
A Mark-Based Interaction Paradigm
for Free-Hand Drawing

T/Ion-w Baudel
LRI, Universit4 de Paris-Sud, CNRS URA 410

91405 Orsay Cedex, France

e-mail: thomas @lri.fr

http://www-ihm.lri. fr/-thomas/

ABSTRACT

We propose an interaction technique for editing splines
that is aimed at professional graphic designers. These
users do not take full advantage of existing spline
editing software because their mental representations of
drawings do not match the underlying conceptual model
of the software. Although editing splines by specifying
control points and tangents may be appropriate for
engineers, graphic designers think more in terms of
strokes, shapes, and gestures appropriate for editing
drawings. Our interaction technique matches the latter
model: curves can be edited by means of marks,
similar to the way strokes are naturally overloaded
when drawing on paper. We describe this interaction
technique and the algorithms used for its
implementation.

KEYWORDS: Mark-based interaction, Gestures,
Spline editing, Interaction models, Graphic design,
CAD.

INTRODUCTION

Graphic designers and other art professionals are
increasingly likely to use professional drawing software

based on spline editing, such as Adobe Illustrator@.
Compared to conventional paper-based design tools,
these applications make it easier to reuse graphic
components and layouts, enable easy and clean
corrections and encourage the draft-based and iterative
design methods already widely used with paper.
Intensive training and good mastering of hand-drawing
techniques is not required to use these applications, so
non-skilled drawers can produce decent-quality
graphics.

However, many (most ?) skilled designers are still
reluctant to use such software exclusively. Even
computer-literate graphic designers find it easier to
sketch first on paper and then digitize their final drafts

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Aea8aiatiem fer Computing Machinmy. To copy
otherwise, or to republish, requires a fee ancf/orspecific permission.

1994 ACM 0-89791 -657-3/94/001 1....$3.50

rather than use the editing facilities provided by
computerized design tools. This is so common that
some specialized software for cartoonists doesn’t
provide any partial editing functions at all [9]. This
design decision is based on careful observation of the
target users:
● Most cartoonists are trained to draw the right shape on
the first try. They learn to avoid making mistakes
because they are too costly to repair on paper.
● When dissatisfied with a particular curve, professional
cartoonists usually prefer to redraw it. This preserves a
clean drawing style and the spontaneity of their strokes.
● Providing editing facilities requires the introduction of
modes and burdens the application with rarely-used
functions.

Current methods for editing spline curves consist of
moving control points and tangents to the curve. These
editing methods were invented and targeted for
engineers and industrial designers, in a specific context
[5]:
● The representation of curves matches the constraints
of the objects to be represented with CAD packages: it
provides perfect control over the positions of the control
points of the curves, and provides useful geometric

properties, e.g., C2 continuity where needed and easy
computation of bounding surface or volume.
● The target users usually have some background in
mathematics enabling them to master easily the
peculiarities of the interaction technique. For example,
when a control point is near an anchor point, small
moves of one or two pixels produce very important
changes in the overall shape of the curve, because the
tangent to the curve at the anchor point is affected by
every discrete increment.
Although this spline-editing technique may be

appropriate for CAD engineers, it has proven difficult
for graphic designers to use because it does not fit the
conceptual model they have of their tasks.

We propose a mark-based interaction technique that is
specifically intended for graphic designers. Our design
is based on patterns extracted from their existing
drawing and editing techniques rather than on a data

representatkm focused on mathematical models and
computer management of geometric data. Our

November 2-4, 1994 UIST ’94 185

interaction method allows users to edit splines with
marks and pen input, based on common drawing and
editing techniques on paper. Although easier for graphic
designers to understand, this approach requires
translating subjective aspects of marks into a geometric
data format that can be manipulated by the computer
but is still tractable with current hardware and software.

After placing our work into context, we present our
observations and the concepts that led to this
interaction method. We then describe the algorithms we
used and possible enhancements. Finally, we propose a
preliminary evaluation of the benefits of this interaction
technique. In conclusion, we suggest further
enhancements to this interaction paradigm that will
improve the tools graphic designers or artists use to
create and edit drawings.

RELATED WORK

Many interaction techniques and spline representations
providing more “natural” ways to edit curves have been
proposed. Most work has focused on new representations
of curves: different definitions of the relationship
between the curve and its control-points, e.g., B-Splines
[14]) or the addition of parameters such as “tension” or
“bias”, e.g., t3-splines [2]. Various formulations have
been evaluated, For example, Bartels et al, [3] use a
shape-matching task to evaluate the respective qualities
of five different spline formulations: B -Spline, B ~zier,
Catmull-Rem, “end-condition” and “natural” curves.

