
A New Direct Manipulation Technique for
Aligning Obje~cts in Drawing Programs

Roope Raisamo

Kari-Jouko Raiha

Department of Computer Science

University of Tampere

P.O. Box 607 (Kehruukoulunkatu

FIN-33 101 Tampere, Finland

{rr,kjr} @cs.uta.fi

ABSTRACT

Current drawing programs provide mainly three ways for
carrying out object alignment: either by issuing an
alignment command, or by using direct positioning with
the help of gravity active points, or by making use of
constraints. The first technique has limited functionality,
and the other two may be mysterious for a novice. We
describe here a new direct manipulation tool for alignment.
We show that while direct manipulation helps to make the
tool intuitive, it has through iterative design evolved into a
tool that also offers functionality not found in current

commercial products.

KEYWORDS: drawing programs, alignment toolls, direct

manipulation, two-handed interaction, iterative design

INTRODUCTION

Direct manipulation has for more than a decade been one of
the preferred styles of interaction. Drawing programs were
among the first applications that made heavy use of direct
manipulation. Recent developments in drawing programs
have concentrated on intelligent techniques, such aksthe use

of constraints. The basic direct manipulation behavior has

remained more or less the same.

A closer look at drawing programs shows that the real

world analogy, on which direct manipulation is based, has

not been used nearly as much as possible. In this paper, we

shall focus our attention on the alignment tool. We shall

develop a new interaction technique that is more clirect and

understandable than the traditional ways of carrying out the

same operations.

Permission to make digital/hard copies of all or part of this mnterial for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To co]py otherwise,

to republish, to post on aervera or to redistribute to lists, requires specific
permission and/or fee,
UIST ’96 Seattle Washington USA
@1996 ACM 0-89791-798-7/96/11 ..$3.50

In addition to the interaction technique itself, the process

used in its development is also of interest. Through careful

iterative design, we were able to create a tool that, besides

being easy to use and intuitive, also offers new function-

ality.

This work had two driving forces. One was the examination

of the new interaction idea. Another was related to a larger

project that is carrying out research on multimodal inter-

action in general, and two-handed interaction in particular.

Two-handed interaction is a technique that needs very

careful planning, as the results of previous work in the area

point out [19]. Because of the many functions provided by

our tool, the use of two hands for controlling it proved

useful for a smooth handling of the various properties.

The rest of the paper is organized as follows. First, we will

present previous work related to our subject. We then

discuss our first solution to the alignment problem. This

solution had several problems, both conceptual and related

to the implementation. We describe the problems and their

solutions, and present our current version of the tool. We

conclude by briefly evaluating the tool.

PREVIOUS WORK

Alignment is a basic property of current drawing programs.

One frequently needs to have objects on the same level

either horizontally or vertically. The objects are usually

aligned by their center points or by the bounding box of the

selected objects.

It is hard to track down the history of alignment tools in

drawing programs. They were introduced to a larger user

population through commercial products such as Apple’s

MacDraw [21], but had existed earlier in various research

prototypes (see [6] for some references) and in Xerox’s

workstations [3]. Although much of the development of
Xerox Star was based on careful user testing [4], the early

development of alignment tools has not been documented.

157

Command Based Alignment Tools

The most common way to align objects uses a two-step

procedure:

(1) select the objects to be aligned, usually by

pointing and clicking with the mouse; and

(2) issue the appropriate alignment command.

The second step of this procedure does not make use of

direct manipulation, thereby differing from many other

operations typically found in drawing programs.

The alignment commands are often placed in menus, but

they provide no visual cues to the user. Another possibility

for issuing the alignment command is to use an alignment

palette which provides alignment operations in graphical

buttons. The third method used in commercial products is

to have only one alignment command in the menus, and to

use a dialog box for providing additional parameters. The

dialog box approach is obviously the slowest of the three

for carrying out a basic alignment operation.

Visual cues are important, not only to make the choice of

operations more intuitive, but to explain how the objects

will move. The mere fact that the right sides of two objects

me aligned does not indicate whether the leftmost object

will move to the right, or the rightmost object to the left, or

whether perhaps they will both move the same distance

towards each other. This is something that has to be simply

learned in menu based systems, but is directly visible in the

palette.

