally governors can manipulate their attached objects if the
user’s actions on the object have side effects beyond that ob-
ject. The following description shows that this design ensu-
res a strong separation of concerns, provides great flexibility
and supports distribution among multiple devices and ma-
chines.

Figure 1. VIGO in pseudo-UML

Objects

VIGO objects are different from objects in the classical
object-oriented sense. In order to achieve the required de-
coupling between objects and the instruments manipulating
them, objects are passive, i.e. they do not provide operati-
ons or methods applicable to them. Rather than hiding their
state through encapsulation, they expose it as a set of direct-
ly accessible properties, while the behavior that is usually
provided through methods is encapsulated in governors (see
below). Compared with MVC, the Model is separated in VI-
GO into Objects, implementing state, and Governors, imple-
menting behavior.

Objects can be primitive, consisting only of properties, or
composite, consisting of properties and other objects. An ob-
ject can be a part of several objects simultaneously, such as
when a diagram is used in multiple documents: a change in
the diagram is then reflected in all the parent documents.
This is a different concept than multiple views, which is dis-
cussed below. This object structure lends itself to a natural
description in XML, which is the format we use for per-
sistence. Examples of concrete objects are text documents,
graphic canvas, the board and pieces of a board-game (which
we will see later) or concrete user interface elements.

Objects (or parts of objects) can be distributed over multi-
ple computers. In our implementation their state is kept syn-
chronized across the replicas. Because objects are passive,
this can be implemented simply and efficiently.

The underlying principle behind our notion of object is that
every interaction must target one or several objects and may
result in a change to the state of these objects. Rather than
interacting with a “system” or “application” as with traditio-
nal interfaces, the user interacts with objects, by means of
instruments. The fact that objects are open gives tremendous
power to instruments. On the one hand, it makes it possible
to “break” an object by putting it into an inconsistent state.
Governors are designed to control this potential chaos. On
the other hand, it makes it possible to implement interacti-
ons that were not anticipated. For example, in a board game,
the board could be used to play a different game (the rules
will be embodied, as we will see, in governors), or it may be

possible to annotate the board with arbitrary marks. The tra-
ditional approach where objects are only accessed through
methods clearly precludes such unanticipated uses.

Views

Views on objects are translations of the objects into one or
more modalities perceptible by the user. The are very similar
to views in MVC. A typical instance of a view is a visuali-
sation of an object (and its subobjects) on a screen. Views
are strongly coupled with the objects they represent, so that
any change to the object is reflected in the view. Views on
the other hand do not provide any kind of interaction: any
change to the view is the result of a change to the object.
Views provide a service to translate coordinates (in the case
of a visual display) between the view of and object and that
of its subobjects or vice-versa.

Unlike objects, views are device-dependent, i.e. they opti-
mize their representation of the object for the display device
at hand. Multiple views can be associated with an object, in
which case they are synchronized. Note however that multi-
ple views of the same object can also occur when an object
is shared among several parents, as described in the previous
section. Since objects are passive and views are pure repre-
sentations, they can be implemented efficiently, e.g. through
an observer pattern [11]. On the other hand, for efficiency
reason, the object should be available on the machine that
holds the view. This is easily achieved using the ability to
distribute an object, as described in the previous section.

Instruments
Beaudouin-Lafon [4] defines an instrument as:

... a mediator or two-way transducer between the user
and domain objects. The user acts on the instrument,
which transforms the user’s actions into commands af-
fecting relevant target domain objects.

The concept of instrument is inspired by the real world: a
stick to enhance one’s reach, a pen to write on a piece of
paper, a hammer to drive a nail. Examples of digital instru-
ments include those to enter text, manipulate graphics, draw,
select objects, etc. The tools in the tool-palette in applicati-
ons such as Photoshop are typical examples of instruments.

An instrument may need to provide feedback to the user by
presenting some information. This is achieved by associating
instruments with objects and creating views for these ob-
jects. This means, in addition, that an instrument can mani-
pulate another instrument through the object associated with
it and the proper governors.

One way of concretely thinking of instruments is as event
processors. Instruments react to input from the user or from
other instruments, change objects and fire new events for
other instruments to react to. Interaction occurs through
chains of instruments, e.g. an instrument for selecting an ob-
ject on the screen is chained with an instrument for moving
objects.

