
~ Computer Graphics, Volume 22, Number 4, August 1988

Graphical Search and Replace
David Kurlander

Computer Science Department
Columbia University
New York, NY 10027

Eric A. Bier
Xerox PARC

3333 Coyote Hill Rd.
Palo Alto, CA 94304

A bst ract

Graphical search is a technique for f inding all instances of a
graphical pattern in a synthetic picture in which objects are
regions bounded by lines and curves. The pattern may describe
shape, color and other properties. Matched objects may be
al lowed to differ from the pattern in rotat ion and scale or may
differ in shape by a specif ied tolerance. Graphical replace is a
technique for replacing the shape, color, or other propert ies of
matched objects with new propert ies described in a replace-
ment pattern. Combined, the two techniques are similar to
textual search and replace in text editors. Graphical search and
replace can be used to make global changes to i l lustrations with
repetit ive patterns, independent of the means used to make
those patterns. It can also be used to create a class of i terative
or recursive shapes that can be specif ied by replacement rules.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techn iques- in te rac t ion techniques; 1.5.4 [Pattern Recogni-
t ion]: Appl icat ions - graphical edit ing

Additional Keywords and Phrases: Search and replace,
graphical edit ing, curve matching, graphical grammars, graphi-
cal macros

I. Introduction

Most graphic arts quality illustrations Contain some degree of
coherence. For example, the same font, color or stroke width is used
throughout a set o f shapes, or a particular shape is used repeatedly at
different translations, rotations, or sizes. Changing one of the coher-
ent properties of an illustration (e.g., changing all red circles into
orange ellipses), requires making the change throughout the illustra-
tion. Pictures can be structured to make such changes easy. For ex-
ample, some editors allow objects to be grouped into a cluster that
can be selected as a unit, making it easy to change properties of the
clustered objects all at once. Other editors allow the user to declare
that an object is an instance of a library object: changes to the library
object are reflected in all o f its instances at once. However, both of
these techniques require the user to decide at an early stage what
properties will need to be edited coherently, and to structure the il-
lustration accordingly. We propose an alternative technique,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

© 1 9 8 8 ACM-0-89791-275-6/88/008/0113 $00.75

graphical search and replace, that allows graphical scenes to be edited
coherently without special structuring of the illustration.

Graphical search and replace works much like text substitution
in a word processor. The user first describes a search pattern com-
posed of a set o f synthetic shapes (regions bounded by lines, conics,
and splines), a set o f style properties such as stroke width, stroke
color, and fill color, and a set o f search parameters including an error
tolerance and an indication of whether or not a match may be a rota-
tion of the pattern. Next, the user describes a replacement pattern
made up of synthetic shapes and style properties. The graphics edi-
tor then searches in the illustration for an object that matches the pat-
tern. If the user requests a replacement, the editor replaces the
shape, changes its style properties, or both. This can be done one
shape at a time, in a top to bottom, left to right order, or can be
performed on all matching shapes at once.

Graphical search and replace has a number of applications. It
can be used to make changes to many objects at once. If the re-
placement pattern is more elaborate than the search pattern, these
multiple changes can turn a simple repetitive picture, used as a tem-
plate, into an elaborate composition. Furthermore, if the replace-
ment pattern contains parts that match the search pattern, graphical
search and replace can be used repeatedly to build up a recursive
shape. If an editing macro is performed on each set o f matched
objects instead of a replacement, graphical search leads to an even
more general way to modify illustrations. Finally, if performed on
multiple files, graphical search can be used to find those picture files
containing specified graphical features.

Graphical search and replace is related to a wide variety of other
topics. It can be viewed as an interface to a graphical database, where
typical transactions include queries for objects with a particular set o f
graphical properties and modifications of these properties. The rep-
resentation of graphical information in databases has been studied [7,
15]. Graphical search and replace can also be viewed as a method for
specifying graphical grammars that generate recursive shapes. Shape
grammars, a subset o f graphical grammars, have been analyzed
extensively [5.12], and grammars have been used in graphics to make
realistic imagery [11]. Pattern recognition algorithms have been used
to search for occurrences of a particular shape [6, 8]. Some of these
algorithms are appropriate for use in graphical search and replace.
Instancing was used in the earliest o f drawing systems. Sketchpad
[13], and continues to be used in many current systems. Graphical
search and replace i s proposed as an alternative to ins tancingfor
producing coherent changes in graphical documents.

Graphical search and replace has been implemented in the
MatchTool. a companion to the Gargoyle two-dimensional illustrator
[1, 10] running in the Cedar programming environment I14] on the
Xerox Dorado high-performance personal workstation [9] . The
MatchTool is similar in user interface to the EditTool, a textual
search and replace tool that works with Tioga. the Cedar text editor,

I13

f SIGGRAPH '88, Atlanta, August 1-5, 1988

to edit multi-font tree-structured documents. All figures in this
paper were created with the MatchTool and Gargoyle.