A more detailed discussion of command based techniques,

with more illustrations, can be found in an extended version

of this paper [23].

Advanced Techniques

In addition to being somewhat cumbersome to use,

command based alignment tools offer only limited

functionality. Advanced techniques for more complex

alignment tasks have therefore been developed.

For a novice, the most natural way to align objects is

simply to drag them to their desired positions. Such

positioning is, of course, not very precise, but the technique

can be enhanced by applying “gravity”. To align a group of

objects using this technique, each object still has to be

dragged in position separately.

The most common form of gravity active points is a grid

which can be turned on or off. Grid based alignment tools

typically use a fixed grid, where the user is allowed to

control only the density of evenly spaced grid lines. Adobe

Illustrator goes one better: it provides so-called guide

objects which can be positioned and moved manually by

the user. Figure 1 shows three guide objects: one vertical

ruler, one horizontal ruler and one rectangular guide object.

The guide objects are drawn with dotted lines.

m Untitled art 1 <50%>-JJ~

II
40; .’.. . .

.i...,..,.,

?2

.
*

Selectim

Figure 1: Three guide objects in Adobe Illustrator
for Macintosh.

The power of gravity has been taken to a new level in a

technique called snap-dragging [6, 7, 22], where the user

can draw new alignment objects and define their gravity

active points. This allows precision positioning along a rich

set of curves, not just rectangular objects. The metaphor for

alignment objects is that of draftsmen using ruler and

compass techniques for precision drawing. A somewhat

similar technique has been implemented (and patented !) in

the commercial drawing program DrawingBoard [13].

Grids and other gravity based techniques are direct:

positioning is caused by the user’s direct actions. Another

powerful, but indirect, technique makes use of constraints

usually specified by the user. Constraint based tools relieve

the user from fine grain positioning of objects. Instead, the

system solves a set of constraints and automatically

produces a transformed picture that satisfies the constraints.

Such tools have a long history, going back all the way to

Sketchpad [26].

Grids and constraints together provide so much power that

novices may be reluctant to use them or have difficulties in

understanding them. The maxim “Simple things should be

simple; complex things should be possible” was attributed

to Alan Kay in [20]. While command based alignment tools

do not make complex things possible, advanced techniques

tend to achieve their power by making simple things

harder, at least for a novice.

Direct Manipulation and Metaphors

The drawing programs discussed above do present the

drawing objects visually, thereby providing the basis for

direct manipulation [24, 25]. But it is also clear that in most
of them the alignment operation is not visualized and does

not give a feeling of direct engagement [17]. What is the

reason for this? Is the alignment operation impossible to

visualize? Certainly not. We shall present our solution later,

but for now, think of this for a while: if you were asked to

align a set of real world objects lying on your office desk,

how would you proceed?

It is well known that metaphorical interfaces have their

limitations: sooner or later the analogy breaks. Still, it is

158

somewhat surprising that so little discussion on the current

state of drawing programs can be found in the literature.

The basic operations are based on direct manipulation; why

is it so common to resort to commands when carrying out

more advanced operations? Gravity based techniques use

direct manipulation, but they extend the dragging operation
to help in alignment, instead of providing al direct

manipulation tool for the operation.

To an expert, this may not seem as much of a problem.

However, studies of CAD programs show that productivity

is hampered partly because the possibilities offered by the

programs are used poorly. Users tend to follow the habits

learned inmanual drawing. Bhavnaniand John [5] suggest

that the desirable practices should be taught to the users.

Here we shall explore the other alternative, making the

tools better fit the existing practices.

The system that is in spirit closest to ours is DrawingBoard

[14] (not to be confused with the commercial system

mentioned above that has the same name!), developed by

Davor Dukic and Ian Benest in the University of Yc}rk, UK.

This system introduced a computer-generated counterpart

forthe ruler that is used to draw straight lines. However,

this ruler is used in a bitmap based paint program while

drawing on the screen: there is no alignment operation or

tool in the program.

Of course, it may be that even if a natural visualization for
the alignment operation can be found, it may not prove
efficient in use. We intend to show that through careful
design, an intuitive, functionally powerful and efficient tool
can be created.

THE DESIGN CYCLE

We started our work by carefully considering the metaphor

that would be appropriate for aligning objects. In this first

stage we experimented with physical objects to guide us in

the design.