More recently, Fowler and Bartels [10] proposed a
technique for direct manipulation of splines that permits
moving any point on the curve instead of specific
control-points. This technique requires the introduction
of constraints to specify invariance of positions or
tangents to the curves, but should lead to more naturat
interaction techniques. Some products such as Adobe
Illustrator@ or Canvas@ already provide a limited
version of this functionality, in addition to conventional
techniques. However, mixing editing techniques within
a single product may end up confusing rather than
helping the end user.

Each of these representations assumes the use of a
mouse as an input device for creating and moving
control-points. Professional tools for graphic designers
often use pen input on a graphics tablet. Curves are
drawn directly and the sampled trajectory is transformed
into an adequate representation using a curve-fitting
algorithm [1], [16]. For graphic designers, who have
mastered drawing by hand and don’t focus on the
geometric properties of their drawings, this technique is
probably the best way to create a new curve because of
its direct style. However, to our knowledge, no
correspondingly direct interaction technique exists for
editing and transforming an already-drawn curve.

Many mark-based interaction techniques have been
developed to allow for direct input of commands with a
pen, such as the PenPoint [8] or the Apple Newton user
interfaces. General algorithms [15] for these techniques

are widespread. Usually they are shortcuts for structured
commands, rather than complex editing of objects. The
shape of each mark is more or less directly linked to a
single command and variations in size, orientation or
location are sometimes used as simple parameters

([1 11, [121, [41). We use marks as a concise way to
enter complex reparametrization data rather than as
command shortcuts.

A MARK-BASED INTERACTION TECHNIQUE

We believe that the difficulties faced by graphic
designers with conventional spline editing software is
based on a mismatch between the software’s conceptual
model and the representation of a drawing by a skilled
graphic designer. Instead of thinking of a curve as a list
of control points, a designer thinks in terms of strokes,
global balance of shapes, gestures to be made or
graphic techniques that give a different rendering. It is
not easy to provide a formal model and computer
representation that deals with these kinds of concepts in
a general way. Rather than searching for such a model,
we observed and exploited existing techniques to solve
the problem of editing an already drawn curve,

An example from the real world
The following sketch of a bottle (figure 1), was made
by a poor sketcher. Since the first stroke did not show a
balanced bottle, the designer redrew or “overloaded”
some strokes on places where the original did not look
satisfying. The result is a better balanced general
impression of a bottle, although the drawing is not
clean.

Figure 1: Strokes overloading the bottle’s initial contour
(in gray ellipses)

Skilled designers are trained, with some difficulty, to
avoid using this technique, because of the resulting
heaviness of the drawing. However, it is a very natural
interaction technique for editing curves: once in “edit”
mode, strokes can be interpreted as shape modifiers
instead of new curves. Figure 2 shows the base of the
letter “i” in Times Roman typeface: successive strokes
“pull” the base of the letter to make a larger serif.

186 UIST ’94 Marina del Rey, California

Figure 2: Editing a curve with successive correcting
strokes (in gray)

We use stroke recognition techniques, not as a way to
issue commands, but rather to provide complex
modification and reparametrization patterns in a way
that could not be specified easily with a simpler input
scheme. This technique relies upon and enforces a
natural means of editing curves that should be easy to
learn and use. Furthermore, it allows for global as well
as local reparametrization in a single stroke. A designer
can start with large creation and reparametrization
strokes, to obtain a global outline of his or her work
quickly, and then make local changes to refine the
drawing. This top-down approach is not available with
conventional editing techniques, where the designer
must specify the control-points one by one, not too far
from their exact location, and cannot test radical
changes with a few simple actions.

Sample application
We built a testbed for this interaction technique that
provides an efficient interaction method for creating

simple curves and 2D shapes made of paths. Our
application is implemented on an HP9000/755
workstation and uses a Wacom UD1212 graphics tablet,
which allows fast (205 points/second) and precise
(fO. 15 mm) tracking of gestures, as well as multi-
threaded entry with a cursor and a stylus. Using the
keyboard, the user selects among four modes to edit a
drawing (figure 3): creation of a curve (free-hand
drawing), modification or suppression of a portion of
curve, and joining of two curves (or closing a path).

