
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
VRST 2013, October 6–9, 2013, Singapore.
Copyright © ACM 978-1-4503-2379-6/13/10 $15.00

Drilling into Complex 3D Models with Gimlenses

Cyprien Pindat∗

Univ Paris-Sud, CNRS & INRIA

Emmanuel Pietriga†

INRIA & INRIA Chile

Oliver Chapuis‡

CNRS, Univ Paris-Sud & INRIA

Claude Puech§

INRIA Chile

yia

yib

yic

yid

Figure 1: Exploring the CAD drawing of a car engine. The three Gimlenses provide detailed views of different constituent parts of the engine,
at different magnification levels and with varying orientation, while revealing their location inside the global 3D model. a) Context view. b)
Magnified side view of a knot behind, and thus originally hidden by, the cylinder head cover. c) View fully revealing a poppet valve in-context
from a different angle than the main view, with d) another Gimlens configured so as to provide a low-angled point of view on the valve.

Abstract

Complex 3D virtual scenes such as CAD models of airplanes and
representations of the human body are notoriously hard to visualize.
Those models are made of many parts, pieces and layers of vary-
ing size, that partially occlude or even fully surround one another.
We introduce Gimlenses, a multi-view, detail-in-context visualiza-
tion technique that enables users to navigate complex 3D models by
interactively drilling holes into their outer layers to reveal objects
that are buried, possibly deep, into the scene. Those holes get con-
stantly adjusted so as to guarantee the visibility of objects of interest
from the parent view. Gimlenses can be cascaded and constrained
with respect to one another, providing synchronized, complemen-
tary viewpoints on the scene. Gimlenses enable users to quickly
identify elements of interest, get detailed views of those elements,
relate them, and put them in a broader spatial context.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces - Graphical user interfaces— [I.3.5]: Computer
Graphics—Computational Geometry and Object Modeling.

∗e-mail:pindat@lri.fr
†e-mail:emmanuel.pietriga@inria.fr
‡e-mail:chapuis@lri.fr
§e-mail:claude.puech@inria.cl

Keywords: Detail-in-Context, Lenses, Multi-scale Visualization

1 Introduction

Three-dimensional computer modeling has become an essential ac-
tivity in many domains: the movie industry, medicine, scientific vi-
sualization at large, and the automotive, aerospace and electronics
industries, which sometimes rely on 3D modeling throughout the
design and production chain (Computer-Aided Design and Man-
ufacturing). Processing and graphics rendering capabilities now
make it possible to model and visualize extremely complex datasets
on widely varying types of displays: desktop workstations featur-
ing one or multiple screens, ultra-high-resolution wall-sized dis-
plays [Nancel et al. 2011], and virtual reality environments such as
CAVEs [Cruz-Neira et al. 1992]. For instance, Boeing’s 777 air-
liner was entirely modeled using CAD software, resulting in a very
complex and dense 3D scene featuring more than 350 million poly-
gons [Dietrich et al. 2007]. Highly-detailed models of the entire
human anatomy, of complex mechanical components and even en-
tire cities are now available, usually for a price given the difficulty
of creating such datasets.

As their real-world counterparts, complex 3D models are difficult
to inspect, because they are made of numerous distinct parts assem-

223

bled together into dense scenes that generate a lot of visual occlu-
sion. Constituent elements will often partially occlude or even fully
surround one another, and can also have widely varying sizes (e.g.,
an airplane’s wings compared to a bolt). Quickly identifying ele-
ments of interest, getting detailed views of those elements from dif-
ferent perspectives, putting them in a broader spatial context, and
relating them to other elements are all challenging tasks. Often,
several designers will be working collaboratively on these datasets,
requiring support for merging their work into a single assembly: de-
tecting and understanding conflicts such as, e.g., intersecting parts
due to problems of scaling and positioning.

These different tasks involve setting up multiple cameras and ma-
nipulating them to inspect elements from different angles and at
different scales, as well as changing the visibility settings of el-
ements that lie in the line of sight between the observer and the
objects of interest. Those interactions are tedious to perform and
cause significant distraction.

We introduce Gimlenses (Figure 1), a multi-view, detail-in-context
visualization technique that enables users to navigate complex 3D
models by drilling holes into the outer layers of a model to reveal
objects that are buried, possibly deep, into the scene. The geom-
etry of those holes gets constantly adjusted so as to guarantee the
visibility of objects of interest from the parent view. Gimlenses
can be cascaded and constrained with respect to one another. They
provide synchronized, complementary viewpoints on the scene at
different scales and from different angles, enabling users to inspect
distinct parts simultaneously, facilitating their understanding, in-
spection and comparison [Plumlee and Ware 2006].

