
Arpège: Learning Multitouch Chord Gestures Vocabularies

Emilien Ghomi1,2 Stéphane Huot1,2 Olivier Bau2,3 Michel Beaudouin-Lafon1,2 Wendy Mackay2,1

{ghomi, huot}@lri.fr olivier.bau@gmail.com {mbl, mackay}@lri.fr
1Univ. Paris-Sud & CNRS (LRI) 2Inria 3Disney Research, Pittsburgh

F-91405 Orsay, France F-91405 Orsay, France Pittsburgh, PA 15213 USA

ABSTRACT
This paper presents Arpège, a progressive multitouch input
technique for learning chords, as well as a robust recognizer
and guidelines for building large chord vocabularies. Experi-
ment one validated our design guidelines and suggests impli-
cations for designing vocabularies, i.e. users prefer relaxed
to tense chords, chords with fewer fingers and chords with
fewer tense fingers. Experiment two demonstrated that users
can learn and remember a large chord vocabulary with both
Arpège and cheat sheets, and Arpège encourages the creation
of effective mmnemonics.

Author Keywords
Gestural interaction; chords; progressive learning technique;
tabletop interface; multitouch interaction; gesture vocabulary

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces - Graphical user interfaces; Input devices and strategies.

INTRODUCTION
Although multi-finger interaction is readily available on
multi-touch devices, the number of multi-finger gestures used
in commercial systems and reported in the research literature
[18, 22] is actually very small. We argue that larger gesture
vocabularies can increase expressive power and have the po-
tential for enriching the user experience. Unfortunately, users
find large gesture sets correspondingly more difficult to learn.
We are thus interested in how to create a large chord vocabu-
lary that is both comfortable to perform and easy to learn.

This article focuses on a particular case of multi-finger ges-
tures – chords – in which the user places two or more fin-
gertips on a multi-touch surface and then lifts them in uni-
son, with no additional movement. The most common use of
chords is, of course, in music. Piano keyboards are adapted to
the human hand and even novices can learn to perform basic
chords simply by watching expert piano players [12]. Many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITS’13, October 6–9, 2013, St. Andrews, United Kingdom.
Copyright c© 2013 ACM 978-1-4503-2271-3/13/10...$15.00.
http://dx.doi.org/10.1145/2512349.2512795

piano instruction methods support step-by-step understand-
ing of the structure of chords and highlight the similarities
and differences among them [10]. We argue that novices can
learn chord gestures and transition to expert performance in
the same way, if we ensure the chords are understandable
and comfortable to perform and if we provide a progressive
method that helps novices learn how to perform the chords.

After presenting related research, we present chord design
guidelines based on studies of the motor abilities and biome-
chanical constraints of the human hand. We next describe
how to create a large, comfortable chord vocabulary, followed
by an experiment that assesses the perceived understandabil-
ity and comfort of a chord set derived from our guidelines.

We introduce Arpège, a contextual dynamic guide inspired by
teaching piano, in which users progressively lay down each
finger of a chord. Arpège gives feedforward, to reveal re-
maining potential commands, and feedback, to help correct
finger positions. Novices can thus safely explore the chord
vocabulary, and, due to progressive memorization, transition
smoothly from novice to expert performance [19]. We de-
scribe a second experiment comparing Arpège to a cheat sheet
similar to FingerWorks1, the most common static method for
learning chords, and conclude with implications for design.

RELATED WORK
Although Engelbart et al. introduced a five-finger chord key-
board for expert computer users [7] in the 1960’s, few mod-
ern multitouch systems use chords. Instead, they focus on the
number and motion of touches2 and ignore the relative posi-
tion of each touch. Our goal is to define specific guidelines
for generating a large vocabulary of usable chords.

Designing chord vocabularies
One strategy for designing multi-finger gestures is to ask
users to design their own [22]. Morris et al. [18] used this
method, “first portraying the effect of a gesture and then ask-
ing users to perform its cause”. The resulting gesture set
cannot really be considered “natural”, since participants were
likely influenced by existing commercial multi-finger gesture
vocabularies whose effectiveness and comfort have not been
tested. Also, even though these gestures are easy to under-
stand, can be performed without training, and map to existing
1http://web.archive.org/web/20031013033746/http://www.fingerworks.
com/pdf/TouchStream QuickGuides.pdf
2http://www.billbuxton.com/input06.ChordKeyboards.pdf

Figure 1. The index finger performs three common finger movements:
adduction, abduction and flexion

commands, the command vocabulary is very small and favors
novice rather than expert performance.

Most multitouch interaction techniques detect how many fin-
gers touch the surface, but do not consider the relative po-
sitions of those fingers [2, 15, 23]. A notable exception is
the Multitouch Menu [1], designed to account for relative fin-
ger positions while considering the mechanics of the human
hand. Our goal is to generalize this approach, taking advan-
tage of the three common finger movements shown in Fig-
ure 1 (adduction, abduction and flexion) to design a set of
comfortable and easy-to-perform multi-finger chords.

Learning chords
Ensuring that chords are efficient for experts is not enough,
since we must still ensure that novices can learn them. Early
commercial multitouch systems, e.g., FingerWorks, display
offset “cheat sheets” with text, images or video instructions
showing how to perform each gesture. These summarize the
complete vocabulary, but force users to switch context and
make complex chords or dynamic gestures hard to reproduce.

Apple uses movie clips to show how to perform multi-finger
gestures whereas TouchGhost’s [20] two-handed animated
character demonstrates each gesture and simulates its result
in the context of the application. Both clearly illustrate what
to do but are slow, since users must watch and interpret the
entire animation before performing the gesture.