Sometimes, it may not be fully clear which curve is the
target of the modifying stroke (figure 4). In such cases,
a sub-mode is used to alleviate possible ambiguities:
when the system detects several possible targets, it
highlights the portions of curves that make good
candidates. The user can then point at the desired target
for completion of the command.

Mode Stroke Result

Create

Edit

Delete

Join

Figure 3: The effect of a stroke in each of the four
modes. (Join mode is currently not fully implemented)

.,

~“’--’”l,
\

Figure 4: Here, two curves can be reparametrized. Both
candidate portions are highlighted, the user can pick
which one will be modified.

Implementing a whole application from our sample can
be done either by using conventional interaction
widgets such as menus and palettes, or more advanced
techniques such as see-through tools [6], [7]. We have
considered using gesture recognition techniques such as
Rubine’s algorithm [15] to differentiate between
“Delete” and “Edit” strokes automatically, or use

contextual information to unify “Join” and “Edit” modes.
But such techniques may cause confusion and may
prevent users from freely drawing any shape without
their gestures being misinterpreted. We have chosen to
clearly identify modes, e.g., by changing the shape of
the pointer, to reflect the exact semantics of the strokes
that are to be drawn and avoid conflicts between the
users’ expectations and the system’s interpretation.

IMPLEMENTATION

In this section, we detail the implementation of the
reparametrization algorithms (“edit” mode). The
“create” mode is implemented using Schneider’s
algorithm [16]. The “delete” and “join” modes can be
derived easily from the following algorithms. We do not
provide a detailed description of how to handle closed
paths, since they do not require a reformulation of the
principles but only careful implementation.

November 2-4, 1994 UIST ’94 187

Notation

Our underlying formalization requires curves to be
represented by arc-length parametrized functions. A
drawing is made of a set F of parametric curves. Each
curve f of F is made of 2 real functions of a parameter
varying in [0..Lfi, Lfbeing the length of the curve: V t e

[0..Lj, fit) = (fX(t), fy(t)) where fx and fy can be any
continuous functions, such as sequences of B6zier
patches or polylines. They need not necessarily be

differentiable everywhere, to allow curves with sharp
comers to be handled like other curves. fab denotes the

restriction off to the interval [u..b] G [0..Ljj (or [b.. a] if
~~a). A smoke m, using the same representation: V t G

[0..~m], m(t) = (mX(t), my(t)), is drawn as a modifying
mark.

We propose a general algorithm that transforms curve f
into resulting curve r :

Figure 5: Visual aspect of the reparametrization of a
curve.

We decompose the operation into two steps:

c Find the target f in F and the parameters S (for start of
march) and E (for end of match) in [0. .Lf] that provide

the best match with m, This implies defining a distance
between portions of the curves that matches the users
visual perception of them. Note that when m and f are
drawn in opposite directions, we have E<S.

● Transform f into r, given S, E, the characteristics of m

and the current mode. Several methods can be used,
with no definitive advantage yet found to favor one.

Finding the target curve
Finding a target for reparametrization requires tinding
the portion of a curve that is “visually the closest” to m.
“Visually closest” is a subjective term that can hardly
be defined formally. Our mathematical definition has
been chosen after several trials, and matches
convincingly our objective for each of the particular
cases we have experimented with. It must be noted that
special cases such as the one described in figure 6 will
tend to be avoided naturally, not because of the
inability of our algorithms to handle them (actually,
they will interpret it), but because the reparametrization
off by m does not have an obvious “visual meaning”.

Figure 6: A pathological case (m is perpendicular to f)
and how it would be interpreted.

Let d be a distance between two points (or its

approximation: d&(t), m(k))=@~t)-mx(k))2 +Wy(t)-mflk))2).

For each (u, v) in [0..Lf]2, we define the distance D

between fuv (the restriction off to [u.. v]) and m as the
infinitesimal sum of the distances from each point of

fuv to its corresponding point on m:

D(fUv, m) = jd(f(t(v – u) + z4),m(tL))dt (a)

o

The “visually closest” portion off tom is fSE such that

V (u, v) e [0..Ljj2, D(fSE, m) < D(fuv, m). Note that the

length of fSE may not bear any particular relationship to

Lm. Performing equal-length matching would prevent

most important reparametrization effects, such as

adding fine details to a rough outline. The target curve
for reparametrization is f in F for which there is a
couple (S,E) that minimizes this distance over all
curves of F. In fact, we keep as possible candidates all
the curves below a certain threshold to allow the user to
reparametrize close curves by picking the desired
target.