An instrument can be distributed, i.e. it may require input or
output from/to multiple devices connected to different ma-
chines and yet function as a single instrument. For exam-
ple, a PDA used as a remote control will require some feed-
back on the controlled device, while the pick-and-drop tech-
nique [25] uses input from two devices, the source and de-
stination. Since instruments are event processors, this requi-
res that the event system must be distributed, i.e. that events
produced by a source on one machine are transmitted to a
destination on a different machine. Since events are asyn-
chronous, this can work with any network transport system.

Instruments have no direct equivalent in MVC. Instruments
that correspond to traditional widgets, such as a scrollbar,
can be implemented with an MVC triplet where the control-
ler is the instrument itself while the model and the view im-
plement its associated object. But MVC forces such an in-
strument to be linked to a target object, such as a text area,
through a parent MVC controller. This is one of the reasons
why a simple interaction such as drag-and-drop is difficult
to implement with MVC (in fact, it does not really fit the
pattern). By contrast VIGO instruments are loosely coupled
with their targets.

In other cases, the equivalent of instruments are implemen-
ted in the controller of an object in MVC. For example, an
implementation of a text area with MVC typically include
the text editing commands in the controller. This merge of
a domain object (the text itself) and the instruments to ma-
nipulate it (the text editing commands) in a single MVC en-
tity does not provide the separation of concerns that VIGO
encourages. It also limits extensibility, e.g. adding a high-
lighter tool can be easily accomplished with VIGO with an
independent instrument while it requires changing the code
of an existing controller in MVC.

Governors

We have now described how objects are passive constructs
visualized through views and manipulated by the user with
instruments. The manipulations issued by an instrument con-
sist in changing the state of the targeted object. Specific ru-
les governing these state changes or the consequences of
these state changes are not the responsibility of the instru-
ment, otherwise it would be very difficult to create polymor-
phic instruments [5] that are independent from the objects
they manipulate. Consider for example a board game such
as checkers or Othello. If the instrument used to move the
pieces of the game implements the rules of the game, then
it cannot be used for other games, or indeed for anything el-
se. Another solution is to implement the rules in the board
object, but this breaks our object model.

To solve this problem we introduce governors® to embody
the rules and consequences of interactions with objects. Go-
vernors implement the “application logic” or “business ru-
les” commonly found in the MVC Model.

>The name governor was chosen since this construct adds the cy-
bernetic reactive aspects of the system. The word cybernetics stem
from the Greek kybernetes meaning steersman, governor, pilot, or
rudder [16]

Governors are associated to objects at the level of indivi-
dual properties: a client, typically an instrument, that needs
access to a property of an object asks the governors asso-
ciated with that property whether that change is acceptable
and what an acceptable change would be. Once the change is
made it notifies the governors so they can take any additional
action. The idea is that a governor controls certain aspects
of an object and only the properties that are relevant to that
governor are associated with it. Several governors may be
associated with one object and several objects may be asso-
ciated with one governor. Finally governors are stateless, i.e.
all state that governors need to manage must be stored in a
separate object or added to an existing object.

Let us illustrate this with the Othello® game. The positions of
the pieces on the game board are associated with a governor
handling the game rules and the consequences of manipu-
lating the pieces. The move instrument queries the piece’s
governor when it is about to drop the piece on the board.
The governor checks that it is a legal move and if so returns
the proper position for the piece, i.e. the middle of the desti-
nation square. If it is not a legal move, it returns the list of
valid moves, which the instrument may decide to highlight.
Once the piece has been set to the new position, the gover-
nor is again notified of the change, and it applies the side
effect, i.e. turns over the pieces according to the rules. Note
that since it is up to the instrument to query the governor, it
could decide to bypass it and cheat or even break the game.
Note also that the same move instrument used to move the
pieces can be used to move the whole board. One could ima-
gine a governor for the board that “shakes” the pieces when
the board is moved, as often happens with a real board. Fi-
nally if the piece governor is to keep track of turn-taking in
the game, it must store this state in a separate object or in the
board itself. This ensures that if another instrument manipu-
lates the board, it can access that state as well.