Dynamic guides break down single-finger gestures, provid-
ing progressive, in-context (i) feedforward to show the cur-
rently available gestures and how to perform them correctly;
and (ii) feedback to indicate if the gesture has been recog-
nized. For example, Marking Menus [11] help users learn
multi-stroke gestures by exposing each successive level of a
hierarchy, whereas OctoPocus [3] reveals the possible paths
of each remaining potential gesture, based on the user’s cur-
rently drawn mark. As the user follows the desired path, alter-
native paths become irrelevant and progressively disappear.

Both are activated as the user pauses, enabling experts to
perform gestures quickly, without interruption, while helping
novices learn complex gesture vocabularies. Both support the
smooth transition from novice to expert performance, since
novices who follow the guide perform identically to experts,
who simply perform faster, obviating the need for the guide.
Dynamic guides are particularly well suited for multitouch
surfaces with co-located input and output and offer a promis-
ing approach for novices to learn large chord vocabularies.

Figure 2. (a) Relaxed hand position on a flat surface. (b) Lifting the
middle or ring finger without its neighbors can be uncomfortable.

ShadowGuides [8] are among the few dynamic guides cre-
ated for multiple fingers. They help guide finger and hand
movements by showing “the user shadow expected by the
system”, including the direction of movement and the even-
tual evolution of the contact shape. However, the only re-
source for learning chord gestures is an offline “registration
pose guide”, similar to a cheat sheet. Gesture Play [5] uses
physical metaphors to motivate the user to learn and rehearse
multi-finger gestures, with a step-by-step “button widget af-
fordance” that supports chord gestures. However, neither sys-
tem supports multiple finger positions, resulting in a limited
chord vocabulary.

The next sections describe our design guidelines for creating
a large, but still-comfortable gesture vocabulary, followed by
a description of our Arpège technique, created to help novices
learn and perform large chord gesture sets.

DESIGNING CHORD GESTURES
Fingers have different motor capabilities. For example, the
index finger is strong, whereas the little finger is weak and
difficult to lift. The thumb can move independently, whereas
the middle and ring fingers’ movements are restricted by their
neighbors. These constraints affect the design space for chord
gestures, dictating the movement and placement of each fin-
ger so as to avoid uncomfortable finger combinations.

Using Baudel et al.’s terminology [4], we first consider the
relaxed position of the hand on a multitouch surface. Simi-
lar to the reference position when playing the piano, the palm
is parallel to the surface, the fingers are slightly curved and
all fingertips touch the surface (Fig. 2a). Fingers are neither
tight against each other nor spread apart, which reduces mus-
cle tension. Lifting one or more fingers from this relaxed
position, but excluding single-finger configurations, leads to
25 − 1− 5 = 26 possible chords.

Mechanical Constraints For Finger Combinations
In order to identify which of these finger combinations are
comfortable, we first identify which fingers cannot flex or ex-
tend independently of their neighbors. Lee et al. [14] mea-
sured the interdependence among fingers during flexion and
extension and found that the middle and ring fingers have the
strongest angular constraints. Lifting either of these fingers
without also lifting its neighbor requires extra muscular ef-
fort (Fig. 2b) and leads to our first guideline:

1. Avoid chords in which the middle or ring finger is lifted
while its neighbors touch the surface.

Applying this guideline to fingers in a relaxed position yields
26 chords, including eight that are potentially uncomfortable.

2cm

2cm

15º

15º

relaxed

tense

R

R

L

L

D

D
D

D

D

L: left

R: right
D: down

Figure 3. New finger positions derived from guideline 2. Pale grey dots
indicate relaxed positions. Dark grey dots indicate tense positions.

Extended Finger Positions
The human hand has multiple degrees of freedom that per-
mit fingers to perform chords from various positions, such
as flexed or spread apart (Fig. 1). Lang et al.’s [13] stud-
ies of the mechanical coupling of fingers show that fingers
can be ordered by their level of independence, from best to
worst: thumb, index, little, middle, and ring finger. The most
independent (thumb, index and little fingers) can reach sev-
eral additional positions, whereas the middle and ring fingers
cannot make lateral movements without affecting their neigh-
bors. These considerations led to the second guideline:

2. Create additional chords by flexing or moving the most
independent fingers sideways (thumb, index and little finger).

Figure 3 shows the additional chord positions produced by
this guideline. The thumb is the most independent, with three
additional positions, down, left and right, each 2 cm from the
relaxed position. All other fingers can be flexed to reach a
position 2 cm below the relaxed position along the finger’s
up-and-down axis. This distance corresponds to the standard
size of keys on a computer keyboard [17]. The index and little
fingers can also be abducted by rotating the relaxed position
by 15◦ from the joint between the finger and the palm [16],
which generates two additional positions.

Chords derived by displacing the fingers from the relaxed po-
sition are defined as tense [4] since they require additional
muscle tension (Fig. 4). By incorporating these positions
and assuming that all fingers can be lifted, we can define
720 (5 × 4 × 3 × 3 × 4) unique chords. Removing chords
specified by guideline 1 still leaves a large vocabulary of 480
chords that can be performed easily with minimal discomfort.

(c) (d)(a) (b)
“Relaxed” chords “Tense” chords

Figure 4. Chords that respect both guidelines: (a) and (b) include fingers
in a relaxed position; (c) and (d) include fingers in a tense position.

Figure 5. The set of preferred relaxed chords from the pilot study.