In section 2, we describe the MatchTool from the users point of
view, showing graphical search and replace in action. In section 3, we
describe the implementation of the MatchTool, including the control
structures needed to search the scene in top to bottom, left to right
order and the algorithm that determines whether or not two objects
match, in section 4. we discuss some of the applications of graphical
search and replace. In section 5, we present our conclusions and
future research directions.

2. U s e r In ter face

2.1 Search and Replace for Shapes

In this section, we describe how graphical search and replace can
be used to make changes to an illustration. We need two windows on
our workstation display. In the Gargoyle editing window is the illus-
tration that we are editing. In the MatchTool window, we specify
search and replace requests. At the top of the MatchTool are two
panes (sub-windows), each of which is a small Gargoyle editing
window. In the first of these, the Search Pane, we construct the pat-
tern that we wish to search for in our illustration. In the second of
these, the Replace Pane, we construct the replacement pattern.

Figure 1 shows an illustration of a map that is being edited in a
Gargoyle window. This is a synthetic picture; the highway sign
borders are represented as arcs, line segments and parametric curves,
and the roadways are parametric curves. The text is represented as
an ASCII string, a font name and an afffine transformation. Recently,
sections of Highway 17 have been renamed Interstate 880. We can
use the MatchTool to make the substitutions.

Figure 1. An illustration of the freeways near San Jose, California.

Figure 2 shows the two panes of the MatchTool. In the Search
Pane, we put a Highway 17 sign, copying it from the illustration. In
the Replace Pane, we put an Interstate 880 sign, drawing it in place or
copying it from a different illustration. We make sure that the
centers of both signs are at the same coordinates, so that no offset will
be introduced when replacements are performed. The centers can be
aligned, for instance, by positioning both signs in the Search Pane,
and then moving the Interstate 880 sign into the Replace Pane with a
"move" operation that preserves coordinates.

Search Replace

Inll l
Figure 2. Search and replacement patterns in the MatehTool.

The MatchTool user interface has four buttons that initiate
search actions: Search, Yes, No, and ChangeAII. If we press the
Search button at this point, the MatchTool will search the illustration
in top to bottom, left to right order, looking for Highway 17 signs.
When it finds the topmost one, it selects it. If we then press the Yes
button, the MatchTool will delete the Highway 17 sign, add an

Interstate 880 sign, and initiate another search. This search finds the
second sign. Pressing Yes again, we replace the second Highway 17
sign and select the third. Since Highway 17 has only been renamed
north of Interstate 280, we are done. If we press the No button at this
point, the MatchTool will leave the third Highway 17 sign as it is and
report that there are no further matches. The resulting picture is
shown in Figure 3. Had we wished to replace all of the Highway 17
signs at once, we could have used the ChangeAII button.

Figure 3. The San Jose freeways after the northern sections of
Highway 17 have been relabeled.

In the example above, we searched for a collection of shapes of
known size, shape and orientation. Less restrictive searches can be
achieved by varying one or more of six search parameters-
Granularity, Rotation lnvariance, Scale Invariance. Polarity, Context
Sensitivity, and Tolerance. The user interface for these features is
shown in Figure 4. The first four search parameters will be discussed
in this section, the last two in section 2.3.

"1 Granularity:l Anywhere
' 'mm m/1 mva ll"~r~elm ~/tl |

I 'olarity |

I CohtextSensit ive I /
T°lerance: I A]J

Figure 4. The six search parameters. Options that are white on black
are active. All of the regions bordered with a black rectangle are
mouse-sensitive.

Granularity may take on the values "cluster", "object", or
"anywhere". It tells the MatchTool how much of the structure of the
illustration may be ignored when performing matches. If
Granularity is set to "cluster", then a group of objects that have been
clustered in Gargoyle will only match a similar complete cluster in
the MatchTool; the individual objects in the cluster cannot match
separately. At the "object" granularity, a Gargoyle object A will
match a similar object B in the pattern, even i r a is part of a cluster.
At this granularity, A must be matched in entirety; a pattern
containing only a subset of A's parts will not match. At the
"anywhere" granularity, parts of an object A may be matched by a
pattern object B if all of B's parts match corresponding parts in A. At
this granularity, an entire object in the MatchTool search pane can
match a portion of a single object in the editor scene.

In an "anywhere" match, the lowest-level scene elements,
segments, are treated as atomic; it is impossible to match on parts of
them. This certainly has performance benefits, but also avoids other
problems inherent in replacing portions of particular object classes.
For example, it is impossible to replace portions of some segment
types, such as non-local splines, without potentially causing changes
to the entire segment.

When Rotation Invafiance is turned on, the pattern matches a
configuration of scene objects if some combination of translation and
rotation will bring the pattern and configuration into correspon-
dence. If more than one rotation is possible, the MatchTool will

114

4 ~ , Computer Graphics, Volume 22, Number 4, August 1988
i

choose the smallest rotation that works. When Scale Invariance is
turned on, the pattern matches a configuration of scene objects if
some combination of translation and scaling will bring the pattern
and configuration into correspondence. Likewise, when both Rota-
tion Invariance and Scale Invariance are on, the MatchTool will try
to use combinations of translation, rotation, and scaling to bring the
pattern into correspondence with the scene objects.