Governors should not be seen as direct mediators between
instruments and objects: the governors are not an interface
to the objects, neither are they transparent to the instrument
and just react to the manipulations of the objects. Both ca-
ses would lead to a lack of flexibility. In the first case, in-
struments would not be able to bypass the governors; in the
second case instruments would not be able to visualize what
the governor proposes, such as the valid moves in the Othello
game. Instead, governors and instruments negotiate: instru-
ments query the associated governors to validate a manipu-
lation or to get the valid or suggested manipulations (valid
moves in the case of the Othello game) which they could in
principle ignore (which in Othello would break the game).

Since governors are stateless there are various ways to hand-
le governed distributed objects. Each machine could have an
instance of a shared object’s governors, only one of the ma-
chines could hold the governors and let the others query it,
or the governors could reside on a central server. Note that
governors can be attached and detached from objects dyna-
mically. In the case of the Othello game, detaching the pie-
ces’ governor allows to use the move instrument to move the

3 Also known as Reversi.

Figure 2. Two objects representing each other through a governor

pieces freely, while attaching another governor would allow
to play a different game.

Using governors to synchronize objects

Multiple representations of a single object are common in
computer applications. For example, a UML specification
may be represented as a text or as a diagram, a chess game
may be represented by an animated board or a list of mo-
ves, etc. Representations are also often used to create com-
puter renderings of physical objects, such as the reading of a
sensor. Such representations involve a fairly large semantic
distance between the object being represented and the repre-
sentation, to the point where, in the user’s mind, the different
representations and the original object are separate (but re-
lated) objects. In VIGO, this notion of representation does
not correspond to the notion of view. Since instruments ma-
nipulate objects through their views, the mapping between a
view and its object must be fairly straightforward.

In order to support the kind of representation that invol-
ves a large semantic distance, we use objects and governors
instead. Consider the case of a mapping between object-
oriented code and an interactive UML diagram: The code
and diagram are edited through text-editing instruments and
diagram instruments respectively. The code has a text view
and associated governors for handling syntax highlighting,
indentation, etc. while the UML diagram has a graphical
view and governors for aligning boxes and snapping edges
to boxes. The two objects, however, share a governor hand-
ling the mapping between code and UML (Figure 2) so that
adding a new box in the UML class diagram creates the as-
sociated code and visa versa. Controlling physical devices is
analogous: The external device is represented by an object
with an associated governor handling the synchronization of
state between object and machine.

USING VIGO: REALIZING PICK-AND-DROP

In this section we describe our prototype implementation
of the VIGO architecture. Our hardware setup consists of a
SMART Board™ connected to a Mac together with a Nokia
N810 Internet Tablet. The implementation is a client-server
system developed in Python using the Twisted [10] distribu-
ted computing framework. For visualization we use the Ap-
ple Cocoa framework on the Mac and PyGTK + Cairo on the
Nokia N810. The server has three facets, an object-server, an
event-server and a governor-server.

Objects

Objects are defined in a simple XML language with primi-
tives such as basic shapes and text. Using graphical objects
simplifies the mapping to views and is sufficient for our ex-
periments. Graphical objects are laid out in a Canvas, which
is itself contained in a view-object. View-objects are the on-
ly objects that are not replicated, they are created locally on
a device when a canvas is loaded.

Objects have a unique id and are replicated across clients by
the object-server. Each client manipulates a local object and
the changes are propagated to other clients sharing the same
object through the object-server.

Views

Views are device-specific components that display objects
and provide methods for translating between screen and
view coordinates and. In our implementation, they also im-
plement picking*. Our implementation is naive in that it re-
draws the whole view when the corresponding object chan-
ges. This could be improved by observing the changes in
the object and optimizing redrawing. Multiple views on a
single object are supported. Since views are the only device-
dependent construct and have a fairly small interface, it is
easy to port VIGO to another platform using a different gra-
phical toolkit. This is what we have done with Cocoa on one
device and PyGTK and Cairo on another.

Instruments

Instruments take input events such as button presses and
transform them into object manipulations. This transforma-
tion is described by a state machine. We have implemented
a Python library for state machines similar in its principle
to SwingStates [1]. We have noticed that state machines not
only reduce the traditional “spaghetti of callbacks” problem
of user interfaces [19], they also provide a good hint of the
complexity of the instrument being implemented.