Next, we developed the first prototype of a simple object-

oriented drawing program called R2-Draw. It provides us

with a convenient environment for exploring new

interaction techniques. When the first implementation of

our tool was ready, we ran a few informal user tests in our

usability laboratory to see how the tool would behave in the

hands of other users.

Several problems emerged, causing a redesign of many

details (such as moving the center alignment property from

a property of the tool into a property of the aligned

objects), but the metaphor seemed to be intuitive. We tried

to correct the previously found problems in the current
implementation of the tool. We also added some new

functionality that had not been implemented in the first

prototype due to time restrictions.

In the following we first describe the initial design, and

then elaborate on the role of two-handed control. The

current version of the tool is then discussed in detail,

followed by observations from informal usability tests.

THE INITIAL DESIGN

The first major design decision was to choose an

appropriate metaphor for aligning objects. We decided to

adopt a metaphor that would be as close to the real world as

possible, This way the user can have an advantage of the

previous experience in similar tasks with real objects.

We chose a ruler as the metaphor for our alignment tool,

because many people are familiar with it and may have

used it to align, or at least to push away, miscellaneous

items found on their desks. And, even if they hadn’t done it

earlier, this action should be quite intuitive. Moreover, the

ruler has a scale that can be used to measure the distances

between objects during the alignment operation. We

differentiate our tool from its usual use of drawing straight

lines by calling it a stick instead of a ruler. The name

alignment stick refers to the property of the ruler which is

its primary use in the alignment operation.

We also considered the situation in which some objects

could be pulled with the stick instead of being pushed. This

added functionality would have complicated the metaphor.

Since our main targets were novice users and our main goal

was an intuitive tool, we have currently decided against

providing this mode.

Our real world based metaphor proved to be very useful

since it allowed us to test the metaphor even before a single

line of code was written. Our observations with a couple of

bricks and one physical ruler showed us some of the

potential problems related to the metaphor. To solve these,

we used a pragmatic approach [10] in our metaphor design.

According to this approach, if there clearly is a property of

the metaphor which would be an obstacle for smooth

functionality, it can be changed to act in a useful way.

Following this approach, we chose to leave out physical

effects between objects. One example of these is the fact

that no solid object can move through another solid object,

which would make overlapping objects very difficult to

handle. Also, if an object is pushed in the real world with a

physical stick that is not parallel to the pushed side of the

object, the object will eventually rotate so that it is lined

with the stick – another feature that was judged

undesirable.

There are two other exceptions from the real world

metaphor: the length of the stick can vary and the objects

can be locked. These exceptions were made to facilitate the
manipulation of only a subset of the objects. If you use a

ruler to push your pens on the desk, all of them will

presumably move when they touch the stick. However, in a

159

drawing program, some of the objects may already be

where you want them to be, You don’t want to spoil your

previous work by pushing all of the objects. We therefore

allow the user to change the length of the stick any time

and to lock an object, so that it will not be affected by the

stick. Each object has its own state (locked or unlocked)

that can be changed from its pop-up menu.

Figure 2: The alignment stick in the active (a) and
inactive (b) state.

The alignment stick is shown in its two operational states in

Figure 2. The lower stick is in the inactive state, displayed

when the user moves the pointer over an object with the

mouse button not pressed. The upper stick is in the active

state which means that when the stick is pushed, it aligns

every unlocked object that it touches. The stick is

implemented as a large mouse cursor, which changes to the

normal pointer when moved outside of the drawing area.

In our first implementation the alignment stick had two

operating modes: border alignment and center alignment.

In the center alignment mode all the objects were aligned

by their center points until the stick was switched back to

the border alignment mode.

Figure 3 shows the alignment stick in its typical use. First,

the stick is in the inactive state (a). Next, the stick has been

moved upward and activated. The stick has already touched

the lower ellipse, which has moved a little upward (b).

Finally, both of the ellipses are aligned by their bottom

sides with a single action (c). In (d), we have grouped the

ellipses and selected the center alignment mode. We have

also rotated the stick to do horizontal alignment for the

group and the upper rectangle. The way of doing this will

be discussed in the next section.