DESIGNING AND ASSESSING A CHORD VOCABULARY
We conducted a pilot calibration study with 12 participants to
determine which of the relaxed chords users preferred most
(Fig. 5). We created a representative set of 26 tense chords
(Fig. 6) drawn from these preferences, including three 2-
finger chords, ten 3-finger chords, eight 4-finger chords, and
five 5-finger chords. We intentionally included a dispropor-
tionate number of 3-finger chords, since novices should per-
form and remember them easily, yet they represent chord-
based interaction more clearly than 2-finger chords. We cre-
ated a test vocabulary of 52 chords, composed of these 26
tense chords and the original 26 relaxed chords, balanced for
number of fingers. We included chords that lift the middle or
ring finger in order to test guideline 1.

Experiment one: Assessing the chord guidelines
We conducted an experiment to assess whether and how the
above guidelines affect user preferences. We formulated four
hypotheses, in which we expect users to prefer:

1. relaxed over tense chords;
2. chords with fewer fingers;
3. chords with fewer tense fingers; and
4. chords that do not lift middle or ring fingers (guideline 1).

Participants
We recruited ten men and two women, median age 27 (range:
21-39), all right-handed, who had not participated in the cal-
ibration study. Two had never used a multitouch device, two
were casual users, and eight were daily users of multitouch
smartphones or tablets.

Apparatus
The software was implemented in Java and run on an Apple
MacBook Pro with an external 3M 27” multitouch screen in-
stalled horizontally on a table (95 cm high).

Procedure
We used a within-participant design with one main factor
(CHORD) to compare RELAXED and TENSE chord vocabularies,

Figure 6. The set of 26 tense chords tested in the experiment. Dots indi-
cate the relaxed position, the remaining fingers are in the tense position.
Chords are labelled according to the number of tense fingers, e.g., 2-T
chords have two tense fingers. Guideline 1 recommends that chords sur-
rounded by a rectangle should be discarded.

each with 26 unique chords matched according to NUMBER

FINGERS and NUMBER TENSE FINGERS. Both sets contain equal
numbers of chords that do not match GUIDELINE 1.

The experiment lasts approximately 40 minutes, organized
into four phases that present the 52 unique chords in the test
vocabulary. Each trial displays a picture of a hand performing
the required chord, with colored circles to indicate where to
place the fingers. For tense finger positions, a smaller dashed
circle indicates the corresponding relaxed position (Fig. 6).
Participants execute chords in the middle of the screen with
their dominant hand. The practice phase calibrates the recog-
nizer and ensures that participants can perform all 52 chords.

In phase A, participants reproduce each chord twice and then
rate understandability – easy to understand and reproduce –
and comfort to perform, on a five-point Likert scale. Each of
the 52 chords are presented once, in random order, blocked
in groups of seven. Feedback consists of linked red dots that
appear under the fingers, as detected by the recognizer. Phase
B presents each chord three times, in random order, blocked
in groups of seven, with feedback limited to “success” or “er-
ror” messages as computed by our recognizer. Phase C occurs
after phase B and is identical to phase A.

2 3 4 5 2 3 4 5
0

1

2

3

4
Relaxed Tense

Understandability ComfortM
ed

ia
n

of
 u

nd
er

st
an

da
bi

lit
y

an
d

co
m

fo
rt

 a
ss

es
sm

en
t

Figure 7. Median ratings of understandability and comfort for each chord
vocabulary (relaxed or tense) by number of fingers.

Data Collection
We collected two preference ratings (understandability and
comfort) for each chord, resulting in 52 × 2 measures for
phase A and 52 × 2 measures for phase C, or a total of 208
preference ratings. We generated accuracy measures to pro-
vide feedback but did not analyze them in this experiment.

RESULTS
We analyzed3 UNDERSTANDABILITY and COMFORT according to
CHORD TYPE (relaxed or tense), NUMBER FINGERS, NUMBER TENSE

FINGERS and GUIDELINE, i.e. if the chord follows guideline 1.

Hypothesis 1: Users prefer relaxed over tense chords.

Wilcoxon tests for CHORD TYPE reveal significant effects for
both UNDERSTANDABILITY (χ2(1) = 287.2, p < 0.0001) and
COMFORT (χ2(1) = 282.3, p < 0.0001) (Fig. 7). However, all
median values are 3 or more – agree or better on a scale of 0
to 4 – suggesting that participants perceive this 52-chord vo-
cabulary to be sufficiently understandable and comfortable.

Hypothesis 2: Users prefer chords with fewer fingers.

Kruskal-Wallis tests for NUMBER FINGERS reveal a significant
effect of UNDERSTANDABILITY for both relaxed (χ2(3) = 14.64,
p = 0.0021) and tense (χ2(3) = 26.96, p < 0.0001) chords,
as well as a significant effect of COMFORT for both relaxed
(χ2(3) = 23.11, p < 0.0001) and tense (χ2(3) = 74.53,

3We used SAS JMP Pro for all analyses.

0

1

2

3

Understandability
Comfort

1 2 3

4

Num. of �ngers in tense positionsM
ed

ia
n

of
 u

nd
er

st
an

da
bi

lit
y

an
d

co
m

fo
rt

 a
ss

es
sm

en
t

No Yes No Yes0

1

2

3

4

Respect to our �rst guidelineM
ed

ia
n

of
 c

om
fo

rt
 a

ss
es

sm
en

t

Relaxed
Tense

(a) (b)
Figure 8. (a) Comfort and understandability by total fingers in tense
positions. (b) Comfort according to guideline 1 for each vocabulary.