An example of a simple instrument is an instrument for mo-
ving objects on the screen. This instrument actually con-
sists of two instruments: An instrument to select an object
on the screen, and an instrument to move the selected ob-
ject. The selection instrument processes input events and fi-
res a <select> event when something has been selected and
can now be moved. The move instrument is triggered by the
<select> event and tracks the mouse until the button is re-
leased (Figure 3). From the user’s perspective, these two in-
struments act as a single, integrated one. Separating them has
the advantage that they can be reused more easily to create
more complex instruments.

Instruments can share events through the event-server hence
they can receive local as well as remote events. The latter
are sent by other clients and automatically dispatched by the
event server.

*Picking could be implemented in a dedicated instrument, however
it is more efficient to take advantage of the point-shape intersecti-
on computation of the underlying graphical toolkit. Advanced se-
lection, e.g. of hidden objects, and selection based on queries are
implemented in instruments

a view's objects
<canvas height="80" width="100">
<box x="20" y="20"/>
<circle x="75" y="25"/>
<triangle x="30" y="60"/>
</canvas>

Mouse Click

Button Down Event

Query for object

Selection Event

Mouse Drag

Drag Event

Query for coordinates
Manipulate object coordinates
View is notified of update

©CONDG AWM

Move
Instrument

I
I
1
1
1
1
1
i
1
v Main View

a view

y O

Selection
Instrument

Figure 3. Ungoverned interaction between move instrument and object

We can now show the implementation of the pick-and-drop
instrument. We use two state-machines (Figure 4). Selecting
an object when in the picking state triggers the transition
to the dropping state and a Pick event is fired with the
id of the picked object. The remote pick-and-drop instru-
ment receives this Pick event and transitions to the picked
state. The picked object can now be dropped with the remote
pick-and-drop instrument by loading the object whose id is
in the Pick event from the object-server. When one of the
state machines drops the object, it fires a Drop event that
reverts all instruments to the Start state. Figure 5 gives the
Python pseudo-code for the pick-and-drop state machine. It
uses our syntax for defining states and transitions in instru-
ments with Python decorators (Qstate declares a state while
@transition declares a transition).

The color-picker instrument is implemented in a similar way.
On the N810 PDA we have implemented an instrument that
fires events indicating that a color has been picked, and on
the SmartBoard a drawing instrument that reacts to these
events and changes its color (Figure 10). The color-picker
can work on anything that has a color attribute, hence a spe-
cific palette object is not required. We have implemented
other instruments for resizing shapes, terminating views and
activating other instruments. The latter uses gesture input on
the SmartBoard whereas on the PDA it uses the keyboard.

Instruments can provide visual feedback by creating an as-
sociated object and using the same vector-graphics language
as other objects. The view for this object is a transparent
overlay above the other views. This is used, e.g., by the ge-
sture instrument to provide feedback about the gesture being
made and whether the gesture has been recognized or not.

Selection Instrument:

Select
A
MouseDown

Pick-and-Drop Instrument:

ButtonDown

ButtonUp

ButtonUp

Figure 4. Selection and pick-and-drop state machines

Governors

Governors provide a simple interface for instruments to va-
lidate changes and to retrieve sets of valid changes. In the
Othello example a move instrument can ask the governor of
a piece whether a position is valid and can query for the set of
currently valid positions. When a change to a governed ob-
ject has been made, the governors are notified and can react
accordingly, e.g. to change the color of one or more pieces
on the Othello board.

The Othello game uses two governors: The board-governor
makes sure that pieces can only be placed within the squa-
res of the board, and adds a new property to the pieces on
the board to hold their grid coordinates (A1-H8). It also pla-
ces a fresh piece in the corner of the board when one has
been moved to a cell. The second governor is attached to
the pieces and implements the Othello rules: checking that
a move is correct and turning over the proper pieces after
a piece has been put down. It uses the grid coordinate pro-
perties added to the pieces by the board governor. Figure 6
illustrates three boards, the first board has no governors (pie-
ces can be placed anywhere), the second board only has the
board-governor (pieces are in the middle of the squares) and
the third board has both governors (it shows a correct game).
Figure 7 shows an XML object attached to both governors.