Our approach to the alignment operation solves the

problem of visual cues we presented in our discussion of

the command based alignment tools. The problem was that

the user had no way of knowing how the objects will move

when they are aligned with a command, With the alignment

stick the objects are moved while they are pushed. So the

user will see all the time how the objects are moving. We

are using real time animation to show the current state of

the drawing during these alignment operations. The user is

also not likely to try to align the objects in the wrong

direction (horizontal or vertical), because everything is

expressed visually.

TWO-HANDED CONTROL

The alignment stick is a versatile tool, This can make it

very difficult to use with just one pointing device. This was

one of our main reasons for implementing it with a two-

handed technique. A brief discussion of two-handed

interaction follows.

Two-handed interaction is a relatively new technique in

human-computer interaction. A well-known early

experiment in the area was carried out by William Buxton

and Brad Myers in 1986 [9]. This experiment already

showed that using two hands in parallel can clearly speed

up the work and make the learning of the work faster.

St6phane Chatty [11, 12] has composed several guidelines

for two-handed interaction, He divides two-handed systems

into systems that use independent interaction, parallel

interaction and combined interaction. In independent

interaction the two hands are used simultaneously for two

entire, distinct tasks, while in parallel interaction the tasks

are equally important and somehow related. Combined

interaction is the most sophisticated and preferable

technique, where the two parallel tasks support each other

and have a common goal. Kabbash et al. [19] have pointed

out that combined interaction is the most understandable

and probably the only form of two-handed interaction that

is clearly better than traditional one-handed sequential

interfaces, Such an implementation also exists for the snap-

dragging technique (see Figure 14 in [8]).

1234567 7234567 ,23456,
,,

1234567
,,

1 ‘.- 1 1. 1’

2> 2 .2 2!

3. 3.. :3 3 :..

4 ..: 4- 4 4:

5.. 5-- 5 5.:

;$ -: 6 6 ;..’ 6 . ’ .’...’..’
:!:

,~:. ,. :. .,.

a). : b)’.’:” ‘“C)’’” ““”d)’~ ““”

Figure 3: The alignment stick in use: a) The stick is inactive. b) The stick is activated and moving up. c) The stick has
reached its intended position and the ellipses are vertically aligned by their bottom sides. d) The stick is rotated and
the center alignment mode is selected. Two grouped ellipses and the rectangle are centered horizontally.

160

We decided to use our primary pointing device (mouse) to

control the position of the stick and the secondary pointing

device (trackball) to accomplish actions that support the

primary function of pushing objects to the desired position.

The secondary action that we included in the first

implementation was changing the width of the sticlk. This is

done by rotating the trackball and can be accomplished
while moving the stick with the mouse, resulting in parallel
and combined interaction. The reason why these operations
can be done in parallel is that they are used to accomplish
the same goal and so the user need not divide attention to
many tasks, as would be the case in independent or parallel
interactions. The choice of the trackball as the second input
device was based on the results of Kabbash et al. [18],

showing that a trackball was equally accurate with the non-
dominant hand as a mouse and a tablet-with-stylus.
Furthermore, the trackball is steady and this way
overcomes some of the limitations (described in [2!, 15]) of
the non-dominant hand.

By using two input devices we achieved smooth control of

the alignment tool despite the fact that it has so many

functions. The tool is activated by pressing the left mouse

button. It can be switched between the horizontal and

vertical directions with the middle mouse button. The width

of the stick is altered by using the trackball. Rolling the ball

upwards or to the right increases the length and rolling

downwards or to the left decreases it. The first

implementation used the second input device only for this

operation.

Following Chatty’s [11] suggestion that everything should

be possible without the second hand, when the right mouse

button is pressed the mouse works as a substitute of the

trackball. This behavior enables the use of the program

while another hand or device is for some reiison not

available.

The user could switch between the border and center

alignment modes by double-clicking the left mouse button

or by issuing the command with a graphical button. Our

user tests showed that it was difficult for users to remember

that the center alignment mode existed, and even lharder to

remember how to switch to it.

THE CURRENT IMPLEMENTATION

We encountered a couple of problems while testing our

first implementation with users. One major problem was

that it was quite difficult to align and move objects exactly

to the desired position. When the user tried to align the

objects at the given position, the objects were frequently

pushed too far. To fix this, the user needed to usc another

alignment operation and push the objects a little way back.