(a) (b) (c) (d)

save

paste

copy

Recognized :
copy

cut

copy
cut

copy

cut

copy

(d)

Figure 9. Triggering the copy command with Arpège. (a) Invoking Arpège displays fingerprints representing possible finger positions as well as command
labels. (b) Touching the fingerprint under the copy label with the ring finger discards paste and save since they are no longer reachable. (c) If the thumb
is laid on the fingerprint corresponding to the relaxed position, the remaining label indicates that it must be moved to the right. (d) The thumb reaches
the right position, the chord is complete and the user is notified that copy will be triggered if all the fingers are lifted simultaneously.

p < 0.0001) chords. This effect is greater for tense than re-
laxed chords.

Hypothesis 3: Users prefer fewer tense fingers.

Kruskal-Wallis tests for NUMBER TENSE FINGERS reveal sig-
nificant effects for UNDERSTANDABILITY (χ2(2) = 65.68,
p < 0.0001) and especially COMFORT (χ2(2) = 147.2,
p < 0.0001) (Fig. 8a).

Hypothesis 4: Users prefer chords that do not violate guide-
line 1: avoid lifting middle and ring fingers if their neighbors
touch the surface.

Wilcoxon tests for GUIDELINE reveal a significant effect of
COMFORT for relaxed chords (χ2(1) = 105.4, p < 0.0001),
although not for tense chords (χ2(1) = 3.81, p = 0.05), sup-
porting the hypothesis for relaxed chords only (Fig. 8b).

In a post-experiment questionnaire, all participants found it
difficult to know exactly where to place their fingers because
of the distance between the cheat sheet and the input area.
Participants spontaneously developed two strategies for over-
coming chord complexity. Seven placed their fingers in suc-
cession on the surface, like an arpeggio, and two placed their
fingers in the relaxed position before moving them to a tense
position. This decomposition of chords is a key element of
our Arpège learning technique, described next. Four partic-
ipants found 2-finger and 5-finger chords easier to perform
than 3-finger and 4-finger chords because they could not eas-
ily tell which fingers were involved and what were their ap-
propriate positions.

Discussion
Participants gave high ratings for both the understandability
and comfort of this large chord vocabulary, which is encour-
aging for real applications. However, these results suggest
that using and learning complex chords, especially those in-
volving tense positions with three or more fingers, require
additional training.

When creating a chord vocabulary, designers should begin
with relaxed chords, which are perceived as both easier to un-
derstand and more comfortable to perform than tense chords.
These findings also indicate that chords with fewer fingers
are more comfortable and should be used for more common
commands. Finally, designers should follow guideline 1 and

avoid chords in which the middle or ring finger are lifted,
since these are perceived as the most uncomfortable and dif-
ficult to perform.

ARPÈGE: A DYNAMIC GUIDE FOR CHORD GESTURES
Building on previous work and the results of experiment one,
we identified three key requirements:

• In-context Guidance – Adapt the dynamic guide to han-
dle chords, with progressive in-context guidance to break
down the complexity of the gesture, as in OctoPocus [3].

• Graphical occlusion and visual complexity – Avoid occlu-
sion from the user’s hand and minimize visual complexity
while displaying all relevant fingers and their positions (re-
laxed, right, left or down).

• Chord decomposition – Decompose chords so that users
can place their fingers sequentially or in reference to the
relaxed position.

Design
Based on these requirements, we designed Arpège, a dynamic
guide that provides progressive guidance to novice users as
they learn chords. Arpège displays the current possible chords
and how to perform them (feedforward), and indicates which
finger positions have been identified thus far or if it has al-
ready recognized a complete chord (feedback).

Figure 9 illustrates a simple scenario. Lea wants to use the
chord that triggers the copy command in a drawing applica-
tion. Since she is unfamiliar with chords, she double taps
the screen to invoke Arpège, which displays groups of finger-
prints representing all possible finger positions, along with
labels indicating the first finger to lay on the surface for each
command (Fig. 9a). When Lea places her ring finger on the
corresponding fingerprint (Fig. 9b), Arpège displays new la-
bels showing the remaining possible commands. Those no
longer reachable disappear, e.g., the save command that starts
with the index finger.

Lea places her middle finger and her thumb on the indicated
fingerprints, which highlight as they are touched (Fig. 9c).
The copy label has a right arrow to indicate that Lea must
move her thumb to the right. When the copy chord is recog-
nized, a picture appears (Fig. 9d) to show which command
will be triggered if Lea lifts all of her fingers at once.

pastecut copysave

Figure 10. Arpège’s cartouches contain labels and arrows.

Using Arpège
Arpège requires a short calibration process for each new user,
in order to adapt the dynamic guide and the chord recognizer
to the user’s hand shape and size. Arpège can be invoked in
several ways, including performing a specific chord – e.g., the
relaxed hand position with all fingers down – double tapping
the screen or pressing an on-screen or physical button.

Visual Layout
Arpège consists of two dynamic graphical layers: fingerprints
and command labels. Fingerprints are displayed as circles,
with tense positions darker than relaxed ones. These targets
show comfortable positions for the user and allow the system
to identify individual fingers. These visual clues convey suf-
ficient information for all users to reliably place their fingers
in the correct position.

Labels consist of colored command names inside “car-
touches” that indicate which action to perform for each com-
mand. Colors are associated with commands to reduce visual
search. Cartouches appear above the fingerprints to specify
which finger to place on the surface. Arrows on the side of
the cartouche indicate which tense position to use, if any, and
its appropriate position (Fig. 10). When one finger is involved
in several chords, the labels of the corresponding commands
are stacked on top of its fingerprints (Fig. 9a&b), in a consis-
tent order across fingers.

How Arpège meets our requirements
Music students learn chords by first playing an arpeggio,
pressing one key after another. This provides a step-by-step
understanding of the chord [10] and helps them progress from
basic to more complex chord patterns.

