398

1996

SILK: Sketching Interfaces Like Krazy

James A. Landay
HCI Institute, School of Computer Science
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213, USA
Tel: 1-412-268-3608
E-mail: landay @cs.cmu.edu
Web Page: http://www.cs.cmu.edu/landay

ABSTRACT

Current interactive user interface construction tools are
often more of a hindrance than a benefit during the early
stages of interface design. These tools take too much time
to use and force designers to specify more of the design
details than they wish at this stage. Most designers prefer to
sketch early interface ideas on paper. I have developed an
interactive tool called SILK that allows designers to quickly
sketch an interface using an electronic pad and stylus. SILK
preserves the important properties of pencil and paper: a
rough drawing can be produced very quickly and the medium
is very flexible. However, unlike a paper sketch, this
electronic sketch is interactive. The designer can illustrate
behaviors by sketching storyboards, which specify how the
screen should change in response to end-user actions. In
addition, it can be semi-automatically transformed into a
complete, operational interface in a specified look-and-feel.

Keywords
Design, sketching, prototyping, gestures, SILK.

INTRODUCTION

When professional designers first start thinking about a
visual interface, they often sketch rough pictures of the
screen layouts. Their initial goal is to work on the overall
layout and structure of the components, rather than to refine
the detailed look-and-feel. Designers use these sketches and
other “low-fidelity techniques” [4] to quickly consider
design ideas, later shifting to interface construction tools or
handing off the design to a programmer. Unfortunately, this
transition forces the designer to specify too many details.

Much of the design literature recommends drawing rough
sketches of design ideas [1], yet most interface construction
tools, such as the NeXT Interface Builder, and even
prototyping tools, like HyperCard, require the designer to
specify much more of the design than a rough sketch
allows. These tools force decigners to bridge the gap
between how they think about a design and the detailed
specification they must create to allow the tool to reflect a
specialization of that design.

Another key lesson from the design literature is the value
of iterative design. It is important to iterate quickly in
the early stages of design because that is when radically

© Copyright on this material is held by the
author.

different ideas can and should be examined. The need to turn
out new designs quickly is hampered by tools that require
detailed designs. This over-specification can be tedious and
may also lead to a loss of spontaneity. Thus, the designer
may be forced to abandon computerized tools until later in
the design process or forced to change design techniques in a
way that is not conducive to early creative design.

Additionally, research indicates that the use of current
interactive tools in the early stages of development places
too much focus on design details like color and alignment
rather than on the major interface design issues, such as
structure and behavior [5]. Wong found that colleagues give
more useful feedback when evaluating interfaces with a
sketchy look. I surveyed sixteen professional designers from
around the world concerning their use of tools in interface
design. These designers reported that current user interface
construction tools are a hindrance during the early stages of
interface design. What designers need are computerized tools
that allow them to quickly sketch rough design ideas.

INTERACTIVE SKETCHING

I have developed an interactive tool called SILK [2] that
allows designers to quickly sketch an interface using an
electronic stylus. SILK then retains the “sketchy” look of
the components. The system facilitates rapid prototyping of
interface ideas through the use of gestures for sketch
creation and storyboards for specifying the transitions
between screens. The main advantage of SILK over paper
sketches is that it allows the storyboards [3] to come alive
and permits the designer or test subjects to exercise the
interface in this early, sketchy state. For example, the
storyboard in Figure 1 specifies that a dialog box should
appear when the user clicks on the button.

Figure 1: Make a dialog box appear when the button is pressed.



APRIL 13-18, 1996 CHI 96

IMPROVEMENTS OVER PAPER SKETCHES
Electronic sketches have most of the same advantages as
paper sketches: they allow designers to quickly record
design ideas in a tangible form and they do not require the
designer to specify details that may not yet be known or
important. Electronic sketches also remedy some of the
weaknesses of paper sketches.

Editing and Re-use

One of the drawbacks of paper sketches is that they are hard
to modify as the design evolves. The designer must often
redraw features that have not changed. One way to avoid
this repetition is to use an erasable whiteboard. This
solution is of no help with the next step when a manual
translation to an electronic format is required; this step may
need to be repeated several times as the design changes.