But since the objects were of different size, the previous

arrangement was lost during this corrective operation. That

is why still another alignment operation was needed to

accomplish the goal.

We made several improvements to the program to correct

the problems of the first implementation. First, we added

the common snap to grid operation. When applied with our

alignment stick it functions so that when the stick is close

to a line in the grid, the pushed objects are snapped to this

line. This helps with those alignment operations that can

use the grid, but it still does not solve the previous problem

with arbitrary alignment operations.

The problem where the objects were pushed too far could

be corrected in the first implementation also by switching

to the pointer tool, by selecting the previously pushed

objects and by dragging them back to the intended position.

As you can imagine, this was quite a complex and time-

consuming operation and therefore was not preferred by the

users. We were convinced that we should not add any more

functionality to the tool itself. So what we did was to add

an easier way to switch between the alignment and pointer

tools. We decided to assign the left button of the trackball

to this operation. The button can be pressed any time

during the alignment operation and as long as it is pressed,

the user can manipulate the objects with the pointer tool.

When the button is released, the program switches back to

the alignment stick. To make things easier, the latest

pushed objects are automatically selected during this

temporary use of the pointer tool.

We also eliminated the double clicking transition to the

center alignment mode. In fact, we removed the center

alignment mode from the stick in order to simplify the tool.

The first implementation of the tool had too much hidden

functionality that we wanted to make more explicit. We

accomplished this by taking some of the functionality out

of the tool and moving it to the objects, an approach that is

similar to the one in [16]. There, too, the same basic

operation behaves differently with various objects, and this

is reflected in the way that the objects are displayed.

In our case, we decided that center alignment should not be

a property of the tool, but a property of the object that was

aligned with the tool. This enabled us to use different

alignment methods at the same time. We could, for

example, align the center of a rectangle to the right side of

another rectangle. This kind of alignment is not possible

with traditional command based tools. After we were

convinced that this was indeed a right decision, we decided

to go even further: the user can currently set any

combination of nine alignment points, which are the center

point and the eight points often used in object resizing

handles. These points are set by using a separate tool to

prevent overloading our stick metaphor (Figure 4). If no

alignment points are set for an object, it is aligned by its

border line.

161

I I

!-~
-LA~bW=
“’”’’””bvn”””””n~n’”””
.

Figure 4: The alignment point setting tool in use.
The user can click in the points that need to be
active during the alignment operation. The use of
this tool is optional.

We also gave the user more freedom in choosing the

alignment direction. The stick can currently be rotated to

any angle in addition to the previous horizontal and vertical

directions. The rotation is accomplished by the trackball

when the user has selected free angle alignment with the

center mouse button. Simply rotating the trackball left or

right rotates the stick around its center. After this addition,

the alignment stick can be used just like the real one, only

in two dimensions and remembering the few exceptions

that we made to the ruler metaphor. Figure 5 summarizes

the controls of the alignment stick.

Right button: while pressed, the

mouse works like a trackball
7

Center button: switches

between horizontal, vertical

and free angle stick

Left button: activates the stick
l“”1

Left button: switches

to the pointer tool

—changes the length or
b

the angle of the stick

TRACKBALL MOUSE

Figure 5: Controls of the alignment stick.

Figure 6 presents the current implementation where the

user is drawing an ER diagram. The rectangles have been

aligned by their top or right sides. The group of ellipses and

the leftmost rectangle are centered horizontally, as in

Figure 3d. From left to right and top to bottom, the tool

palette has the following tools: pointer tool, ellipse tool,

rectangle tool, line tool, rounded rectangle tool, diamond

tool, the alignment stick (chosen) and a tool for selecting

the alignment points. The buttons in the toolbar are used to

manipulate the files and the clipboard. In the upper right

corner, 90° is the angle of the stick when rotating it to

different orientations.

DISCUSSION

In discussing the problems with direct manipulation,

Hutchins, Hollan, and Norman [17] state: “Direct

Manipulation interfaces have problems with accuracy, for

the notion of mimetic action puts the responsibility on the

user to control actions with precision, a responsibility that

is often best handled through the intelligence of the system,

and sometimes best communicated symbolically.” Our

implementation of the alignment stick shows that indeed, a

little help from the system is needed to handle precise

positioning; but with this addition, direct manipulation

provides the basis for a tool that is both intuitive and

powerful.