Arpège uses a similar approach, decomposing chords into a
sequence of finger placements. The scenario illustrates how
Arpège offers progressive guidance for an entire vocabulary
within an application, using far less screen space than a video
or cheat sheet. We limit occulusions by placing labels above
the fingerprints [21] and requiring users to begin gestures
with the outermost finger. We reduce visual complexity by
indicating only the starting position of each chord (Fig. 9a),
and displaying the subsequent finger only for the chords that
remain possible (Fig. 9b&c).

Commands are triggered when the fingers are in the correct
configuration and all the fingers are lifted simultaneously.
This prevents issuing a command before the chord is com-
plete. (Note that lifting all the fingers in sequence, like an
arpeggio, does not trigger a command.) If one finger is lifted
while Arpège is activated, e.g., to change a finger placement,
the system reverts to the previous state and makes discarded
commands available again. The user can thus explore the en-
tire chord vocabulary and discover the corresponding com-
mands by placing, moving and lifting fingers.

Finally, like Marking Menus [11] and Octopocus [3], Arpège
should help novices transition to expert behavior. Users
with intermediate knowledge of chords can also benefit from
Arpège, for example, to help them remember how to start a
chord and then complete the rest by simultaneously placing
their remaining fingers. As with ShadowGuides [8], once a
chord is recognized, the displayed picture should help users
associate the chord with the resulting command.

Implementation
Arpège is implemented in Java in four modules:
• The input module captures touches;
• The output module displays feedforward and feedback;
• The partial chord recognizer infers potential target chords

as well as required actions for completion, given the cur-
rent finger positions; and
• The chord classifier compares the geometric features of the

final chord to the templates in the vocabulary and returns
the best match.

The input module uses a TUIO listener4 that interprets
touches, groups them into potential chords, and sends the
list of current finger positions to the partial chord recognizer.
When all fingers are lifted simultaneously (within 100 ms),
the final finger positions are sent to the chord classifier. Vi-
sual feedback is implemented with custom Java2D graphics.

Chord templates include two representions. (i) The partial
chord recognizer uses an abstract representation with the list
of involved fingers and their positions (relaxed, down, left and
right). (ii) The chord classifier uses a geometrical representa-
tion to describe the normalized distances and angles between
the points of a chord. These geometrical features are com-
puted based on the initial calibration of the user’s hand and
our definition of tense positions, i.e. 2 cm translations and
15◦ rotations.

Partial Chord Recognizer
The partial recognition algorithm provides Arpège’s step-by-
step feedback and feedforward. The vocabulary is repre-
sented as a tree. Each node corresponds to a set of finger
positions; its children correspond to the chords that can be
reached from it by putting down, moving or lifting a finger.
The input module sends an event when a finger reaches or
leaves one of the available positions, which triggers a tree
traversal. If a node exists for the detected finger movement,
the current state of the recognizer and the display are both
updated.

Chord Classifier
The chord classifier is independent of the dynamic guide.
Our algorithm compares each input chord to templates with
the same number of points in the vocabulary. For each tem-
plate, it computes the sum of the squared distances between
the points of all the permutations of the input chord and the
template. In addition, it searches for the combination of scale
and rotation that minimizes the distance between each permu-
tation of the input chord and each template in the vocabulary.
4http://www.tuio.org/

http://www.tuio.org/

Scale is tested between 0.9 and 1.1 times the size of the input
chord, and rotation tolerance ranges from 15◦ clockwise to
15◦ counterclockwise. Our tests show that these thresholds
permit both efficient chord recognition and sufficient comfort
when performing chords. Finally, the algorithm compares the
minimum distances between each permutation and each tem-
plate and returns the best match from the full vocabulary.

Benchmark tests
The performance data from the previous experiment served
as benchmark data. All the chords recognized by the partial
recognizer were also recognized by the classifier. The chord
classifier is thus appropriate for use in the Arpège novice
mode, since it reliably detects finger positions.

For the performance data from phase B — with no graphi-
cal feedback — the classifier correctly recognized 76% of re-
laxed chords and 80% of tense chords. Even though novices
were not instructed to focus on accuracy, they were able to
successfully reproduce the majority of chords.

LEARNING AND RETAINING CHORDS
Before we can test whether or not Arpège is superior to a
Cheat Sheet for learning chords, we must first generate a suit-
able test vocabulary. Based on our observations from experi-
ment one and the hand mechanics literature, we developed the
following rules to assign “penalties” to the 52 chords tested
in experiment one:

• Additional fingers make chords more complex to perform
and difficult to remember. Three- and four-finger chords
thus receive one penalty and two penalties, respectively.
• The middle and ring fingers are particularly difficult to lift

(guideline 1). Chords that lift either of these fingers, to-
gether with one or both neighbors, receive one penalty.
Chords that lift either of these fingers while both neighbors
remain on the surface, receive two penalties.
• Tense fingers are less comfortable than relaxed ones.

Chords receive one penalty for each tense finger position.

We calculated the total number of penalties for each chord
and classified them as “easy” (zero – two penalties),
“medium” (three – four penalties) and “hard” (four – six
penalties). Of the relaxed chords, 20 are easy and six are
medium. Of the tense chords, five are easy, 14 are medium
and seven are hard. This classification is consistent with the
understandability and comfort ratings from experiment one.

We created a set of 12 chords from the four highest-rated
chords in each category. We randomly assigned commands
from three lexical categories (cities: Amsterdam, Berlin,
Paris, Rio; fruits: Apple, Banana, Cherry, Kiwi; and objects:
Bike, Camera, Guitar, Shoe) to these chords (Fig. 11).