When Polarity is on, two curves will only match if they were
drawn in the same direction. For instance, if a rotation-invariant
match is performed where the pattern is a straight line segment, the
pattern will match any straight line segment that has the same length
as the pattern. With Polarity off, each match can be made with two
rotations, differing by 180 degrees. With Polarity on, the MatchTool
will take into account the direction in which each line segment was
drawn, and will choose the rotation that aligns those directions.

We can use these search parameters to construct a triadic Koch
snowflake. We draw an equilateral triangle, constructing the line
segments in clockwise order, giving us Figure 5. Next, we select one
edge of the triangle and copy it into the Search Pane. In the Replace
Pane, we draw four line segments each 1/3 the length of the original.
These line segments are drawn in the same direction (lower left to
upper right) as the original segment. We must also be careful that
the replacement shape begins and ends at the same coordinates as the
original segment, so that when scene objects are replaced, no offset
will be introduced, The resulting Search and Replace Panes are
shown in Figure 6.

Figure 5. An equilateral triangle. Grey arrows show the directions in
which the edges were drawn.

Search Replace

[/l[/I
Figure 6. Preparing to replace a line segment with four line segments.
Grey arrows show the directions in which the edges were drawn.

We set Granularity at "anywhere" so that the search can find
individual segments of the original triangle. We turn on Rotation
lnvariance. We turn on Polarity. We press ChangeAll. All of the
line segments in the original triangle are replaced by four-segment
paths as shown in Figure 7(a). If we hit ChangeAII again, nothing
happens, because the picture no longer contains any segments that
are the same length as the pattern segment. If we turn on Scale
lnvariance and try ChangeAll again, all of the segments of Figure
7(a) are replaced by four-segment paths to produce Figure 7(b).

Figure 7. Triadic Koch snowflakes. (a) After one ChangeAII opera-
tion using the search and replacement patterns of Figure 6. (b) After
a second ChangeAII, with Scale Invariance turned on.

Z.2 Search and Replace for Graphical Style

Often, we will want to search for properties of graphical objects
other than shape, such as object class- Box, Circle, or Polygon: curve
type - line, Bezier, B-spline, natural spline, conic, or arc: area color:
line properties-line color, stroke width, dash pattern, joint blending.
or stroke end shape: or text properties-ASCII string, font family, or
font transformation. Likewise, we may be interested in replacing
properties of the matched objects other than shape. Figure 8 shows a
portion of the MatchTool control panel called the Search Column
and the Replace Column. The black squares in the Search Column
indicate those properties of the objects in the Search Pane that must
agree with the scene objects for a match to succeed: other properties
can be ignored. The black squares in the Replace Column indicate
those graphical properties of the objects in the Replace Pane that will
be applied to the matched objects when a replacement is performed:
other properties are left alone unless they are determined by the
specified properties. The user can toggle each square between white
and black by clicking on it with the mouse.

Search Replace

Shape • •
Object Class • •
C u r v e Type • •
A r e a Color [] •
Line Color E] []
Line Width [] []
Line Dashes [] []
Line Joints [] []
Line Ends [] []
Text String [] •
Text Font [] •
Text Font Transform [] •

Figure 8. The Search Column and Replace Column.

When the search and replacement properties are specified
appropriately, the MatehTool can be used to change the shape of an
object while leaving its color unchanged. For example, to make a
multi-colored snowflake, we might start with a triangle as before but
give its three edges different colors, as shown in Figure 9(a). If we
turn off Line Color in the Search Column, then all three edges will
still match the pattern we used above. If we turn off Line Color in
the Replace Column. then as each edge is replaced, its color is
applied to the replacement shape. If we use the same Search Pane
and Replace Pane as before, then after two ChangeAlls. we get the
picture in Figure 9(b). The MatchTool can also change the color of
an object while leaving its shape unchanged.

(a) (b)

Figure 9. Replacing the shape of the edges of a triangle while leaving
the colors as they were.

2.3 Advanced Search and Replace

In this section, we discuss the last two search parameters-
context-sensitive search, and variable error tolerance.

Context-sensitive search allows the user to search for the
occurrence of a set of shapes, A, in the presence of another set of
shapes, B. Only the shapes that match A are selected and eligible to
be replaced. To perform a context-sensitive search, the user places
all of the pattern shapes, A and B, in the Search Pane and indicates

115

SIGGRAPH '88, Atlanta, August 1-5, 1988

which shapes are in set A by selecting them. The user then turns
Context Sensitivity on and initiates a search.

Context-sensitive search, by reducing the set of shapes that are
eligible to be replaced, can remove ambiguities present in certain pat-
tern specifications. For instance, if the Shapes property in the Re-
place Column is on but the Line Color property is off, the MatchTool
must replace the matched shapes with the replacement shapes,
copying the line color of the matched shapes to the replacement
shapes. A problem occurs if the search pattern matches a set of
shapes that have several different line colors; we don't know which
objects in the replacement pattern should receive which line colors
from the match. To solve this problem, we can break up the search
into several context-sensitive searches, each of which will only select
objects of a single line color.