2 Related Work

Gimlenses build upon work in multi-scale visualization, 3D navi-
gation and smart visibility techniques for CAD.

2.1 Multi-scale Visualization

Gimlenses are essentially detail-in-context representations, provid-
ing multiple simultaneous points of view on the 3D model at differ-
ent scales. Gimlenses are categorized as an overview+detail tech-
nique [Cockburn et al. 2008]: they relate one or more detailed
views, called focus regions, into a larger, less detailed contextual
view of the dataset. Multi-scale techniques apply either to 2D vi-
sualization, e.g., [Carpendale and Montagnese 2001], 3D visualiza-
tion, e.g., [Carpendale et al. 1997], or both [Pietriga et al. 2010].
Some techniques use spatial distortion to achieve a smooth integra-
tion of the focus in the surrounding context [Carpendale and Mon-
tagnese 2001], possibly adapting the focus’ shape to the underly-
ing geometry [Pindat et al. 2012], while other techniques achieve
this integration through a combination of spatial distortion, alpha
blending and dynamic parameter adjustments according to user in-
put [Pietriga et al. 2010]. Gimlenses are more specifically drawing
upon the DragMag [Ware et al. 1995], a technique that offsets the
magnified view and visually relates it to the corresponding region
in the context view using simple line segments.

In the realm of 3D multi-scale visualization, Carpendale et al.
[Carpendale et al. 1997] transposed the general focus+context ap-
proach [Cockburn et al. 2008] based on spatial distortion to 3D
data cubes. The technique guarantees the visibility of particular
cells in a cube by moving and resizing the surrounding ones. The
concept was generalized to arbitrary meshes using an energy grid
optimization model [Wang et al. 2011]. The technique only mag-
nifies objects in-place, though, and does not address the problem
of visibility in dense scenes. Magic Volume Lenses [Wang et al.
2005] provide in-place magnification and can reveal some details

hidden behind outer layers, but the detailed view is necessarily ori-
ented according to the context view, and magnification factors are
severely limited by both the spatially-distorted transition and prob-
lems of quantization [Appert et al. 2010] due to the single focus
region. The DragMag technique mentioned earlier was also trans-
posed to 3D in [Plumlee and Ware 2003], providing users with a
multi-window detail-in-context visualization technique that some-
what resembles ours. However, the technique was designed for nav-
igating in oceanic data, i.e., relatively flat 3D scenes compared to
car engines or layered models of the human anatomy. Thus the
technique does not deal with problems of visual occlusion typically
encountered in complex, dense 3D scenes.

Magic Lenses [Bier et al. 1993] are lenses that are used to modify
the rendering of objects seen through them. The concept is very
generic and powerful. Examples more closely related to our work
are lenses that render, e.g., a wireframe version of the original ob-
ject. Originally designed for 2D graphics, Magic Lenses were later
extended to work with 3D graphics [Viega et al. 1996; Ropinski and
Hinrichs 2004].

2.2 3D Navigation

Numerous techniques have been designed to make navigation into
3D environments more efficient than when using the usual pan,
zoom and rotate functions found in most 3D user interfaces, using
different metaphors such as that of a flying vehicle. [Tan et al. 2001]
combine speed-coupled flying with orbiting. McCrae et al. [Mc-
Crae et al. 2009] adapt the travel speed of the flying vehicle in a
space-scale-aware manner using a cubemap technique to enable
navigation in multi-scale environments. Navidget [Hachet et al.
2008] is a gesture-based interactive widget that enables users to
get a preview from a different perspective on the scene before ac-
tually repositioning and reorienting the main camera to match this
new point of view. Another way to ease navigation is to constrain
camera movements to object dependent surfaces [Khan et al. 2005]
or authored surfaces [Burtnyk et al. 2002].

2.3 Smart Visibility

Smart Visibility originates from static technical illustrations [Vi-
ola and Gröller 2005]. It aims at conveying the most informa-
tion possible using a single, often static illustration by unveiling its
most important parts. Smart visibility techniques are based on cut-
away views [Feiner and Seligmann 1992; Li et al. 2007], ghosted-
views [Bruckner et al. 2005; Viola et al. 2005; Kruger et al. 2006;
Correa and Ma 2009; Correa and Ma 2011] or spatial rearrange-
ment [Li et al. 2008; McGuffin et al. 2003]. Burns et al. [Burns and
Finkelstein 2008] propose adaptive cutaways that adapt their geom-
etry to guarantee the visibility of predefined parts of interest. While
some of these techniques do make it possible to interactively select
the main point of interest to be revealed [Li et al. 2007; Li et al.
2008], these are still aimed at producing static illustrations. They
do not provide a true solution for exploring complex 3D scenes.