The interaction between the move instrument and governors
is as follows: The move instrument queries the governor
associated with the z-y position of the piece being moved
for valid values. The board governor computes the mapping
from the grid coordinates stored in the piece (A1-H8) to the
x-y position on the board. It then asks the governors asso-
ciated with the grid coordinate properties whether their po-
sition is a valid move. It collects, say, the list (C'5, H1). The
board governor now takes the intersection between its valid
grid coordinates and those returned by the governors and re-
turns their translation into x-y positions. The instrument can
now use the returned positions as feedback to the user or to

@state # defining state “start”
def start(self):
transition on button press to state "picking”
@transition(event=ButtonDown, to=self.picking)
def action(event)
pass # no action

@transition(event=Pick, to=self.picking)
def action(event)
self.picked = event.picked # record picked object

@state # defining state “picking”
def picking(self):
@transition(event=Select, guard=self.picktest, to=self.dropping)
def action(event):
self.picked = objectHandler.getObj(event.element)
eventHandler.fireEvent(Pick(self.picked)) # fire Pick event

@transition(event=Pick, to=self.dropping)
def action(event):
self.picked = event.picked

@transition(event=ButtonUp, to=self.start)
def action(event):
pass

@state # defining state ”dropping”
def dropping(self):
@transition(event=Select, guard=self.picktest, to=self.picking)
def action(event):
if self.picked is not None:
<insert picked object into selected object>
eventHandler.fireEvent(Drop(self.picked)) # fire Drop event

@transition(event=Drop, to=self.picking)
def action(event):
pass

@state # defining state “picked”
def picked(self):
@transition(event=ButtonDown, to=self.dropping)
def action(event):
pass

@transition(event=Drop, to=self.start)
pass

Figure 5. Pseudo-code for pick-and-drop instrument

place a piece. When placing the piece, the board-governor
is notified, sets the new grid coordinates for the piece and
notifies the Othello governor which exchanges the pieces on
the board according to the game rules. This shows that the
board governor can be used not only for playing Othello, but
also for any game that relies on a board with a square grid.

Instruments can query governors for valid values in order
to provide feedback to the user about the rules associated
with an object. In the Othello game this is used by the move
instrument to show whether a position is legal: in Figure 6,
the move instrument turns the line red if the user points at an
illegal position.

Instruments interact with governors through a client-side
governor-handler (Figure 8). In our implementation gover-
nors reside on a governor-server, and are instantiated when a
client loads an object for the first time. Governors could ho-

o
N
N

2

-

1111

| e

Figure 6. Othello Governors

o
o

<circle x="—10" y="—10" radius="7" boardPlacement="D4" fillColor="
#000000” id="6bd0” >
< governed by="boardGovernor” instance="d27d”>
< governs attribute="x"/>
< governs attribute="y”/>
</governed>
< governed by="othelloGovernor” instance="d09” >
< governs attribute="boardPlacement”/>
</governed>
</circle>

Figure 7. Object with governors

wever be cached locally, e.g. in case the network connection
is temporarily lost. If multiple governors are associated with
a set of properties the governor-handler computes the inter-
section of the valid values that they return. If an instrument
wants to change the properties of an object that is not go-
verned, e.g. drawing annotations on the board of the Othello
game, it can do so without having to negotiate with the go-
vernors. An instrument can also simply ignore the governors
and change object properties directly.

Supporting multi-surface interaction

Now that we have described the components, we can illu-
strate some multi-surface interactions supported by the ar-
chitecture. We start with the pick-and-drop instrument. Sin-
ce any object can be used with that instrument, we can apply
it to the Othello board itself. This works with no extra code
and allows to instantly share live applications across multi-
ple devices and surfaces: picking an ongoing game on the
SmartBoard and dropping it on the PDA, we instantly have
a networked multiplayer version of Othello (Figure 9).