Experiment two: Assessing learning and retention
We compared how Arpège and a Cheat Sheet help users learn
to perform chords and remember chord-command pairs. We
expect Arpège to improve retention, since it provides more
information than the cheat sheet about how to perform a ges-
ture and why it differs from other gestures. We formulated
three hypotheses:

Figure 11. The 12 test chords are mapped to 12 arbitrary commands.

1. Participants can learn and retain a set of 12 chords;

2. Learning with Arpège is faster than with a cheat sheet; and

3. Intermediate retention is higher with Arpège.

Participants
We recruited 17 men and 7 women, median age 28 (range:
19-41), all right-handed. We allocated 12 to the Arpège group
and 12 to the Cheat sheet group. Four participants from each
group also participated in experiment one. Eight members of
the Cheat sheet group use multitouch devices daily and four
had limited or no experience. The Arpège group had less ex-
perience with multitouch devices. Only one was a daily user,
eight had limited experience and three had no experience.

Apparatus
The hardware and sofware are identical to that of experiment
one. Both help systems, Arpège and the cheat sheet, are in-
voked with the same physical button, a Griffin PowerMate
USB Multimedia Controller. This avoids interference be-
tween invoking help and specifying chords and reduces con-
textual differences between them, since software cheat sheets
are normally reached via menus. The experiment design thus
favors cheat sheets.

Procedure
We used a between-participant design with one primary fac-
tor (TECH) to compare the Arpège and Cheat Sheet help sys-
tems. Day one begins with a five-minute practice session to
calibrate the recognizer and ensure that participants can phys-
ically execute the 12 chords. Learning sub-sessions teach the
12 command-chord pairs; Evaluation sub-sessions test reten-
tion and are presented over two days. The experiment lasts
about 40 minutes on day one and 10 minutes on day two.

Learning trials display a single command-chord pair, with ei-
ther the corresponding Arpège dynamic guide or the Cheat
Sheet photograph of a hand. The participant then tries to per-
form the corresponding chord.

Evaluation trials display a command name. Participants are
told to execute a chord only if they are sure they know it.
If they remember, they perform the chord without invoking
help and then confirm their choice from a list of the 12 possi-
ble chords (Fig. 12), to distinguish performance and retention

Which chord did you try to perform ?

None of these...

Figure 12. Confirmation screen after performing a chord.

errors [9]. Note that this also increases the participant’s ex-
posure to the chords, which increases overall learning. When
participants forget, they push a physical button to invoke ei-
ther the full Arpège dynamic guide or the Cheat Sheet static
photograph of all 12 chords. All trials end with a “success”
or “error” message.

The Learning sub-session presents each chord twice, for a to-
tal of 24 trials. In first three Evaluation sub-sessions, the fre-
quency of presentation is determined according to a Zipf dis-
tribution (13,13,6,6,4,4,3,3,2,2,2,2), to simulate the varying
frequencies of commands in real applications [9]. Frequency
assignment is counterbalanced across participants, resulting
in the same overall number of trials for each command, and
is randomly distributed in over consecutive blocks.

On day one, participants see the complete set of commands
three times according to the frequency distribution, for a total
of 180 evaluation trials grouped into 12 blocks of 15 trials.
On day two, each command appears twice, presented in ran-
dom order, in two blocks of 12 trials.

Data Collection
In addition to the post-experiment questionnaire, we recorded
three quantitative measures:

1. Success rate: Percentage of recognized chords among non-
help trials, i.e. participants who believe they know the cor-
rect chord perform it correctly.

2. Recall rate: Percentage of correct confirmation answers,
i.e. participants who believe they know the correct chord
specify the correct command, regardless of whether or not
they can perform it correctly.

3. Help rate: Percentage of help trials, i.e. participants who
forgot the chord invoke help and then perform it correctly.

RESULTS
Sphericity tests were validated, indicating that unadjusted
univariate F tests are appropriate [6]. We performed repeated-
measures ANOVA.

Learning condition
Hypothesis 1: Participants can learn and retain a set of 12
chords.

0

20

40

60

80

100

1 2 3

Re
ca

ll
Ra

te
 (%

)

Sub-session
4 5

Technique
Arpege
Cheat Sheet

Figure 13. Recall rate for both techniques by sub-session.

All participants successfully and rapidly learned a large vo-
cabulary of 12 chord gestures whatever the technique they
used. We found a significant effect of SUBSESSION on the re-
call rate (F2,44 = 136.01, p < 0.0001). The Tukey HSD post-
hoc test reveals that the recall rate is significantly higher for
each successive SUBSESSION, indicating that they were quickly
able to stop invoking help.

However, no significant effect obtains for TECH on the recall
rate (F1,22 = 0.024, p = 0.879) or the TECH × SUBSESSION

interaction effect (F2,44 = 0.120, p = 0.887). Participants
gave appropriate answers to the confirmation question more
than 80% of the time in the second sub-session, i.e., after
about 10 minutes, and more than 90% of the time by the third
sub-session.

Hypothesis 2: Learning with Arpège is faster than with a
cheat sheet.

We found a significant effect of SUBSESSION on the success
rate (F2,44 = 146.6690, p < 0.0001). The Tukey HSD post-
hoc test reveals that the success rate is significantly higher
for every successive SUBSESSION, but there is no significant
effect of TECH on the success rate (F1,22 = 0.301, p = 0.589),
and no TECH × SUBSESSION interaction effect (F2,44 = 0.721,
p = 0.492). For the trials of the third sub-session in which
participants did not invoke help, more than 80% of the chords
they performed were recognized by the classifier.

Hypothesis 3: Intermediate retention is higher with Arpège.