Gimlenses are conceptually related to the 3D occlusion manage-
ment techniques surveyed in [Elmqvist and Tsigas 2008], and more
specifically to the x-ray category of tools: perspective cutout [Cof-
fin and Hollerer 2006], x-ray tunnels [Bane and Hollerer 2004], and
the looking glass from [Looser et al. 2004]. Such techniques also
provide solutions for revealing hidden parts of a 3D scene, as do
Gimlenses. However, those techniques are used in addition to a 3D
navigation technique, which increases the burden put on users, who
have to handle both navigation and visual occlusion management
conjointly but sequentially. On the contrary, Gimlenses integrate
occlusion management with 3D navigation, automatically reveal-
ing the focused part of the scene to the observer. This integration

224

yia

yib

yic
yid

Figure 2: A Gimlens magnifying a knot deep inside a car engine.
Context view (a); Gimlens view window (b), object selector (c),
proxy (d).

facilitates exploration no matter the type of display, but is especially
useful in contexts where input capabilities are limited or where in-
teraction is more challenging than on a desktop workstation such
as, e.g., wall-sized displays operated from a distance or via a touch-
sensitive surface. Another distinctive feature of Gimlenses com-
pared to earlier work are their capacity to get coordinated and cas-
caded, as detailed in Section 3.6.

3 Gimlens

Gimlenses provide users with multiple, possibly coordinated,
detail-in-context views on 3D scenes that provide support for the
deep exploration of complex layered models at different scales. We
first describe the interface’s main features. Then we explain how
holes are drilled into the model to guarantee the visibility of ob-
jects of interest while preserving context. The following section in-
troduces more advanced features: automatic orientation constraints
and lens cascading. We conclude with implementation details and
performance figures, followed by a discussion of current limitations
and future work.

3.1 Main Interface Components

As in all focus+context techniques, the purpose of the main view-
port is to provide users with an overview of the scene. This view-
port, which we call the context view (Figures 1-a and 2-a), can be
freely rotated, panned and zoomed using conventional techniques
adapted to the display platform.

From this context view, users may instantiate multiple Gimlenses
that can then be used to drill into the model (Figure 1). Each
Gimlens is composed of four main elements: the view window,

the object selector, the lens proxy and the cone-shaped cut. The
view window (Figure 2-b) is an independent viewport that users
can freely move and resize. It contains the detailed view that cor-
responds to the lens’ focus region. The object selector, symbolized
by a blue ring (Figure 2-c), identifies the current object of interest
in the model, focused on by the lens. The object selector and view
window are visually linked together by two line segments, called
tethers in [Ware et al. 1995]. While this set of elements is suf-
ficient to relate the detail and context views in 2D visualizations,
additional information has to be conveyed to users to achieve full
3D linking [Plumlee and Ware 2003] of views. This is especially
important in the case of scenes that contain numerous layers and
closely clustered parts and pieces, as those are prone to occluding
one another, making it even more challenging for users to get a
good sense of spatial orientation.

The lens proxy (green cone in Figure-2-d) indicates the orientation
of the Gimlens. The cone is oriented such that its axis is aligned
with the line of sight of the corresponding Gimlens, its tip oriented
towards the observer. The cone is rendered as an opaque, smoothly
shaded object with lighting effects to help users evaluate its orienta-
tion in the scene. To help them evaluate its position in the scene, the
cone is blended with the elements of the model that should actually
occlude it, as illustrated in Figure-1-c (red cone).

Finally, as users inspect objects in the scene by repositioning the
Gimlens (Section 3.2), we perform a cone-shaped cut (Section 3.5)
to guarantee the visibility of the object of interest from the con-
text view by drilling into the model all the way down to this object
(Figure 2, outlined yellow cuts into the cylinder head cover and be-
yond). We further enhance the readability of this representation by
outlining the object of interest both in the view window and in the
context view (knot with green outline, Figures 2-b and 2-c).

3.2 Repositioning a Gimlens

There are multiple ways to reconfigure the point of view of a Gim-
lens on the model. Users can grab the object selector (blue ring,
Figure 2-c) and drag it in the context view. As the Gimlens’ focus
point slides on the surface of the model, following the object selec-
tor, the viewing frustum gets adjusted accordingly, depending on
some properties detailed later (automatic orientation constraints).
The object of interest gets updated as soon as the focus point falls
on another object.

Users can also make the lens orbit around the object of interest by
dragging the lens proxy (green cone, Figure 2-d) around it. Fi-
nally, the Gimlens’ viewing frustum can be reconfigured by freely
rotating, panning and zooming the lens’ viewport using dragging,
as when reconfiguring the context view. The controls should be
mapped to input device buttons in a consistent manner between the
two types of viewports.