Another application is to put the pieces of the Othello game
on the PDA of each player. They just use pick-and-drop to
move the pieces from their PDA to the SmartBoard, again
without modifying anything to the existing game. We have
also implemented a printer object associated to a print gover-

Retrieve the governors associated with the object’s x and y properties
governors = governorHandler.getGovernors(obj, [’x”, "'y”’])

The instrument checks whether the new object position is valid

if governors.validval([”x”, 7y, x, y):
object.set(”x”, x)
object.set(’y”, y)
It notifies the governors that the object has changed

governors.changed(obj)

Figure 8. Pseudo-code illustrating the interaction with governors

Figure 9. Shared game between the SmartBoard and the N§10 PDA

Figure 10. Image created on the board using palettes on the PDA

nor. The print governor simply prints the object that is drop-
ped on the printer. The printer can be picked-and-dropped li-
ke any other object and therefore can easily be shared across
multiple devices and taken away on one’s PDA.

Using these components, we have created a scenario whe-
re the PDA is used as both a color and object palette for
creating graphics on the SmartBoard. Images and shapes are
picked on the PDA and dropped on the SmartBoard, while
colors for freehand drawing are selected on the board (Figure
10). Finally the canvas on the SmartBoard can be picked and
dropped on the PDA, or dropped on the printer for printing.

DISCUSSION AND QUALITATIVE EVALUATION

VIGO was designed specifically to address multi-surface in-
teraction and support a flexible interaction style where users
can use any instrument on any object. We first compare it
with MVC and then provide some formative evaluation.

VIGO is conceptually close to MVC but has a number of
key differences. First, VIGO was designed from the ground
up for distributed interfaces. While there are some imple-
mentations of distributed MVC [12], in particular in the con-
text of Rich Internet Applications, they usually have a num-
ber of limitations with respect to the original pattern, and to
our knowledge none of them natively support multi-surface
interactions such as pick-and-drop. Second, VIGO stresses
the notion of mediation that is absent in MVC. In MVC the
View is both a visualization of the model and of the “tool”
to interact with the model, whereas VIGO puts the visua-
lization of the model in the View and the visualization of
the tool in the Instrument. This makes it possible for multi-

ple, independent instruments to interact with the same mo-
del through the same view, which is different from MVC’s
model-sharing through multiple views. MVC makes it diffi-
cult, or at least non-natural, to create non widget-like inter-
actions. For example, drag-and-drop types of interaction are
not well supported by MVC, but they are a key interaction
in multi-surface environments. Finally, the MVC state-based
Model is not explicitly present in VIGO. Instead, the Gover-
nor represents behavioral aspects of the model that are rele-
vant to interaction. This provides a high degree of flexibility
that is difficult to obtain with MVC.

We now summarize a qualitative evaluation of VIGO based
on some of the criteria defined by Olsen [22] to assess user
interface systems research:

Generality of the solution: Instrumental interaction makes
the assumption that interaction is mediated by an instru-
ment. Whether all interaction with a computer is mediated
or not is beyond the scope of this paper’, however it does
cover a wide range of interaction styles, including traditio-
nal WIMP interaction, tangible interaction and pen-based in-
teraction [4] that are relevant to multi-surface environments.
Our experience so far is that VIGO provides appropriate sup-
port to implement ubiquitous instrumental interaction, and
we have yet to find an instrumental technique that does not
fit the pattern.

To give a perspective on how ubiquitous instrumental inter-
action could change some basic uses of the computers, con-
sider instant messaging: with VIGO, a conversation would
be an object that two or more users can share (a generic
instrument would support a directory and a means to sha-
re objects). The governors associated with the conversation
would add a user name and time stamp to the entries ad-
ded to it. Entries could be images, text, drawings or even a
live game like Othello, added with pick-and-drop. The con-
versation itself could be moved around between the surfaces
available to the user and manipulated with the instruments
available on the devices at hand, e.g. freehand writing on a
PDA and keyboard text entry on a laptop.

Viscosity: According to Olsen viscosity includes flexibility,
expressive leverage and expressive match. The goal of VIGO
is to clearly separate concerns among its strongly decoupled
components. We have illustrated the level of flexibility this
provides. In particular, adding or removing governors radi-
cally changes the behavior of objects, and instruments can
operate on objects they know very little about. New instru-
ments can easily be implemented and tested with existing
objects, instruments and governors. Expressive leverage is
demonstrated by the polymorphic aspect of instruments and
the ability to reuse the various components. For example,
the draw instrument that was created for the paint applicati-
on can be used to annotate the Othello board, and the color
picker can pick the color of any other object. The flexibility
of the architecture made it easy to create a pick-and-drop in-

SSpeech-based interaction, for example, does not seem to be me-
diated, unless one considers the speech recognizer itself as an in-
strument

strument that can move pieces of a board game as well as the
complete live game from one device to another. Expressive
match is supported by the use of concepts familiar to devel-
opers, such as a (distributed) event system, state machines
and XML-like objects, and the “concrete” character of the
components that makes it easy to decide what should be in
the objects, the governors and the instruments.