Following our own goals of simplifying the alignment

operations we came close to Chatty’s suggestion that all

magic should be disabled when two hands are at work [11].

He applied that principle to a line segment drawing tool,

where an invisible magic hand normally holds the other end

of the segment. In Chatty’s work the magic was disabled so

that the user could hold the other end with a secondary

input device while dragging another with the primary input

device. However, the “magic” that we added is not used in

the same way as in the line segment drawing, but to help

the user with alignment operations needing accuracy often

difficult to achieve with human motor systems [2, 15]. This

decreases the need for strict concentration during the

operation.

It was interesting to note that novice users were from the

beginning as fluent with the new alignment tool as they

were with the older tools, whereas users that had previous

experience with drawing programs required a short time

period (15-20 minutes) to feel at ease with the alignment

stick. This is yet another indication of the simple fact that

intuitive interfaces are based on learning and on previous

experiences [17]. Seasoned users take some time to

“unlearn” old habits and customs.

Because of the very nature of the alignment stick, it

removes one step in the alignment process when compared

with command based tools. In command based alignment,

the user has to select the objects to be aligned and then

issue the command. With our tool, the selection is not

needed in the basic operations. The only thing that the user

has to do is to push the objects. We believe that this

simplification can have an effect on the performance of

experienced users, too. This will be investigated during our

follow-up studies.

162

4----- --”” . .

5----- ---- , , --

G-----\ ------! ------! -----

17----- ------ : ------ !-----
I

Figure 6: The current implementation of the R2-Draw program. The user is aligning objects horizontally by their center
points.

On the other hand, it should be pointed out that advanced
gravity based techniques, such as snap-dragging, allow
alignment along a rich set of shapes, whereas the stick only
provides linear alignment. Furthermore, the stick only
aligns entire objects while other techniques can align at the
level of individual control points. We have tried to achieve
a balance between functionality and intuitiveness.

CONCLUSIONS

Careful design of the alignment tool gave us two valuable

benefits: intuitive use and added functionality. This

functionality developed even further during our iterative

design process and informal user tests. Currently we are

carrying out extensive usability testing to compare our

alignment tool to the traditional ways of doing the same

operations and to test our metaphor with different kinds of

users. We also plan to experiment with large {drawings,

which may produce problems that do not come up with

small examples and uncrowded screens.

Of course, object alignment is not one of the major

problems or obstacles in current user interfaces. However,

while new applications bring new problems into focus, it is

also important to sit back and analyze carefully the

established methods and techniques. At the operating

system level this is already common practice: window
manipulation, menu presentation and scroll bars have been

studied empirically and improvements to common solutions

have been suggested. Our work focuses in a similar way on

one common primitive of drawing programs.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Computer

Access Technology Corporation, Santa Clara, California.

They gave into our use their ACCESS. bus [1] Windows

application development kit, with which we did not need to

focus on the hardware issues of two-handed interaction

during our research.

REFERENCES

1.

2.

3.

4.

ACCESS. bus Technology Information Sheet. Computer

Access Technology Corporation.

[http://www.catc. com/ab_tech.htm]

J. Annett, M. Annett, P. T. W. Hudson, and A. Turner,

The control of movement in the preferred and non-

preferred hands. Quarterly Journal of Experimental

Psychology, 31, 1979,641-652.

Ronald M. Baecker and William A. S. Buxton, Case

study D: The Star, the Lisa, and the Macintosh. In

Readings in Human-Computer Interaction, A

Multidisciplinary Approach, R. M. Baecker and W, A.

S. Buxton (Eds.), Morgan Kaufmann, 1987,649-652.

William L. Bewley, Teresa L. Roberts, David Schroit,

and William L. Verplank, Human factors testing in the

design of Xerox’s 8010 “Star” office workstation.
Human Factors in Computing Systems, CHI ’83

Conference Proceedings, 1983,72-77.

163

5. Suresh K. Bhavnani and Bonnie E. John, Exploring the

unrealized potential of computer-aided drafting. Human

Factors in Computer Systems, CHI ’96 Conference

Proceedings, ACM Press, 1996,332-339.