3.3 Drilling into the Model

The set of interactions described above make it possible to inspect
the outside of complex 3D models, but are of little use when in-
specting the inside of those models. Many models, including CAD
drawings of engines or planes, 3D maps of buildings and plants,
or layered representations of the human anatomy are composed of
large amounts of objects, many of which are inside other objects.

A foundational feature of Gimlenses is that they let users drill into
the model1 supporting its exploration and allowing for fast access to
objects that are buried, possibly deep, into it. Users can iteratively

1The technique’s name is inspired by the word gimlet, a tool for drilling

small holes, mainly in wood.

225

yia yib

Figure 3: A Gimlens verifying the surface intersection between a connecting-rod and the camshaft. (a) Enabling the cut reveals the object of
interest during exploration but hides its neighbors. (b) Disabling the cut enables users to see both parts.

cut holes into the layers of the model. The holes get automatically
adjusted to reveal the new object of interest and clear a line of sight
to the point of view set as the context view. The holes guarantee that
this object remains visible in the context view even if the latter’s
viewing frustum gets reconfigured.

Cuts are shaped as truncated cones whose axis is oriented from the
object of interest to the observer’s eye. The cone itself is invisible,
but hides every object that intersects it. If an object only partially
intersects the cone, the geometrical intersection between the two
shapes is computed and only the part that falls within the cone is
made invisible.

The cone’s geometry depends on the size of the object of interest,
on the position of the focus point on this object (determined by
the position of the selector – blue ring – on the object), and on
the viewing frustums of both the context view and Gimlens. Being
truncated, the cone has a top and a base, which we call the near
and far bases in reference to the near and far clipping planes of a
viewing frustum. The near and far bases are located close to the
observer and close to the object of interest, respectively.

An interesting property of the cone is that the size of cuts decreases
as the parts being cut are located deeper into the model. No mat-
ter the projection considered (perspective or orthogonal), this helps
users get a better sense of how deep the focus point is, as they can
always see how many layers got cut to get to the object of inter-
est. To further emphasize this, we outline the surfaces that resulted
from intersecting the cone with the parts that originally overlapped
it (yellow strokes in all figures).

Cuts are also performed in the Gimlens viewport, coupling the near
base to the apex of the lens’ viewing frustum so that the object
of interest always remains visible no matter how the former gets
positioned. However, this behavior is not always desirable. For
instance, when instantiating a Gimlens to inspect the intersection
between the surfaces of two distinct parts in the model, the cut cone
would hide one of those surfaces, hence hiding an important piece
of information, as illustrated in Figure 3. Cuts performed inside the
lens’ view window can thus be toggled on/off.

3.4 Adjusting Depth

We designed an interaction technique based on the above drilling
method, that enables users to navigate inside a 3D model by suc-
cessively drilling holes into it starting from the outer layer.

(a) (b)

(c) (d)

Figure 4: Illustration of how the drilling technique behaves. (a)
The focus point lies on the frontmost part. This part gets drilled
into, revealing the other parts behind it. (c) The focus point gets
slid on the parts visible from the observer’s perspective (colored
red) and, finally, (d) cuts through the second layer (d).

On a desktop workstation, the technique is operated with the mouse
wheel. In other environments, such as virtual reality platforms or
wall displays, the corresponding actions have to be mapped to a lin-
ear continuous input control channel on one of the available interac-
tion devices. Invoking the technique on the current part of interest
(on which the selector lies) cuts out a hole in it and moves the focus
point on the surface below, that was just revealed by the cut. Users
can also climb back, filling the holes previously cut in reverse order,
with the focus point and object of interest getting updated accord-
ingly. The cut cone automatically adjust its geometry, following
the focus point controlled with the cursor. Figure 4 illustrates this
process.

Gimlenses keep a history of what parts got cut, allowing the user to
drag the focus point from one part of interest to the next and drill

226

down iteratively. This navigation method can be seen as an easy
way of toggling the visibility of the successive parts that the focus
point falls on during the drilling process, except that each part’s
visibility is only affected locally around the line of sight so as to
better preserve context.

3.5 Optimizing Cuts

Cuts are an essential features of Gimlens. They enable navigating
inside models and act as visual cues that help situate objects of
interest within the model. A good navigation experience depends
on guaranteeing a good visibility of the focus point from the lens,
on the readability of the depth cues and on the predictability of
the interface’s behavior, and on the performance in terms of frame
rates. All of these factors depend on the shape of the cut.