Figures 10 and 11 give an example of this use of context-
sensitive search. The user starts with a picture of a gumball machine
containing softballs and replaces the softballs by footballs. Each
football will take its orientation from the stitching direction of the
softball it replaces and will take its area color and the line color of its
stitching from this softball as well. Because the line color of the
stitching and the line color of the outer circle are different in a single
softball, we cannot perform this replacement all at once. Instead. we
perform one context-sensitive search and one regular search, both
shown in Figure 10, to get the desired result, shown in Figure 11.
The first search replaces circles (in the presence of stitching) by
footballs with the proper orientation, area color and line color. The
second search replaces the stitching by football stitching with the
proper line color.

Search Replace

[llOI,a,

Figure 10. (a) Search for a circle in the context of stitches and re-
place with a football outline. The black boxes on the circle indicate
that it is selected. (b) Search for softball stitches and replace by
football stitches.

Figure 11. (a) A gumball machine filled with softballs, used as a T-
shirt design for a softball team. (created by PoUe Zell~veger and Joek
Mackinlay) (b) The softballs are replaced by footballs.

Variable error tolerance allows the user to find shapes that
match the search pattern approximately, but not exactly. By adjust-

• ing a slider, the user can increase or decrease the amount of error that
the matching algorithms will permit when identifying matches. For
example, an appropriate tolerance and search pattern would enable
matches of all shapes that approximate circles or all shapes that ap-
proximate straight lines. To successfully use this feature, the user
must understand some of the details of the shape matching mecha-
nism and must determine an appropriate tolerance by trial and error.
One use of inexact matches is described in section 4.4 on graphical
grep.

3. I m p l e m e n t a t i o n

3,l Control Structures

Since the data in text documents is ordered in a linear fashion,
and graphical data tends to be distributed over at least two
dimensions, the control structures for a graphical search and replace
program must be more elaborate than those of its textual analog. In
textual search and replace,-very little state information needs to be
kept. A current location specifies the point from which the search
will proceed, and when a replacement is made, there is no ambiguity
over where the replacement text will be placed. In addition, there is
a clear choice for the order in which items will be searched provided
by the linear order of the character stream. The mechanism for
graphical search and replace is more complex.

We search graphical objects in a top to bottom, left to right
order. This search order is familiar to users of textual search and
reduces screen updates because matches located close to one another
in the scene tend to be found together. Reverse searches proceed in
exactly the opposite order from forward searches. The Gargoyle
software cursor, the caret, represents the current location of the
search. In a forward search, only objects below the caret are
considered, and in a backward search, only objects above the caret
are considered. The user can move the caret in the Gargoyle scene in
order to direct the search.

Before searching begins, a snapshot is taken of all scene objects
that may participate in the search. This prevents the search from
finding objects that are added to the scene by a replace operation in
progress. As a result, replacement operations are predictable and will
always terminate. The snapshot is a singly-linked list, called the
search list. Each list element is either a cluster of scene objects, if
Granularity is set to "cluster", or an individual object, if Granularity
is set to "object" or "anywhere". The list is ordered by the upper left
corner of the bounding box (a tight-fitting rectangle aligned with the
coordinate axes) of each element• For a forward search, the elements
are in top to bottom, left to right order. For a backward search, the
order is reversed. Updated snapshots of the scene are taken
whenever an entirely new search is initiated. A search is considered
"entirely new" if, since the last search operation, the caret has been
manually repositioned, the scene has been edited, a new Gargoyle
window is being searched, the pattern has been modified, or the
search direction has changed.

The current search pattern is represented by a list of lists, called
the pattern list. Each element of the pattern list is a list of property-
value pairs representing the relevant properties of one of the graphi-
cal objects in the Search Pane. The possible properties appear in
Figure 8. All of the property-value lists will include the same set of
properties, namely the set that is active in the Search Column. The
pattern list is recomputed at the beginning of a search if the Search
Pane or Search Column have been modified since the last search.

Searching involves trying to lind a correspondence between
elements of the pattern fist and elements of the•search list. T o begin,
we choose, one element of the pattern list, called the leading object,
and compare it against the members of the search list in order.
starting with the member nearest the current search position. The

116

' ~ " ~ ' Computer Graphics, Volume 22, Number 4, August 1988

algorithm that we use to compare two curves for shape equality will
be discussed in section 3.2. Once we have found a match for the
leading object, we at tempt to find thatches for all o f the other
elements in the pattern list. If we succeed, we are done. Otherwise,
we try to match the leadingobject differently. If Rotation lnvariance
is on. we try matching the leading object against the same object in
the search list at a different orientation. When all possible orienta-
tions are exhausted, we move on to the next object on the search list.