Power and Scale: The power of instrumental interaction is
the ability to apply any instrument to any object, and the
power of VIGO is to provide developers with simple means
to achieve this interoperability. Combining objects, combi-
ning governors and combining instruments is simple, what
may prove more challenging is controlling which interacti-
ons are desirable and which are not. While we see evidence
that the approach is scalable, we need to validate it by im-
plementing a larger system. In case the flexibility of the mo-
del proves a weakness rather than a strength, for example if
we loose control over the combinatorial explosion of inter-
actions between instruments, governors and objects, we will
consider adding appropriate control mechanisms.

CONCLUSION AND FUTURE WORK

This paper addresses a problem area that has gained little
attention despite the development of ubiquitous computing
technologies. We have shown the potential of multi-surface
interaction and presented an extension of instrumental inter-
action called Ubiquitous Instrumental interaction that sup-
ports distributed interaction among multiple devices and
computers. It has then presented VIGO, a software architec-
ture pattern designed for the implementation of ubiquitous
instrumental interaction and illustrated it with several ex-
amples. VIGO supports reusability of instruments by users,
since the same instrument can be used with different objects.
It also supports reusability of components by the developer,
in particular through the flexibility provided by the dyna-
mic management of governors attached to objects. Finally
we have shown how to implement the classical Ubicomp in-
teraction technique pick-and-drop and discussed a number
of evaluation criteria for the proposed pattern. We plan to
continue the development of VIGO to further explore how
to best support multi-surface interaction and address issues
such as the configuration of instruments, the scalability of
the architecture and the design of novel multi-surface inter-
action techniques.

ACKNOWLEDGMENTS

We thank Par-Ola Zander, Susanne Bgdker, and Olav Ber-
telsen for fruitful discussions. We thank Pierre Dragicevic,
Rob Jacob, Allan Hansen and Wendy Mackay for insightful
inputs on the paper, Rasmus Berlin for work on an initial
implementation and Jonas Petersen for AV assistance.

REFERENCES
1. C. Appert and M. Beaudouin-Lafon. Swingstates: ad-
ding state machines to the swing toolkit. In Proc. ACM
User Interface Software Technology (UIST’2006), 319—
322, New York, NY, USA, 2006. ACM.

2. R. Ballagas, M. Ringel, M. Stone, and J. Borchers.
istuff: a physical user interface toolkit for ubiquitous

10.

11.

12.

13.

14.
15.

16.

computing environments. In Proc. ACM conference on
Human factors in computing systems (CHI’03), 537-
544, New York, NY, USA, 2003. ACM.

. L. Balme, A. Demeure, N. Barralon, J. Coutaz, and

G. Calvary. CAMELEON-RT: a software architecture
reference model for distributed, migratable, and plastic
user interfaces. In EUSAI 2004, LNCS 3295, 291-302,
2004.

. M. Beaudouin-Lafon. Instrumental interaction: an inter-

action model for designing post-WIMP user interfaces.
In Proc. ACM Conference on Human Factors in Compu-
ting Systems (CHI’2000), 446-453. ACM Press, 2000.

. M. Beaudouin-Lafon and W. E. Mackay. Reification,

polymorphism and reuse: three principles for designing
visual interfaces. In Proc. ACM Conference on Advan-
ced Visual Interfaces (AVI’2000), 102—-109, New York,
NY, USA, 2000. ACM.

. 0. Beaudoux and M. Beaudouin-Lafon. Dpi: A concep-

tual model based on documents and interaction instru-
ments. In Proc. Computers XV Interaction without fron-
tier (HCI 2001 and IHM 2001). Springer Verlag, 2001.

. S. Bgdker. Through the Interface. A Human Activity Ap-

proach to User Interface Design. Lawrence Erlbaum
Associates, Inc., 1991.