When f and m are discretized into polylines, we can
find the parameters S and E that minimize this distance
in time directly proportional to the number of segments
in F. To do this, we first compute this distance by
supposing that S=E. Formula (a) on an interval reduced
to a single point M becomes a positive polynomial of
degree two (formula (b)) that can be minimized in
constant time for each segment of fi

The resulting points M (one for each locat minimum of
(b)) lie somewhere inside portions (pairs of parameters
(S, E)) of the curve that locally minimize formula (a)
(figure 7). These points help us find local minima by
using a standard minimization technique such as
bisection: starting from M at each local minimum of
(b), we pose S= M*Lm/2 and E= S*Lm, and then

iteratively increase or decrease E and S according to
the derivative of formula (a), until we find the true
local minimum.

188 UIST ’94 Marina del Rey, California

Figure 7: the point M that minimizes formula (b) lies
inside [S.. fl that minimize formula (a).

This minimization must however take care of potential
loops in the target path, which may sometimes prevent
finding the true local minima. Currently, we check [M-
Lm ..M + Lm], to ensure that “natural” cases work

properly, To be mathematically correct, we need a loop
detection algorithm that works in real time, if such an
algorithm can be found.

This technique allows for real time target selection on

an HP9000/755 with several thousands of segments
(using a fraction of the computing power). Further
optimization can be done by using quadratic patches
instead of converting each spline into a sequence of
segments before target selection, as we currently do.
This would greatly reduce the number of patches to test
in most cases. Cubic patches would require minimizing
polynomials of degree 6: this cannot be done
algebraically in the general case and therefore should
not lead to significant acceleration.

Reparametrizing the target
Given j S, E and m, the reparametrization consists of
transforming each point of fSE into its corresponding

point on m, and makhtg some transformation on f~s and

fELf to preserve the unaffected portions off while still
providing a “harmonious” transition between f~s, m and

fELf. “Harmonious” is another subjective term with

several possible definitions. At first glance, the most
satisfying may be that the transformation should keep
the number and relative positions of the inflection
points off on ~~s u fELf). However, this is not always

possible. Furthermore, the interaction technique makes

such a consideration quite secondary: it encourages
either large but imprecise strokes, or fast and small
repararnetrizing strokes which start and end on the
curve, pulling step by step the curve towards the desired
shape (figure 8). This way, transitions are always quite
small and no inflection points are introduced, except
when desired.

..
“,.+”,, ., -”’

r

Figure 8: A large modification is harder to perform with a
single precise stroke: it is better to begin with a large
rough stroke (m7) and successive small and fast
corrections (mz, rn3 and m4), each providing finer
control over a small portion of the curve.

The method we currently use is quite simple to
implement, though it can introduce unnecessary
inflection points. First, f and m are converted into
polylines; the resulting curve r will be a polyline that
will be smoothed using the curve-fitting algorithm of
“create” mode. Reparametrization does not thus
increase the degree of complexity of the curves. We use

a constant k (currently 3) to represent the “smoothness”
of the transition and the “transition polynomial” P(x) =
-2X3 +3X2. other functions can be used to intr~uce a

bias toward m or f or to make special transition effects,
as long as P(0)=O and P(l)= 1 to insure the continuity of
r. When S< E, we start the repararnetrization off at the
parameter S’= S - k df’j(S), m(O)). If S’ is negative, then m
is said to be an extending stroke: r will start at m(0) and
we skip the start transition from f to m. Otherwise
(figure 9), we define the line segment ms, extension of

m of length (S - S), of slope m’(0) and such that mS(S-S’)
= m(o).

.-

t

+--

Figure 9: Reparametrization example. m and f are
artificially distant to clarify the figure. Usually, m(0) and
f(S) are much closer, and the inflection point between S’
and S2 does not appear.

We then interpolate ms with each point of fin [S’,.SI:

for t in [S’. .S] do

coeff = P((t-S’) /(S-S’));

r(t) = (l-coeff) ’f(t) + coeff*ms (t-S’)

The interpolation using the values of P in [0..1]
preserves the C2 continuity of r where f and m are
already C2. Once this transition is done, fSE is
replaced by m, Conversely, to make the transition back
to f at the end of m , we set the end of the
reparametrization at E’= E + k dfj(E), m(Lm)). If E’cLj
we interpolate each point of fEE’ with mE, extension of
m; otherwise (figure 9) r will end at m(Lm).