If we are matching on shape, we use two techniques to improve
performance. First, when we have found a match for the leading ob-
ject, we know where in the scene to look for the remaining shapes in
the pattern list. We use bounding boxes to quickly rule out many of
the objects on the search list. For instance, we compute where one
point o f a given pattern object would have to match in the scene and
rule out all objects on the search list whose bounding boxes do not
contain that point. If the search is not exact, we enlarge the
bounding boxes by an amoun t proportional to the tolerance before
testing the point for inclusion. Furthermore, the search list is
ordered by the upper left hand corner o f the bounding boxes, so we
can quickly rule out entire sections o f the search list. Second, we
choose a good leading object. If possible, we choose an open curve to
be the leading object because open curves can match other curves at
no more than two different orientations. If all o f the pattern objects
are closed curves, we choose the curve with the least numbe r o f
potential matching orientations (see section 3.2).

When Granulari ty is set to "anywhere", the search mechanism is
more elaborate. Objects in the pattern list are matched against both
entire objects and portions o f objects in the search list. When a
match is found, information is saved indicating precisely where the
search terminated, so the next search can continue with another part
o f the same search list object i f any unexamined parts remain. Note
that it is possible to invoke a search on an object, part o f which has
already been changed by a prior search and replace.

Let there be m objects in t__he editor scene and n objects in the
search pattern. The worst case complexity o f the search algorithm to
find all matches of the pattern in the scene is O(m2n) object to object
comparisons, assuming that the search is being made at either the
"cluster" or "object" granularity, and the leading object matches no
scene object at more than a constant number o f orientations. If the
granularity o f the search is set to "anywhere", then we are effectively
matching against a greater number o f scene objects, since each object
and its eligible subsets (continuous runs o f segments) mus t be
considered in the match process. In this case, we redefine m to be the
sum over all objects in the scene o f the number o f eligible subsets in
each object, and the complexity expression remains valid.

The expected number o f object to object comparisons required
to find all matches o f a pattern in the scene is no worse than O(m2).
It is rare for the first few elements o f the pattern list to match objects
in the scene without a complete match occurring. When a complete
match does occur, the scene objects participating in the match are
removed from further consideration, so no more than m / n matches
can be found. Together, these observations lead to the tighter bound.
In addition, the use o f bounding boxes to narrow down the matching
process for shape searches does much to speed up the search. In
practice, we have found the speed o f this algorithm to be acceptable
for our applications.

After a match is found, the search list is updated to disallow
future matches on the same objects. The objects in the Gargoyle
window that were found by the search are selected, and all other
objects are deselected. Selection performs a dual function. First, the
selection feedback indicates to the user which set o f objects has been
matched. Second, it prepares the matched objects to be modified by
any of the Gargoyle operations that act on selected objects, including
deletion, color changes, and transformations. The caret is relocated
to the position o f the match, l f a Yes or ChangeAII is in progress, a

replacement or macro operation will be performed at this point.
Macro operations are described in section 4.3.

If a replacement is to be performed, we examine the Replace
Column. If we are replacing only non-shape properties, the values o f
these properties are extracted from the shapes in the Replace Pane
and applied to the matched objects. If we are replacing shape, the
matched objects are deleted and the objects in the Replace Pane are
copied into the scene. The new scene objects inherit from the
matched shapes the properties not specified in the Replace Column.
The new scene objects are positioned in the scene as follows: If we
are matching on shape, we have found a transformation that maps
the pattern objects onto the matching scene objects: we apply this
same transformation to the Replace Pane shapes. Otherwise, we
position the replacement so that the center o f its bounding box
coincides with the bounding box center o f the match.

3.2 Curve Matching

At the core o f our searching algorithm is a set o f routines for
comparing two curves for equality. We wish to be able discover that
two curves are the same even if the two curves are at different sizes
and orientations and even if the curves have different representa-
tions. For example, one curve might be a B-spline and the other a
collection o f B6zier cubic pieces, or one curve might be made o f two
small arcs and the other a single large arc. Our method is simple and
general at the expense o f performance. We discuss a technique for
improving performance in section 5.2.

To compare two curves, we begin by approximating each curve
by a piecewise linear p a t h - a polyline. We construct polyline
approximations adaptively, so that areas o f high curvature are
represented by more line segments than flatter areas. To keep poly-
lines from having too many segments, we enforce a m i n i m u m length
on the polyline segments. Many graphics systems already perform
this vectorization, a common step in rendering curves. As shown in
Figure 12, the polylines for copies o f a curve at different scales may
not be scales o f one another. The test for equality mus t tolerate this
error (see below).

;A_,
Figure 12. A curve and a scaled down copy of the curve,
approximated as polylines. The roughness of the polylines is exag-
gerated for clarity.

Polylines are transformed to a canonical form so that they can be
quickly compared. The nature o f the canonical form depends upon
whether the match is to be rotation-invariant, scale-invariant, neither,
or both, as shown in Figure 13, One point o f the polyline is chosen as
the starting point. For open curves, the first endpoint is used. For
closed curves, we use the point o f greatest distance from the center o f
mass o f a wire o f uniform density lying along the curve (Figure
13(a)). A closed curve may have several points farthest from the
center of mass: in this case the curve will have several canonical
positions. The polyline is t ransformed so that its starting point lies at
the origin (Figure 13(b)). l f a rotation-invariant match is chosen, the
polyline is rotated so that the center o f mass lies along the positive
axis (Figure 13(c)). If a scale-invariant match is desired, then the
polyline o f the curve is normalized to have a particular arc length
(Figure 13(d)).