Before opting for a truncated cone shape, we experimented with a
content-aware dynamically adapting cut shape similar to the tech-
nique presented in [Burns and Finkelstein 2008]. The cut was
adapting to the geometry of the Gimlens’s current object of inter-
est. Our intuition was that by adapting the shape of the cut to the
shape of the content, we would optimize the portion of the scene to
be cut, thus preserving more context information, in the same spirit
as JellyLenses [Pindat et al. 2012], which dynamically adapt the
shape of a fisheye to optimize the focus, context and distorted re-
gions to provide more relevant focus+context representations. But
an informal evaluation performed in our laboratory revealed that
users preferred to interact with cuts that always had a cone-based
shape. The cut shape radically changing its geometry depending on
the geometric characteristics of the various objects of interest was
found to be disturbing, as it was both unstable and unpredictable.

Good rendering performance is also essential to achieve a good
user experience. Our prototype is based on a rasterization render-
ing method. The cut is implicitly defined by a piece-wise function
that we compute for each fragment of primitives resulting from the
rasterization. We note p the position of the focus point in eye-space
coordinates, and m the position of the fragment being processed.
We define x, the projection of the fragment on the cone’s axis, and
y, the distance of the fragment to the cone’s axis as follows:

x =
dot(m, p)

‖p‖
, y =

‖m× p‖

‖p‖

The near base, with a radius of S, controls the wideness of the
aperture. A large base favors the visibility of what is inside the
cut, but does so at the expense of the context since more of the
model gets hidden. Users can control this parameter, but we have
found a base radius that corresponds to roughly 25% of the main
viewport’s size to yield a good compromise between cut visibility
and context preservation. We note n the distance from the near
base to the camera’s position. If a fragment is situated closer to
the camera than the near base, i.e., if x < n, it gets discarded if:
y < S ∗ x/n.

The far base is positioned at the focus point. f , its distance from
the observer in eye space coordinates, is equal to ‖p‖. Its radius,
s in eye-space coordinates, is computed automatically, so that the
object of interest can fully fit within the cone, with some tolerance.

Additional constraints are enforced, so as to make sure that the
far base does not get larger than the near base (which would not
make sense) and that the cone’s angle does not get larger than 20◦.
Fragments between the near base and the far base, i.e., for which
n < x < f , get discarded if:

y < (x− n) ∗
s

f − n
+ (f − x) ∗

S

f − n

yia yib yic

yid

yie

Figure 5: Exploring an air distillation plant. Three Gimlenses are
cascaded to magnify a steal pipe. (a) shows a view from the left
to better situate the focused part within the shed, (b) and (c) apply
magnification successively. (d) and (e) magnify a distinct part of
the plant.

To avoid sharp edges at the far base, we make the far base round by
extending it with a spherical shape that gets merged with the trun-
cated cone. Fragments behind the far base (f < x) get discarded
if:

‖(x− (f − s ∗
(S − s)

f − n
), y)‖ < s ∗ ‖(

(S − s)

f − n
, 1)‖

Finally, small parts that lie within the cut cone but are not caus-
ing significant obstruction should not be hidden, as they will often
provide interesting contextual information. Our technique takes the
size of a part that falls in the cone into consideration before de-
ciding whether to hide it or not. If the part is big enough to fully
occlude the object of interest, we apply the full cut. Otherwise we
just make a small hole into it to reveal the focus point when it lies
precisely on the line of sight, as illustrated in Figure 2.

3.6 Combining and Cascading Lenses

Multiple Gimlenses can be instantiated simultaneously to provide
users with different perspectives on the 3D model: different loca-
tions, different scales, and different angles. This is useful, e.g.,
when comparing multiple parts of a model, such as two knots inside
an engine. Gimlenses can be created for both, the user then drilling
towards each knot, adjusting the view and then orbiting these two
objects of interest.

Gimlenses can also be cascaded, in a way somewhat similar to what
PolyZoom does for 2D maps [Javed et al. 2012]. Cascaded lenses

227

yia yib

Figure 6: Exploring a brain. (a) A first Gimlens gets instantiated and delves deep inside the head, hiding several objects in the process. (b)
A second Gimlens gets instantiated to look at an object that lies in the cut cone of the first lens, causing a conflict. The portion of this object
that lies near the focus point of the second lens gets rendered translucently.

share the same focus point. They enable users to easily get multi-
ple views on the same object of interest at varying scales and from
different angles. Figure 5 gives an example. A user wishes to in-
spect a steal pipe in an air distillation plant. She cascades several
Gimlenses, that give her points of view on the region of interest at
different scales.