For the help rate, an ANOVA reveals a significant effect of
SUBSESSION (F2,44 = 98.88, p < 0.0001), no effect of TECH

(F1,22 = 0.012, p = 0.914), and no TECH × SUBSESSION in-
teraction effect (F2,44 = 0.308, p = 0.736). The Tukey HSD
post-hoc test reveals that the help rate is significantly lower
for every successive SUBSESSION, decreasing to less than 5%
of the trials in the third sub-session.

We found a significant effect of SUBSESSION on the recall rate
(F4,88 = 68.94, p < 0.0001) in five blocks of trials over two
days. The Tukey HSD post-hoc test reveals that the recall rate
in the first block is significantly lower than that of the four
subsequent blocks (Fig. 13). Retention on day two remained
high, at the same level as at the end of day one. Figure 13
shows that the participants remembered more than 80% of
the chords on the second day.

0

20

40

60

80

100

Sub-session

Su
cc

es
s

Ra
te

 (%
)

1 2 3 4 5

Technique
Arpege
Cheat Sheet

Figure 14. Success rate for both techniques by sub-session

We found a significant effect of SUBSESSION on the success
rate (F4,88 = 56.85, p < 0.0001). The Tukey HSD post-hoc
test reveals that the success rate in the first block is signif-
icantly lower than in later blocks (Fig. 14). The number of
chords recognized by the classifier on day two is not signifi-
cantly different from that at the end of day one.

Qualitative Results
The post-experiment questionnaire asked participants about
their strategies for memorizing chord gestures and how they
mapped to commands. Several participants created seman-
tic associations between the hand position and its command
name. For example, two participants in the Arpège group
thought the “Paris” gesture represented the Eiffel tower and
one participant in the Cheat Sheet group described the ges-
ture for “guitar” as “like striking a guitar string”. Five partic-
ipants from the Arpège group and eight participants from the
Cheat Sheet group reported using semantic associations, with
20 and 11 total associations respectively.

Two participants from the Cheat Sheet group felt that the
cheat sheet conveyed too much information at a time. Four
participants from the Arpège spontaneously told us that they
were impressed by their own skill progression with respect
to both memorization and ease-of-use. No participants in the
Cheat Sheet group made such observations.

Discussion
Participants were able to successfully use both learning tech-
niques to rapidly learn a large vocabulary of chord gestures
and quickly stop using help, which suggests that larger, more
complex chord vocabularies are suitable for real systems. In
addition, participants were able to successfully retain what
they learned, since performance was very high (over 90% cor-
rect) and not significantly different from one day to the next.

Given the high overall performance rates, it is perhaps not
surprising that we did not find a significant difference be-
tween Arpège and Cheat Sheets. However, our cheat sheet
has several advantages over conventional ones. First, we
show actual photographs of the hand, which suggests how
to perform the correct chord position. Second, we provide
additional information about relative finger positions, since
the dashed white circles representing relaxed positions serve
as a reference for tense positions. Third, our cheat sheet is
displayed automatically, without requiring the user to switch

context or navigate to a separate menu. Note too that the
Arpège group produced almost twice as many mnemonic as-
sociations, which suggests the potential for a longer-term re-
tention rate.

CONCLUSION
This paper addresses the problem of how to design large
chord gesture sets and teach them to users. We present two
guidelines for creating chord vocabularies that respect the
biomechanical constraints of the hand, including the concept
of relaxed versus tense fingers. The first guideline indicates
which sets of fingers to avoid lifting within a chord and the
second guideline describes how to move different fingers in
order to generate comfortable new chords.

We identify a set of 480 possible chord gestures, from which
designers may create a wide variety of chord-based applica-
tions. We propose a strategy for comparing and evaluating
chords through the use of rules and “penalties”, which can
help designers select appropriate chord vocabularies that are
both comfortable and efficient.

We conducted an initial experiment to evaluate these guide-
lines. We verified that relaxed chords are more understand-
able and comfortable than tense chords. Adding additional
fingers, especially tense ones, makes chords more difficult to
understand and perform.

We introduced Arpège, a dynamic guide that offers a pro-
gressive approach to learning and performing chord gestures.
Arpège breaks down the complexity of a chord and can ease
the transition between novice and expert use. Arpège uses
very little screen real estate, making it appropriate not only
for large tabletops, but also for smaller tablets and smart-
phones. To use it, users need not switch contexts but can
learn and perform all their actions in place.

Arpège ensures that the user performs the chord appropriately
and fluidly accommodates “undo” if the user makes an error,
which encourages novices to freely explore the command vo-
cabulary. Intermittent users, who may only remember some
commands, can quickly perform the chords they know and
only spend time learning those they have forgotten.

We conducted a second experiment that demonstrated that
users can easily learn a relatively large set of chords associ-
ated with randomly determined commands. Although we did
not find significant performance differences between Arpège
and a cheat sheet, we demonstrated that both can quickly
teach command sets that can be remembered from one day
to the next. Arpège also inspires a richer set of mnemonic
strategies and should perform even better in real-world set-
tings, since it does not require users to switch context while
performing a chord.

In future work, we plan to explore how well Arpège scales
with larger chord vocabularies, which will require new strate-
gies for handling visual complexity in the early stages. For
example, a hierarchical version of Arpège could map com-
mand categories to individual fingers, which would be suc-
cessively revealed as each finger is placed on the surface. We

are also interested in conducting a long-term field study with
Arpège, to determine its relevance in a real-world setting.

In conclusion, Arpège offers a strategy for helping designers
to incorporate relatively large sets of multitouch chord ges-
tures into their applications. Designers can use our guidelines
to generate chord vocabularies that are both understandable
and comfortable. Users can also enjoy exploring and learning
these new chord sets, in the context of their daily activities.