117

S l G G R A P H '88, A t l a n t a , A u g u s t 1-5 , 1 9 8 8

startin•g pointoCenter I f mass I

J

| ,

" ~ (d) I
Figure 13. Polyline canonical forms, (a) The original polyline. (b)
For all matches, the starting point is translated to the origin. (c) For
rotation-invariant matches, the center of mass is rotated onto the
positive x axis. (d) For scale-invariant matches, the curve is scaled to
have a known total arc length.

A set of quick-reject tests can now be applied to the poiylines to
avoid further computation on pairs of curves that obviously do not
match. Several quantities, including arc length, the maximum dis-
tance from a curve to its center of mass, and the position &the center
of mass relative to the starting point, can now be compared. If these
values for two polylines differ by more than a minimal quantity
(accounting for floating point error or differences in quantization),
then we conclude, without further computation, that the curves do
not match.

If these quantities are similar enough, then it is still possible for
the two polylines to represent equivalent shapes and a more
comprehensive comparison is made. For each vertex of both poly-
lines, we examine the Manhattan ([-norm) distance to the point of
parametrically equivalent distance along the other polyline, found by
interpolating between vertices if necessary. If this distance ever
exceeds a certain threshold the match fails. This threshold, and the
quantities used in the quick-reject tests can be adjusted to reflect a
user-specified match tolerance.

We use a 1-norm metric because it can be computed quickly,
and always produces correct responses with respect to exact shape
matches. Other metrics may provide better measures of inexact
shape matches, as evaluated by the human eye; however, inexact
shape matches are selected relatively infrequently. It may be
desirable to have several shape metrics: one for exact matches, and
one or more for inexact matches. In the conclusion we mention an
inexact shape metric that we are currently investigating. It is
important to note that the 1-norm metric together with the quick-
reject tests form our shape-matching criteria. In the case of inexact
matches, it is possible for curves that would have passed the 1-norm
test for equality to fail at least one of the initial tests, and thus be
considered unequal.

When comparing two closed curves with the 1-norm metric, we
must examine every canonical orientation of one of the curves with a
single canonical orientation of the other before declaring a mismatch,
unless the arc length or maximum distance to center of mass tests
indicate this is not necessary. Although this algorithm for comparing
curves is linear with respect to the number, n, of samples in the poly-
lines for all open and some closed curves, there are certain closed
shapes that will slow it down to O(n2). Other representations such as
sampling the distance of a curve from its centroid [4] or sampling the
curve's curvature [16] can be used to improve this bound.

4. Appl icat ions

In addition to coherent changes in illustrations with repeated
components, graphical search and replace can be used to make
recursive and iterative shapes, to create pictures that have a standard

form by modifying graphical templates, to apply graPhical editing
macros, and to search for picture files based on graphical content.
We discuss these applications in this section.

4.1 Graphical Grammars

Graphical search and replace can interactively generate complex
shapes described by graphical grammars, an extension of shape
grammars that allows graphical properties other than shape, such as
color and line width, to participate in production rules. The Search
Pane and Column specify the left side of a production rule, and the
Replace Pane and Column specify the right side. Each replacement
operation amounts to a single expansion of the production.

For example, Figure 14 shows the Search and Replace panes for
a replacement rule that builds a spiral. We activate area color (in
addition to shape and object class) in the Search Column and in the
Replace Column. We turn on Rotation Invariance and Scale
lnvariance. If the initial scene is the same as the picture in the Search
Pane. then by clicking the ChangeAll button 27 times, we produce
the picture in Figure 15. The, innermost copy of the word
"MATCHTOOL" is grey.

Search

o ~ \ OOt.

Replace

Figure 14. The Search and Replace patterns for a graphical grammar
that makes a word spiral.

OOL,14
c,~ o O L M ~ ~ .

~ M ~ A T O C 1 ~
o ~ , To 6,.,5., 0 0 o . . ~ o . 2 , - -"

"~'.t,. O 'e.- o.~o o O

w-~. 4'. @~"~oo~-.OL.X ~ ~

-ZHo
Figure 15. A spiral made of the word "MATCHTOOL" repeated 28
times.

As another example, Figure 16(a) describes a rule that replaces a
grey line segment by a brown line segment of the same size, with two
grey branches attached. Line Color and Shape are selected in both
the Search Column and in the Replace Column. Rotation lnvariance
and Scale lnvariance are turned on. Beginning with a single vertical
grey line, we apply the rule five times to produce a leafless brown
tree with grey outermost branches. Figure 16(b) describes a second
rule that replaces all grey branches by brown branches attached to
green leaves. Applying this rule produces the simple graftal tree
shown in Figure 16(c). For grammars with more than one rule, it is
useful to have multiple pairs of Search and Replace Panes.