Instantiating multiple lenses can lead to conflicts if the focus point
of one lens lies on a part of the model that got cut while drilling with
another lens. To resolve this sort of conflict, our technique renders
the portion, centered on the first focus point, of the object that is the
source of the conflict using alpha blending to make it translucent.
The part is thus revealed, without hiding the second focus point.
See Figure 6.

3.7 Automatic Lens Orientation and Coordination

Gimlenses let users define orientation constraints between cascaded
lenses. Lenses constrained in this way automatically update their
orientation as the focus point is updated. This spares users the bur-
den of having to reorient each camera to get the desired angle on
the object of interest as the focus point gets moved, a process that
is quite tedious to perform manually. We define three orientation
constraints that enable different behaviors.

Figure 7 illustrates the potential of this feature. The first lens is
set up with a Pivot constraint, that maintains the camera position
in-place as it pivots around to follow the focus point. This is partic-
ularly useful when exploring the inside of cavities. The two other
lenses are set up with a Parent orientation constraint. This means
that their orientations are defined relative to the one of their parent
lens (the first lens). With these constraints set up, as we slide the
focus point along the teeth from left to right, the lenses automat-
ically move along and rotate, maintaining views from both inside
and outside the patient’s mouth without the need for users to make
any adjustment themselves.

When inspecting the interface between two surfaces, users can se-
lect the Surface constraint, that will preserve the view orientation
relative to the orientation of the surface’s normal at the focus point.
During relocation of the focus point, or when changing the con-
text view’s viewing frustum, Gimlenses will automatically adjust
the camera to preserve the view orientation on the surface, again

sparing users the burden of manually adjusting the lens’ cameras.
As the focus point jumps from one polygon to the next, Surface
orientation constraints might cause the view in the lens to change
abruptly. To avoid this, we smoothly animate the transition over
100ms.

4 Implementation

We implemented our prototype in C++ using OpenGL. The implicit
definition of the cone cut is written with GLSL in a fragment shader.
Fragments falling inside the cut cone are discarded. Those inter-
secting its surface are outlined in yellow, and those falling outside
are kept in the pipeline.

Changing the focus point or adjusting the viewing frustum of the
context view requires casting rays into the scene to find all inter-
sections with model parts. To ensure an interactive frame rate even
with complex models, we make use of a space-partitioning data
structure to optimize the ray casting. In our implementation, we
currently use an AABB (axis-aligned bounding box) tree data struc-
ture.

As summarized in Table 1, we achieve interactive frame rates for
all models demonstrated in this article. Performance figures were
gathered on a HP Z-series 800 PC equipped with an nVidia Quadro
4000, and an Intel Xeon E5-1650 CPU running at 3.20GHz. The
framebuffer size was set to 1920x1080 (running fullscreen on a Full
HD monitor). The technique could be made to scale further by
coupling it with state-of-the-art computer graphics techniques that
can render extremely complex 3D polygonal scenes.

Model Million triangles 1 Gim. / 2 Gim. (fps)

Air Plant 1600 15 / 10

Car Engine 266 57 / 40

Head 58 63 / 45

Table 1: Performance (Frame-rates)

228

yi1

yi2

yi3

Figure 7: Three Gimlenses combined to explore the inside of the
maxillary dental arcade of a patient using different orientation con-
straints. Dragging the single focus point that controls all three
lenses updates all views automatically, providing complementary
perspectives on the successive teeth (1,2,3).

5 Discussion and Future Work

We presented a multi-view, detail-in-context technique for navigat-
ing complex 3D scenes. As demonstrated throughout the article, the
technique can prove useful in a variety of domains: for inspecting
an industrial CAD model of a car engine, for exploring an anatomi-

cal representation of the human head, or walking through a 3D map
of an air distillation plant.

The datasets we experimented with provided separate geometrical
descriptions of each element in the model. Gimlenses can be ap-
plied in a straightforward manner in such cases, as the scene is al-
ready segmented into meaningful objects. Unfortunately, this is not
the case for all datasets. For instance, if we consider the polygo-
nal meshes generated from 3D scans of scenes such as art pieces or
even entire cities, those can reach a high degree of complexity due
to the very nature of the scene that was scanned and the precision of
the technology now available to achieve such scans. These are good
candidates for exploration with Gimlenses. However, those datasets
are not segmented into meaningful components, and it would be
necessary to pre-process them before they could be explored with
our technique. Another option would be to design interaction tech-
niques that would let users define their own segmentation in an
easy way, either declaratively or by demonstration. The resulting
segmentation could then be used as input by Gimlenses. We are
faced with the same segmentation issue when considering volumet-
ric datasets. Moreover, in this case, users might want to explore the
fundamental, primitive elements of the data: the voxel. This would
require extending Gimlenses to support the per-voxel inspection of
the dataset. All considerations related to such segmentation of the
scene into meaningful objects, however, are beyond the scope of
this work.