. C. Brodersen, S. Bgdker, and C. N. Klokmose. Quality

of learning in ubiquitous interaction. In Proc. European
Conference on Cognitive Ergonomics (ECCE), 2007.

. A. Demeure, J. Sottet, G. Calvary, J. Coutaz, V. Gan-

neau, and J. Vanderdonckt. The 4C reference model for
distributed user interfaces. In Int. Conf. on Autonomic
and Autonomous Systems, 61-69, 2008.

A. Fettig. Twisted Network Programming Essentials.
O’Reilly Media, Inc., 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reuseable Object-Oriented
Software. Addison-Wesley, 1994.

T. C. N. Graham, T. Urnes, and R. Nejabi. Efficient dis-
tributed implementation of semi-replicated synchronous
groupware. In Proc. ACM symposium on User interface
software and technology (UIST’1998), 1-10, New York,
NY, USA, 1996. ACM.

R. D. Hill. The abstraction-link-view paradigm: using
constraints to connect user interfaces to applications.
In Proc. ACM Human factors in computing systems

(CHI’92), 335-342, New York, NY, USA, 1992. ACM.
L. Tlich. Tools for Conviviality. Fontana/Collins, 1973.

G. E. Krasner and S. T. Pope. A cookbook for using
the model-view controller user interface paradigm in
smalltalk-80. J. Object Oriented Program., 1(3):26-49,
1988.

Merriam-Webster. Dictionary and Thesaurus. 2008.
http://www.merriam-webster.com/.

10

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. M. Modahl, B. Agarwalla, G. Abowd, U. Rama-
chandran, and T. S. Saponas. Toward a standard ubi-
quitous computing framework. In Proc. ACM Workshop
on Middleware for pervasive and ad-hoc computing
(MPAC’2004), 135-139, New York, NY, USA, 2004.
ACM.

G. Mori, F. Paterno, and C. Santoro. Design and de-
velopment of multidevice user interfaces through mul-
tiple logical descriptions. IEEE Trans. on Soft. Eng.,
30(8):507-520, 2004.

B. A. Myers. Separating application code from toolkits:
eliminating the spaghetti of call-backs. In Proc. ACM
Symposium on User interface software and technolo-
gy (UIST’1991), 211-220, New York, NY, USA, 1991.
ACM.

B. A. Myers, J. Nichols, J. O. Wobbrock, and R. C. Mil-
ler. Taking handheld devices to the next level. Computer,
37(12):36-43, 2004.

M. W. Newman, S. Izadi, W. K. Edwards, J. Z. Sedivy,
and T. F. Smith. User interfaces when and where they
are needed: an infrastructure for recombinant compu-
ting. In Proc. ACM symposium on User interface soft-
ware and technology (UIST’2002), 171-180, New York,
NY, USA, 2002. ACM.

D. R. Olsen. Evaluating user interface systems research.
In Proc. ACM Symposium on User interface software
and technology (UIST’2007), 251-258, New York, NY,
USA, 2007. ACM.

D. R. Olsen, S. Jefferies, T. Nielsen, W. Moyes, and
P. Fredrickson. Cross-modal interaction using xweb.
In Proc. ACM Symposium on User interface software
and technology (UIST’2000), 191-200, New York, NY,
USA, 2000. ACM.

T. Reenskaug. Models - views - controllers. Technical
report, Xerox Parc, 1979.

J. Rekimoto. Pick-and-drop: A direct manipulation tech-
nique for multiple computer environments. In Proc.
ACM Symposium on User Interface Software and Tech-
nology (UIST’97), 31-39, 1997.

J. Rekimoto. A multiple device approach for suppor-
ting whiteboard-based interactions. In Proceedings of
the 1998 ACM Conference on Human Factors in Com-
puting Systems (CHI’98), 1998.

P. Tandler. Software infrastructure for ubiquitous com-
puting environments: Supporting synchronous colla-
boration with heterogeneous devices. In Proc. Inter-
national conference on Ubiquitous Computing (Ubi-
Comp’2001), 96-115, London, UK, 2001. Springer-
Verlag.

M. Weiser. The computer for the 215¢ century. Scientific
American, 265(3):66-75, Feb. 1991.