118

~ Computer Graphics, Volume 22, Number 4, August 1988

Search Replace

I(c)

Figure 16. Drawing a binary tree. (a) Replace a grey line with a
brown line and two grey lines. Apply this rule five times. (b) Replace
a grey line with a brown line and a leaf. (c) The resulting tree.

Figure 17 shows a third example. A triangle is replaced with
three triangles, each having half the linear dimensions of the original
(Figure 17(a)). If we begin with a single triangle and apply the re-
placement four times, we get Figure 17(b).

Search Replace

(a) (b)

Figure 17. Nested triangles. (a) Replace one large triangle with three
smaller triangles. Apply this rule four times. (b) The result.

4.2 Graphical Templates

Graphical search and replace can be used to produce scenes
containing complex shapes from scenes containing simple shapes.
For example, Figure 18(a) shows three test-tubes containing line
segments of different sizes and orientations. The MatchTool is used
to replace each segment with an amoeba, using the rule in Figure
18(b). After the large amoeba is colored orange, Figure 19 results.
Because drawing line segments is easier than scaling and rotating
shapes into place, this picture can be made very rapidly. In this ex-
ample, Figure 18(a) serves as a graphical template. Many other
illustrations could be made from this template by varying the shape
in the Replace Pane. Regular polygons make good templates for
patterns with cyclic symmetry. Other templates can be made for
frieze symmetries and crystallographic symmetries.

Search Replace

(a) (b)

Figure 18. (a) A set of line segments is drawn on a picture of test-
tubes. (b) Each line segment is replaced by an amoeba.

Figure 19. "The Day of the Amoebas."

4.3 Mouse-click Macros

As mentioned above, when a graphical search succeeds in
finding a match, the matched objects are selected in preparation for
either replacing them or for manually editing them using Gargoyle.
The MatchTool provides an alternative to manual editing called
mouse-c l i ck macros. Before invoking a search operation, the user
employs the MatchTool to record a macro by performing a set of
Gargoyle operations in the Replace Pane. All of the mouse
coordinates and button presses are recorded. The user then tells the
MatchTool to perform the macro instead of doing replacements and
invokes one of the replacement operations (e.g.. ChangeAll).

After each match is found, the MatehTool plays back the
recorded actions, transforming the mouse coordinates by the same
transformation that would have been applied to replacement objects
if a replacement were being performed. To prevent unexpected
results, the macro commands are restricted to operate only on
matched objects.

Mouse-click macros can he used to perform coherent changes
that would be difficult with simple replacement. For instance, we
ca:n give a set of objects drop shadows by recording a macro that
copies an object, colors the copy grey, offsets the copy from the
original, and moves the copy underneath.

4.4 Graphical Grep

Grep is a utility in the UNIX TM environment for locating files
that contain a particular text pattern. An analogous function for
graphical scene files can be implemented on top of graphical search.
The user specifies a pattern in the Search Pane and Column and a list
of one or more file names, optionally containing wildcards. Graphi-
cal grep searches the named files for the specified graphical pattern.
The user can choose to list the names of files that contain the graphi-
cal pattern or to invoke the editor on the first match, edit the file, and
resume the search. The ability to specify a shape tolerance is useful
in conjunction with graphical grep. If an exact copy of the graphical
pattern cannot be copied from a document, the user can draw an ap-
proximate pattern shape by hand.

5. Conclusion

5.1 Summary

We have described a technique for making coherent changes to
a graphical scene. The technique requires that the user specify, via a
graphical pattern, those objects that are to change, and, via a second
graphical pattern, what change is to take place. The two patterns are
very similar. Both consist of a pane containing graphical shapes and
of a column of buttons describing the properties of interest in the

119

SIGGRAPH '88, Atlanta, August 1-5, 1988

pane. In addition, there are six parameters that are used only for the
search operation. This user interface is relatively easy to understand
and provides a great deal of power. Furthermore, graphical search
and replace can be added to an existing graphical editor with little
modification to the editor or its data structures.

Graphical search and replace can accomplish any coherent
change that can be accomplished using instancing, and it can be
applied more widely. Because it requires no special structuring of the
illustration, our technique can be used in editors that do not support
instancing and in situations where only a "flat" description of a pic-
ture is available. Furthermore, it can be used to modify a collection
of objects with identical shapes but different style properties, while
instancing schemes tend to require that the instances of a library ob-
ject be identical in all respects expect for an affine transformation.
Graphical search and replace can consider replacements on a case by
case basis, allowing changes to some objects but not others.

In addition to making coherent changes, graphical search and
replace can be used to make recursive shapes and to copy shapes to
positions specified in a graphical template. It extends shape gram-
mars by allowing style properties to appear on each side of the pro-
duction as well as shapes.

Finally, graphical search can be combined with operations other
than replacement. More general coherent modifications can be
achieved by playing back a macro on each match. Searching in
multiple files provides graphical grep, a means for retrieving graphi-
cal documents by content instead of name.