6. Eric AlIan Bier and Maureen C. Stone, Snap-dragging.

Proc. SIGGRAPH’86, ACM Computer Graphics, 20 (4),

1986,233-240.

7. Eric A. Bier, Snap-Dragging: Interactive Geometric

Design in Two and Three Dimensions. Technical

Report EDL-89-2, Xerox PARC, September 1989.

8. Eric A. Bier, Maureen C. Stone, Ken Fishkin, William

Buxton, and Thomas Baudel, A taxonomy of see-

through tools. Human Factors in Computer Systems,

CHI ’94 Conference Proceedings, ACM Press, 1994,

358-364.

9. William Buxton and Brad A. Myers, A study in two-

handed input. Human Factors in Computer Systems,

CHI ’86 Conference Proceedings, ACM Press, 1986,

321-326.

10. John M. Carroll, Robert L. Mack and Wendy A. Kel-

logg, Interface metaphors and user interface design. In

Handbook of Human-Computer Interaction, M.

Helander (Ed.), North-Holland, 1988,67-85.

11. St6phane Chatty, Issues and experience in designing

two-handed interaction. Human Factors in Computer

Systems, CHI ’94 Conference Companion, ACM Press,

1994,253-254.

12. St6phane Chatty, Extending a graphical toolkit for two-

handed interaction. ACM UIST ’94 Symposium on User

Interjace So@are and Technology, ACM Press, 1994,

195-204.

13. DrawingBoard. Ashhir Inc.

[http:llwww.drawingboard.comlinfo.html]

14. Davor Dukic and Ian Benest, DrawingBoard: Adopting

office metaphor for page composition. Sun ’91

Conference Proceedings, Sun UK User Group,

Buntingford, UK, 1991,227-239.

15. Yves Guiard, Asymmetric division of labor in human

skilled bimanual action: The kinematic chain as a

model. The Journal of Motor Behavior 19 (4), 1987,

486-517.

16. Stephanie Houde, Iterative design of an interface for

easy 3-D direct manipulation. Human Factors in

Computer Systems, CHI ’92 Conference Proceedings,

ACM Press, 1992, 135-142.

17. Edwin L. Hutchins, James D. Hollan, and Donald A.

Norman, Direct manipulation interfaces. In User

Centered System Design, D. A. Norman and S. W.

Draper (Eds.), Lawrence Erlbaum, 1986, 87-124.

18. Paul Kabbash, I. Scott MacKenzie, and William Bux-

ton, Human performance using computer input devices

in the preferred and non-preferred hands. Human

Factors in Computer Systems, INTERCHI ’93

Conference Proceedings, ACM Press, 1993,474-481.

19, Paul Kabbash, William Buxton, and Abigail Sellen,

Two-handed input in a compound task. Human Factors

in Computer Systems, CHI ’94 Conference Proceedings,

ACM Press, 1994,417-423.

20. Daniel E. Lipkie, Steven R. Evans, John K. Newlin, and

Robert L. Weissman, Star graphics: An object-oriented

implementation. Proc. SIGGRAPH’82, Computer

Graphics 16 (3), July 1982, 115-124.

21. MacDraw Manual. Apple Computer, Inc., 1984.

22. Ken Pier, Eric Bier, and Maureen Stone, An

introduction to Gargoyle: an interactive illustration tool.

In Document Manipulation and Typography,

Proceedings of the International Conference on

Electronic Publishing, Document Manipulation and

Typography (EP88), J. C. van Vliet (Ed.), Cambridge

University Press, 1988,223-238.

23. Roope Raisamo and Kari-Jouko Raiha, Techniques for

aligning objects in drawing programs. Technical Report

A-1996-5, University of Tampere, Department of

Computer Science, August 1996.

[ftp://ftp.cs.uta.fi/pub/reports/A- 1996-5 .ps.Z]

24. Ben Shneiderman, The future of interactive systems and

the emergence of direct manipulation. Behaviour and

Information Technology 1, 1982,237-256.

25. Ben Shneiderman, Direct manipulation: A step beyond

programming languages. IEEE Computer 16 (8),

August 1983,57-69.

26. Ivan E. Sutherland, Sketchpad: A man-machine

graphical communication system. AFIPS Conference

Proceedings 23, 1963, 323-328.

164