ACKNOWLEDGMENTS
We would like to thank to Clément Pillias, who helped im-
plement Arpège’s chord classifier, and Mathieu Nancel who
helped design the visual feedback.

REFERENCES
1. Bailly, G., Demeure, A., Lecolinet, E., and Nigay, L.

Multitouch menu (mtm). In Proceedings of the 20th
International Conference of the Association
Francophone d’Interaction Homme-Machine, IHM ’08,
ACM (2008), 165–168.

2. Bailly, G., Lecolinet, E., and Guiard, Y. Finger-count &
radial-stroke shortcuts: 2 techniques for augmenting
linear menus on multi-touch surfaces. In Proceedings of
the SIGCHI conference on Human Factors in computing
systems, CHI ’10, ACM (2010), 591–594.

3. Bau, O., and Mackay, W. E. Octopocus: a dynamic
guide for learning gesture-based command sets. In
Proceedings of the 21st annual ACM symposium on
User interface software and technology, UIST ’08,
ACM (2008), 37–46.

4. Baudel, T., and Beaudouin-Lafon, M. Charade: Remote
control of objects using free-hand gestures. Comm. ACM
36 (1993), 28–35.

5. Bragdon, A., Uguray, A., Wigdor, D., Anagnostopoulos,
S., Zeleznik, R., and Feman, R. Gesture play: motivating
online gesture learning with fun, positive reinforcement
and physical metaphors. In ACM International
Conference on Interactive Tabletops and Surfaces, ITS
’10, ACM (2010), 39–48.

6. Davis, C. Statistical Methods for the Analysis of
Repeated Measurements. Springer, 2002.

7. Engelbart, D. C. Augmenting human intellect: A
conceptual framework. SRI Summary Report
AFOSR-3223 (1962).

8. Freeman, D., Benko, H., Morris, M. R., and Wigdor, D.
Shadowguides: visualizations for in-situ learning of
multi-touch and whole-hand gestures. In Proceedings of
the ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’09, ACM (New York, NY,
USA, 2009), 165–172.

9. Ghomi, E., Faure, G., Huot, S., Chapuis, O., and
Beaudouin-Lafon, M. Using rhythmic patterns as an
input method. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’12,
ACM (2012), 1253–1262.

10. Koh, J. Scales And Arpeggios For Piano - Fingering
Method. Wells Music Publishers, 2010.

11. Kurtenbach, G. P. The design and evaluation of marking
menus. PhD thesis, University of Toronto, 1993.

12. Lahav, A., Boulanger, A., Schlaug, G., and Saltzman, E.
The power of listening: auditory-motor interactions in
musical training. Annals of the New York Academy of
Sciences 1060 (2005), 189–94.

13. Lang, C. E., and Schieber, M. H. Human finger
independence: limitations due to passive mechanical
coupling versus active neuromuscular control. Journal
of neurophysiology 92, 5 (Nov. 2004), 2802–2810.

14. Lee, J., and Kunii, T. L. Model-based analysis of hand
posture. IEEE Comput. Graph. Appl. 15, 5 (1995),
77–86.

15. Lepinski, G. J., Grossman, T., and Fitzmaurice, G. The
design and evaluation of multitouch marking menus. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, ACM (2010),
2233–2242.

16. Lin, J., Wu, Y., and Huang, T. S. Modeling the
constraints of human hand motion. In Proceedings of the
Workshop on Human Motion (HUMO’00), HUMO ’00,
IEEE (2000), 121–127.

17. Miller, F. P., Vandome, A. F., and McBrewster, J.
Keyboard Layout. Alpha Press, 2009.

18. Morris, M. R., Wobbrock, J. O., and Wilson, A. D.
Understanding users’ preferences for surface gestures.
In Proceedings of Graphics Interface 2010, GI ’10,
CIPS (2010), 261–268.

19. Scarr, J., Cockburn, A., Gutwin, C., and Quinn, P. Dips
and ceilings: understanding and supporting transitions to
expertise in user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, ACM (2011), 2741–2750.

20. Vanacken, D., Demeure, A., Luyten, K., and Coninx, K.
Ghosts in the interface: Meta-user interface
visualizations as guides for multi-touch interaction. In
3rd IEEE International Workshop on Horizontal
Interactive Human Computer Systems. TABLETOP
2008., IEEE (2008), 81–84.

21. Vogel, D., and Casiez, G. Hand occlusion on a
multi-touch tabletop. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’12, ACM (2012), 2307–2316.

22. Wobbrock, J. O., Morris, M. R., and Wilson, A. D. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, ACM (2009),
1083–1092.

23. Zeleznik, R., Bragdon, A., Adeputra, F., and Ko, H.-S.
Hands-on math: a page-based multi-touch and pen
desktop for technical work and problem solving. In
Proceedings of the 23rd annual ACM symposium on
User interface software and technology, UIST ’10,
ACM (2010), 17–26.

	Introduction
	Related Work
	Designing chord vocabularies
	Learning chords

	Designing Chord Gestures
	Mechanical Constraints For Finger Combinations
	Extended Finger Positions

	Designing and Assessing a Chord Vocabulary
	Experiment one: Assessing the chord guidelines
	Participants
	Apparatus
	Procedure
	Data Collection

	Results
	Discussion

	ARPÈGE: A Dynamic Guide For Chord Gestures
	Design
	Implementation

	Learning and retaining chords
	Experiment two: Assessing learning and retention
	Participants
	Apparatus
	Procedure
	Data Collection

	Results
	Qualitative Results
	Discussion

	Conclusion
	Acknowledgments
	REFERENCES