5.2 Future Work

Graphical search could be improved by allowing for more
general patterns. We would like to be able to search for all angles of
a certain value, or junctions with a certain number of lines radiating
from them. We would also like to be abte to capture positional
relationships such as finding all circles above squares. Such
relational metrics have appeared in the literature [31. We would also
like a better way to search for objects that "look like" the search pat-
tern. We may be able to apply string matching techniques [2] to this
problem.

Exact pattern matches on curves of known type are an important
special case for graphical search. By comparing the curve control
points directly instead of comparing polyline representations, we
could significantly speed up the majority of searches.

It appears that graphical search and replace can be used as a user
interface paradigm for systems that use instancing internally. In fact.
for scenes that have an instancing hierarchy it should be possible to
speed up graphical search by using pointer comparisons, where pos-
sible, in place of geometric comparisons. Likewise, graphical replace
can take advantage of instancing by replacing matched objects with
library object instances, where possible, instead of allocating new
data structures.

Finally, graphical search could serve as the basis for a tool that
compares two graphical scene files and reports their differences.
Such a tool would be useful for regression testing of graphical editors
and for understanding how one picture was changed to make
another.

A c k n o w l e d g m e n t s .

We are grateful to Xerox PARC for providing the environment
that made this research possible. We would like tO thank Ken Pier.
Maureen Stone, Subhana Menis, and Jock Mackinlay for comments
that lead to an improved paper. We give special thanks to Maureen
Stone and Ken Pier for their encouragement during the project.

References

1, Bier, Eric A., and Stone. Maureen C. Snap-Dragging.
Proceedings of SIGGRAPH '86 (Dallas, Texas, August 18-22,
1986). In Computer Graphics 20, 4 (August 1986), 233-240.

2. Burr, D. J. A Technique for Comparing Curves. In IEEE
Conference on Pattern Recognition and linage Processing
(Chicago, Illinois, August 6-8, 1979), 271-277.

3. Chang, Shi-Kuo, Shi, Qing-Yun, and Yan, Cheng-Wen. Iconic
Indexing by 2D Strings. In 1EEE Computer Society Workshop on
Visual Languages (Dallas, Texas, June 25-27, 1986). 12-21.

4. Freeman, Herbert. Shape Description Via The Use of Critical
Points. Pattern Recognition 10. 3 (1978), 159-166.

5. Gips, James. Shape Grammars and Their Uses." Artificial
Perception. Shape Generation. and Computer Aesthetics.
Birkhauser, Verlag, Basel, Switzerland. 1975.

6. Levine, Martin D. Vision in Man and Machine. chapter 10.
McGraw Hill. New York, New York, 1983.

7. Palermo, Frank and Weller, Dan. Some Database Requirements
for Pictorial Applications. Data Base Techniques for Pictorial
Applications (Florence, Italy, June 1979). Edited by A. Blaser. In
Lecture Notes in Computer Science. 81. Springer-Verlag, Berlin,
West Germany. 1980.

8. Pavlidis, Theo. A Review of Algorithms for Shape Analysis.
Computer Graphics and Image Processing L 2 (April 1978),
243-258.

9. Pier, Kenneth A. A Retrospective on the Dorado, a High-
Performance Personal Computer. In Proceedings of the lOth
Symposium on Computer Architecture. SIGARCH/1EEE,
(Stockholm, Sweden. June 1983), 252-269.

10. Pier, Kenneth A., Bier, Eric A., and Stone, Maureen C. An
Introduction to Gargoyle: An Interactive Illustration Tool. In van
Vliet, J.C. (editor), Proceedings of the International Conference on
Electronic Publishing. Document Manipulation and Typography
(EP88), (Nice. France, April 1988), Cambridge University Press,
223-238.

11. Smith, Airy Ray. Plants, Fractals, and Formal Languages.
Proceedings of SIGGRAPH "84 (Minneapolis, Minnesota, July
23-i7, 1984). In Computer Graphics 18, 3 (July 1984), 1-.10.

12. Stiny, George. Pictorial and Formal Aspects of Shape and Shape
Grammars, Birkhauser, Verlag. Basel, Switzerland, 1975.

13. Sutherland. Ivan E. Sketchpad: A Man-Machine Graphical
Communication System. In AFIPS Conference Proceedings,
Spring Joint Computer Conference. 23. Spartan Books,
Washington, 1963, 329-346.

14. Swinehart, Daniel. Zellweger, Polle, Beach, Richard, and
Hagmann, Robert. A Structural View of the Cedar Programming
Environment. ACM Transactions on Programming Languages
and Systems 8, 4 (October 1986). 419-490.

15. Weller, Dan, and Williams, Robin. Graphic and Relational Data
Base Support for Problem Solving. Proceedings of SIGGRAPH
"76 (Philadelphia, Peniasylvania, July 14-16, 1976). In Computer
Graphics lO, 2 (Summer 1976), 183-189.

16, Wolfson, Haim. On Curve Matching. Technical Report #256.
Courant Institute of Mathematical Sciences, New York, New
York, November 1986.

120