In practice, this algorithm has proven to be satisfying,
although the transition does not always look smooth
enough when fSE and m are too distant. One possibility

would be to parametrize the smoothness of the

November 2-4, 1994 UIST ’94 189

transition, using additional information provided by the
stroke, such as variations of pressure on the pen.

A FIRST EVALUATION

As explained in [3], shape-matching tasks are useful for
evaluating an interaction technique for spline editing.
We informally evaluated the task of changing the
representation of an ampersand in Times Roman
typeface to Helvetica Roman typeface (figure 10). This
task matches that of typeface designers. In specialized
software such as FontStudio@, the “&” is represented
by 3 paths and about 60 control points. Performing the
task is cumbersome and requires removing and adding
control points (specially to remove the serifs) in the
middle of the curve. Trained users would rather erase
the whole drawing and restart from scratch, which
deviates from the original shape-matching task. It is out
of the question to perform this task without prior
experience in manipulating B6zier curves.

&
.“

,0J ,,, ;, “
:,, ~
,-,...,’
:,,.

... ”

b
.,,:.,

Figure 10: The shape-matching task. The gray “&” is a
background image that serves as a template.

With our technique, the task becomes very simple: it
consists of drawing over the contour of the Helvetica

symbol. All of the following screen dumps are scaled
down to 20% of their original sizes. Feedback from the
reparametrizing strokes is shown in gray. The user first
removes the serifs with three initial strokes that
reparametrize the whole end of the symbol (figure 11).
Small strokes are then used for precise adjustment of
the contour to the target.

Figure 11: The first three strokes to adjust the serifs

The exterior contour of the symbol is then approximated
with a few (5) large strokes which follow the contours
of the template. Further strokes adjust the curve at a
local level (figure 12).

&&
&&

Figure 12: Adjusting the exterior contour

The interior paths are progressively adjusted in 5 large
strokes (figure 13). (4 strokes readjusting the serif in
between are not shown)

&&&

&&
Figure 13: Reparametrizing the interior paths

More strokes (10 t 4) precisely adjust the portions that
did not fit closely, to obtain the final result (figure 14),

&&
Figure 14: Final result with our current algorithms

190 UIST ’94 Marina del Rey, California

Higher precision could be obtained by zooming in on
the portions that are not perfectly aligned and correcting

the paths with small adjustments. However, our current
testbed does not allow zooming-in. Because the hand

cannot perform efficient adjustments of fewer than two
pixels, the current resolution is about 40dpi. Overall, the
time to make a perfect match is currently only slightly
faster with our technique than it is for a trained user to
draw the Helvetica symbol from scratch using
Fontographer@. However, a good approximation is
obtained in a few fast strokes by even a poor sketcher.
We consider that graphic designers, our target users, are
less constrained by such limits because they do not

usually need to reach a level of precision higher than
what they can see and control with their hands.

More importantly, allowing global transformations with

one single action allows the designer to proceed with
rough sketches and small refinements, rather than
choosing the right control-points and editing them one
by one to match the desired shape. The directness and
transparency of the interaction technique allows the
user to focus on the overall shape desired, rather than
on low-level considerations such as trial-and-error
discovery of the parameters for each control-point.

CONCLUSION AND FUTURE WORK

We have introduced a new way to edit spline curves,
using a mark-based interaction technique that allows
direct reparametrization instead of modification of
individual control-points. We implemented efficient
algorithms to perform target identification and
reparametrization in real time. Preliminary evaluations
show that the technique provides the following
advantages:

● Natural interaction: Based on observation of paper-

based editing by graphic tlesigners, this technique
provides the basis for a more natural conceptual model
of spline editing.

* Fast interaction: A good approximation of the desired
shape can be obtained quickly and then refined at an
arbitrary level of precision. This supports a top-down
approach based on the iterative refinement of drafts and
quick sketches rather than progressive construction (by
specifying control-points) of a difficult-to-edit final
drawing.

QDirect interaction: The mark-based interaction
technique allows complex repararnetrizing data to be
entered in one single action instead of separate
adjustment of control points.