Another aspect that requires further work is the mapping of Gim-
lens parameters to user interface controls. While the mapping to
a wheel-equipped mouse or even a gesture-enabled trackpad for a
laptop or desktop workstation is straightforward, the mapping to the
more exotic input devices typically used in CAVEs or when inter-
acting with wall-sized displays (motion tracking, mid-air pointing
device, etc.) requires more thinking. This, however, highly depends
on the available devices and their capabilities as well as, to some ex-
tent, on the application-dependent mappings already in place. In the
particular case of CAVEs, additional challenges will arise, as the
lens windows’ position should be adapted automatically to match
observers’ position and orientation in the scene.

Finally, another potential area for improvements is that of graph-
ics rendering. Currently we apply the same rendering technique to
all lenses and to the context view. But as views might serve dif-
ferent purposes, enabling different rendering strategies, as Magic
Lenses do [Wang et al. 2005], or even simply enabling users to eas-
ily change lighting conditions to emphasize some features of the
data, would be useful improvements.

References

APPERT, C., CHAPUIS, O., AND PIETRIGA, E. 2010. High-
precision magnification lenses. In Proc. CHI ’10, ACM, 273–
282.

BANE, R., AND HOLLERER, T. 2004. Interactive tools for virtual
x-ray vision in mobile augmented reality. In Proc. ISMAR ’04,
ACM IEEE, 231–239.

BIER, E. A., STONE, M. C., PIER, K., BUXTON, W., AND

DEROSE, T. D. 1993. Toolglass and magic lenses: the see-
through interface. In Proc. SIGGRAPH ’93, ACM, 7380.

BRUCKNER, S., GRIMM, S., KANITSAR, A., AND GRÖLLER,
M. E. 2005. Illustrative context-preserving volume rendering.
In Proc. EUROVIS’05, Eurographics Association, 69–76.

229

BURNS, M., AND FINKELSTEIN, A. 2008. Adaptive cutaways for
comprehensible rendering of polygonal scenes. ACM Transac-
tions on Graphics 27, 5, 154:1–154:7.

BURTNYK, N., KHAN, A., FITZMAURICE, G., BALAKRISHNAN,
R., AND KURTENBACH, G. 2002. Stylecam: interactive stylized
3d navigation using integrated spatial & temporal controls. In
Proc. UIST ’02, ACM, 101–110.

CARPENDALE, M. S. T., AND MONTAGNESE, C. 2001. A frame-
work for unifying presentation space. In Proc. UIST ’01, ACM,
61–70.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., AND FRAC-
CHIA, F. D. 1997. Extending distortion viewing from 2D to 3D.
IEEE Comput. Graph. Appl. 17, 4 (July), 42–51.

COCKBURN, A., KARLSON, A., AND BEDERSON, B. B. 2008.
A review of overview+detail, zooming, and focus+context inter-
faces. ACM Computing Surveys 41, 1 (Dec.), 131.

COFFIN, C., AND HOLLERER, T. 2006. Interactive perspective
cut-away views for general 3d scenes. In Proc. 3DUI ’06, IEEE,
25–28.

CORREA, C., AND MA, K.-L. 2009. The occlusion spectrum for
volume classification and visualization. IEEE Transactions on
Visualization and Computer Graphics 15, 6, 1465–1472.

CORREA, C. D., AND MA, K.-L. 2011. Visibility histograms
and visibility-driven transfer functions. IEEE Transactions on
Visualization and Computer Graphics 17, 192–204.

CRUZ-NEIRA, C., SANDIN, D. J., DEFANTI, T. A., KENYON,
R. V., AND HART, J. C. 1992. The cave: audio visual expe-
rience automatic virtual environment. Communications of the
ACM 35, 6 (June), 64–72.

DIETRICH, A., STEPHENS, A., AND WALD, I. 2007. Exploring
a boeing 777: Ray tracing large-scale cad data. IEEE Computer
Graphics and Applications 27, 6, 36–46.

ELMQVIST, N., AND TSIGAS, P. 2008. A taxonomy of 3D oc-
clusion management for visualization. IEEE Transactions on
Visualization and Computer Graphics 14, 5.

FEINER, S. K., AND SELIGMANN, D. D. 1992. Cutaways and
ghosting: satisfying visibility constraints in dynamic 3D illus-
trations. The Visual Computer 8, 5-6 (Sept.), 292–302.

HACHET, M., DECLE, F., KNODEL, S., AND GUITTON, P. 2008.
Navidget for easy 3D camera positioning from 2D inputs. In
Proc. 3DUI ’08, IEEE, 83–89.