SILK allows a designer to easily edit sketched interface
designs using simple gestures. SILK’s history mechanisms
will allow designers to reuse portions of old designs and
quickly bring up different versions of the same interface
design for testing or comparison. Thus, unlike paper
sketches, SILK sketches can evolve without forcing the
designer to continually start over with a blank slate.

Design Memory

Another problem with relying too heavily on paper
sketches is the lack of support for “design memory.” The
sketches may be annotated, but a designer cannot easily
search these annotations in the future to find out why a
particular design decision was made. Practicing designers
have found that the annotations of design sketches serve as
a diary of the design process, which are often more valuable
to the client than the sketches themselves [1]. In addition,
paper sketches can be hard to store and organize.

Using SILK, changes made to a design over the course of a
project can be reviewed, including viewing the attached
written annotations made on SILK’s “annotation layer”.
Electronic sketches also have the advantages of other
computer-based tools: they are easy to edit, store, duplicate,
and search. Thus SILK will make the “design memory”
embedded in the annotations even more valuable.

Interactivity

One of the biggest drawbacks to using paper sketches is the
lack of interaction possible between the paper-based design
and a user. In order to actually see what the interaction
might be like, a designer needs to “play computer” and
manipulate several sketches in response to a user’s
verbalized actions. Designers need tools like SILK that
allow them the freedom to quickly sketch rough design
ideas and to test the designs by interacting with them.

SILK blends the advantages of both sketching and
traditional user interface builders, yet avoids many of the
limitations of these approaches. The system tries to
recognize user interface widgets and other interface elements
as they are drawn. Although the recognition takes place as
the sketch is made, it is unobtrusive and designers will only
be made aware of the recognition results if they choose to

VIDEOS

exercise the widgets. As soon as a widget has been
recognized, it can be exercised.

Next, the designer may specify the higher-level behavior of
the sketched elements. For example, what action to perform
when a user clicks on a button. This behavior is specified
using the sketched storyboards illustrated in Figure 1.

When the designer is satisfied with the interface, SILK will
replace the sketches with real widgets and graphical objects;
these can take on the look-and-feel of a specified standard
graphic user interface, such as Motif, Windows, or
Macintosh. The transformation process is mostly
automated, but it requires some guidance by the designer to
finalize the details of the interface (e.g., textual labels,
colors, etc.). At this point, programmers can add the
application-specific code to complete the application.

STATUS

SILK runs under Common Lisp on both Unix workstations
and on the Apple Macintosh with a Wacom tablet attached.
It is implemented using the Garnet user interface
development environment. The prototype supports the
recognition, operation, and transformation of several
standard widgets. The current storyboarding mechanism
only supports making screen transitions on mouse clicks.

CONCLUSIONS

I envision a future in which most of the user interface code
will be generated by user interface designers using tools like
SILK rather than by programmers writing the code. I have
designed SILK only after examining the problems reported
by the intended users of the system. SILK overcomes these
problems by allowing designers to quickly sketch an
interface using an electronic stylus. Unlike a paper sketch,
an electronic sketch will allow the designer or test subjects
to interact with the sketch before it becomes a finalized
interface. I aim to show that an interactive sketching tool
that supports the entire interface design cycle — from early
creative design through prototyping, testing, and final
implementation — will enable designers to produce better
quality interfaces in less time than with current tools.

REFERENCES

1. Boyarski, D. and Buchanan, R. Computers and
communication design: Exploring the rhetoric of HCIL
Interactions 1, 2 (April 1994), 24-35.

2. Landay, J.A. and Myers, B.A. Interactive sketching for the
early stages of user interface design. In Proceedings of CHI
'95: Human Factors in Computing Systems, Denver, CO,
May 1995, pp. 43-50.

3. Landay, J.A. and Myers, B.A., “Just draw it! Programming
by sketching storyboards,” Carnegie Mellon University,
School of Computer Science, Technical Report CMU-CS-
95-199, November 1995.

4. Rettig, M. Prototyping for tiny fingers. Communications
of the ACM 37, 4 (April 1994), 21-27.

5. Wong, Y.Y. Rough and ready prototypes: Lessons from
graphic design. In Short Talks Proceedings of CHI '92:
Human Factors in Computing Systems, Monterey, CA, May
1992, pp. 83-84.

399