We plan to pursue several extensions to this work:
● User evaluation.- The preliminary evaluation was done
informally by the author. We found that the proposed
shape-matching task is not the most effective way to
test this technique, as we cannot strictly comp,are spline
editing using our technique with spline re-creation using

conventional methods. We are undertaking formal
evaluation procedures, both with “computer-naive” and
“computer-aware” graphic designers. This should help us
refine the algorithms, especially the reparametrization
algorithm, to better match the designers’ conceptual
models.
● Use of pressure: Drawing applications such as
Painter@ or [13] use pressure information to augment
strokes with width or density information. Currently, we
know of no interaction technique that allows the
reparametrization of the width or density of a curve
together with its shape. Our algorithms do not currently
use such information either, but the same techniques

could be adapted to use pressure data. Obviously,
further user studies are needed to make an informed
choice.
● Interaction model: So far we have focused on the
interaction technique and we have not yet worked on
the articulation between the different modes within an
interaction model. We plan to work on automatic mode
switching, feedback of current mode, and integration of
graphical attribute editing (e.g., color). This would
complete our interaction technique to create a novel
interaction style for free-hand drawing.

ACKNOWLEDGMENTS

This work was inspired by conversations with Jean-
Daniel Fekete and Francis Freiz. Laurent Mercier and
AgniX Rousseaux made many fruitful comments about
the pitfalls of current drawing tools and on the art of
sketching. Michel Beaudouin-Lafon, Christopher
Tronche and Mountaz Zizi provided support and advice
on math. Wendy Mackay, St6phane Chatty and the
anonymous reviewers provided many useful comments.
This work is partially supported by the “PRC
Communication Homme-Machine” research programme.

REFERENCES

1.

2.

3.

4,

5.

6.

Banks, M.J. and Cohen, E. Realtime Spline Curves
from Interactively Sketched Data. in Computer

Graphics 24 (2), Proceedings of SIGGRAPH’90,
ACM. p. 99-107.1990.
Barsky, B.A. The Beta -Spline: A local
representation based on shape parameters and
fundamental geometric measures, PhD thesis,
University of Utah. 1981.
Bartels, R. H., Beatty, J.C., Booth, K., S., Bosch,
E.G. and Jolicoeur, P., Experimental Comparison of
Splines using the Shape-Matchiag Paradigm, ACM
Transactions on Graphics. Vol. 12 (3), p. 179-208.
1993>

Bawlel, T. and Beaudouin-Lafon, M., CHARADE:
Remote Control of Objects using Free-Hand
Gestures, Communications of the ACM. Vol. 36
(7), p. 28-35.1993.
Bt5zier, P., Ernploi des Machines b Commande
Nurnkrique. 1970, Paris: Masson.
Bier, E., Stone, M., Buxton, W. and De Rose, T.
Toolglass and Magic Lenses : the See-Through
Interface. in Computer Graphics, Vol. 27 (2),

November 2-4, 1994 UIST ’94 191

Proceedings of SIGGRAPH’93, pp. 73-80. ACM.
1993.

7. Bier, E., Stone, M., Fishkin, K,, Buxton, W. and
Bauclel, T. A Tuxonomy of See-Through Tools. in
Proceedings of SIGCHI’94, ACM. pp. 358-364.
1994,

8. Carr, R., The Point of the Pen, Byte. Vol. 16 (2), p.
211.1991.

9. Fekete, J.-D., Tic-tac-toon reference manual.
Images 2001 SA, Antony, France. 1994.

10. Fowler, B. and Bartels, R., Constraint-llased

Curve Matching, IEEE Computer Graphics &
Applications, p. 43-49. September 1993.

11. Kurtenbach, G. and Buxton, W., GEdit: a testbed
for editing by continuous gesture, SIGCHI Bulletin.
Vol. 23 (2), p. 22-26.1990.

12. Morrel-Samuels, P., Clarifying the distinction
between gestural and lexical commands,

International Journal of Man-Machine Studies. Vol.
32, p. 581-590.1990.

13, Pudet, T,, Real Time Fitting of Pressure
Brushstrokes. research report 29, Paris Research
Laboratory, Digital Equipment Corporation. 1993.

14. Riesenfield, R,F. Applications of B-Spline
approximation to geometric problems of computer
aided design, PhD thesis, University of Syracuse,
N.Y. 1973.

15. Rubine, D. The Automatic Recognition of Gestures,
PhD thesis, Carnegie Mellon University. 1991.

16. Schneider, P.H., An Algorithm for Automatically
Fitting Digitized Curves, in Graphics Gems, A.
Glassner, Editor. 1990, Academic Press. A more
complete reference, though less accessible is:
Phoenix: An interactive curve design system based
on the automatic fitting of hand-sketched curves.
Master’s thesis, University of Washington, 1988.

192 UIST ’94 Marina del Rey, California