JAVED, W., GHANI, S., AND ELMQVIST, N. 2012. Polyzoom:
multiscale and multifocus exploration in 2d visual spaces. In
Proc. CHI ’12, ACM, 287–296.

KHAN, A., KOMALO, B., STAM, J., FITZMAURICE, G., AND

KURTENBACH, G. 2005. HoverCam: interactive 3D navigation
for proximal object inspection. In Proc. I3D ’05, ACM, 73–80.

KRUGER, J., SCHNEIDER, J., AND WESTERMANN, R. 2006.
Clearview: An interactive context preserving hotspot visualiza-
tion technique. IEEE Transactions on Visualization and Com-
puter Graphics 12, 5, 941–948.

LI, W., RITTER, L., AGRAWALA, M., CURLESS, B., AND

SALESIN, D. 2007. Interactive cutaway illustrations of complex
3D models. ACM Transactions on Graphics 26, 3, 31:1–31:12.

LI, W., AGRAWALA, M., CURLESS, B., AND SALESIN, D.
2008. Automated generation of interactive 3D exploded view
diagrams. ACM Transactions on Graphics 27, 3, 101:1–101:7.

LOOSER, J., BILLINGHURST, M., AND COCKBURN, A. 2004.
Through the looking glass: the use of lenses as an interface tool
for augmented reality interfaces. In Proc. GRAPHITE ’04, ACM,
204–211.

MCCRAE, J., MORDATCH, I., GLUECK, M., AND KHAN, A.
2009. Multiscale 3D navigation. In Proc. I3D ’09, ACM, 7–
14.

MCGUFFIN, M. J., TANCAU, L., AND BALAKRISHNAN, R. 2003.
Using deformations for browsing volumetric data. In Proc. VIS
’03, IEEE, 401–409.

NANCEL, M., WAGNER, J., PIETRIGA, E., CHAPUIS, O., AND

MACKAY, W. 2011. Mid-air pan-and-zoom on wall-sized dis-
plays. In Proc. CHI ’11, ACM, 177–186.

PIETRIGA, E., BAU, O., AND APPERT, C. 2010. Representation-
independent in-place magnification with sigma lenses. IEEE
Transactions on Visualization and Computer Graphics 16, 03,
455–467.

PINDAT, C., PIETRIGA, E., CHAPUIS, O., AND PUECH, C. 2012.
Jellylens: content-aware adaptive lenses. In Proc. UIST ’12,
ACM, 261–270.

PLUMLEE, M., AND WARE, C. 2003. Integrating multiple 3d
views through frame-of-reference interaction. In Proc. CMV ’03,
IEEE, 34–43.

PLUMLEE, M. D., AND WARE, C. 2006. Zooming versus multiple
window interfaces: Cognitive costs of visual comparisons. ACM
Transactions on Computer-Human Interaction 13, 2 (jun), 179–
209.

ROPINSKI, T., AND HINRICHS, K. 2004. Real-time rendering
of 3D magic lenses having arbitrary convex shapes. In Jour-
nal of the International Winter School of Computer Graphics
(WSCG04), Science Press, 379–386.

TAN, D. S., ROBERTSON, G. G., AND CZERWINSKI, M. 2001.
Exploring 3D navigation: combining speed-coupled flying with
orbiting. In Proc. CHI ’01, ACM, 418425.

VIEGA, J., CONWAY, M. J., WILLIAMS, G., AND PAUSCH, R.
1996. 3D magic lenses. In Proc. UIST ’96, ACM, 5158.

VIOLA, I., AND GRÖLLER, M. E. 2005. Smart visibility in visu-
alization. In Proc. Computational Aesthetics’05, Eurographics
Association, 209–216.

VIOLA, I., KANITSAR, A., GRLLER, M. E., AND GROLLER,
M. E. 2005. Importance-driven feature enhancement in volume
visualization. IEEE Transactions on Visualization and Computer
Graphics 11, 4, 40818.

WANG, L., ZHAO, Y., MUELLER, K., AND KAUFMAN, A. 2005.
The magic volume lens: An interactive focus+context technique
for volume rendering. In Proc. VIS ’05, IEEE, 367–374.

WANG, Y.-S., WANG, C., LEE, T.-Y., AND MA, K.-L. 2011.
Feature-preserving volume data reduction and Focus+Context
visualization. IEEE Transactions on Visualization and Computer
Graphics 17, 2 (Feb.), 171 –181.

WARE, C., LEWIS, M., AND CREATIVITY, O. F. 1995. The Drag-
Mag image magnifier. In Proc. CHI ’95 EA, ACM, 407–408.

230

