
Pad++: A Zooming Graphical Interface
for Exploring Alternate Interface Physics

Benjamin B. Bederson*

Bell Communications Research

445 South Street - MRE 2D-336
Morristown, NJ 07960
(bederson@bellcore.tom)

KEYWORDS

Interactive user interfaces, multiscale interfaces, zooming
interfaces, authoring, information navigation, hypertext,
information visualization, information physics.

ABSTRACT

We describe the current status of Pad++, a zooming graphical
interface that we are exploring as an alternative to tradhional
window and icon-based approaches to interface design. We
discuss the motivation for Pad++, describe the implementa-
tion, and present prototype applications. In addition, we intro-
duce an informational physics strategy for interface design
and briefly compare it with metaphor-based design strategies.

INTRODUCTION

If interface designers are to move beyond windows, icons,
menus, and pointers to explore a larger space of interface pos-
sibilities, new interaction techniques must go beyond the
desktop metaphor, While several groups are exploring virtual
3D worlds [4][8], we have developed a 2D interface based on
zooming. With our system, Pad++, graphical data objects of
any size can be created, and zooming is a fundamental inter-
action technique.

There are numerous benefits to metaphor-based approaches,
but they also lead designers to employ computation primarily
to mimic mechanisms of older mdla, While there are impor-
tant cognitive, cultural, and engineering reasons to exploit
earlier successful representations, this approach has the
potential of underutilizing the mechanisms of new media,

For the last few years we have been exploring a different
strategy for interface design to help focus on novel mecha-
nisms enabled by computation rather than on mimicking
mechanisms of older media. Informally the strategy consists

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1994 ACM 0-89791 -857-3/94/001 1....$3.50

James D. Hollun

Computer Science Department

Universi~ of New Mexico
Albuquerque, NM8713 1

(hollan@cs.unm.edu)

of viewing interface design as the development of a physics
of appearance and behavior for collections of informational
objects.

For example, an effective informational physics might
arrange for useful representations to be a natural product of
normal activity. Consider how this is at times the case for the
physics of the world. Some materials record their use and in
doing so influence future use in positive ways. Used books
crack open at often referenced places. Frequently consulted
papers are at the top of piles on our desks. Use dog-ears the
comers and stains the surface of index cards and catalogs. All
these provide representational cues as a natural product of
interaction but the physics of older media limit what can be
recorded and the ways it can influence future use.

Following an informational physics strategy has lead us to
explore history-enriched digital objects [11] [12]. Recording
on objects (e.g. reports, forms, source-code, manual pages,
email, spreadsheets) the interaction events that comprise their
use makes it possible on future occasions, when the objects
are used again, to display graphical abstractions of the
accrued histories as parts of the objects themselves. For
example, we depict on source code its copy history so that a
developer can see that a particular section of code has been
copied and perhaps be led to correct a bug not only in the
piece of code behg viewed but also in the code from which it
was derived.

This informational physics strategy has also lead us to explore
new physics for interacting with graphical data. In collabora-
tion with Ken Perlin, we have designed a successor to Pad
[17] which is an graphical interface based on zooming. This
system, Pad++, will be the basis for exploration of novel
interfaces for information visualization and browsing in a
number of complex information-intensive domains. The sys-
tem is being designed to operate on platforms ranging from

*This author hasmoved to the University of New Mexico, Comput-
er science Department, Albuquerque, NM 87131, bcder-
son@cs.unm.edu.

November 2-4, 1994 UIST ’94 17



high-end graphics workstations to PDAs and Set-top boxes.
Here we describe the motivation behind the Pad++ develop-
ment, report the status of the current implementation, and
present some prototype applications.

MOTIVATION

It is a truism of modem life that there is much more informat-
ion available than we can readily and effectively access. The
situation is further complicated by the fact that we are on the
threshold of a vast increase in the availability of information

because of new network and computational technologies. It is
somewhat paradoxical that while we continuously process
massive amounts of perceptual data as we experience the
world, we have perceptual access to very little of the informa-
tion that resides within our computing systems or that is
reachable via network connections. In addhion, this informa-
tion, unlike the world around us, is rarely presented in ways
that reflect either its rich stxucture or dynamic character.

We envision a much richer world of dynamic persistent infor-
mational entities that operate according to multiple physics
specifically designed to provide cognitively facile access. The
physics need to be designed to exploit semantic relationships
explicit and implicit in information-intensive tasks and in our
interaction with these new kinds of computationally -based
work materials.

One physics central to Pad++ supports viewing information at
different scales and attempts to tap into our natural spatial
ways of thinking. The information presentation problem
addressed is how to provide effective access to a large body of
information on a,much smaller display. Fumas [9] explored
degree of interest fi.mctions to determine the information visi-
ble at various distances from a central focal area. There is
much to recommend the general approach of providing a cen-
tral focus area of detail surrounded by a periphery that places
tie detail in a larger context.

With Pad++ we have moved beyond the simple binary choice
of presenting or eliding particular information. We can also
determine the scale of the information and, perhaps most
importantly, the details of how it is rendered can be based on
various semantic and task considerations that we describe
below. This provides semantic task-based filtering of informat-
ion that is similar to the early work at MCC on HITS[13] and
the recent work of moveable filters at Xerox [3][18].

The ability to make it easier and more intuitive to find specific
information in large dataspaces is one of the central motiva-
tions for Pad++. The traditional approach is to filter or recom-
mend a subset of the data, hopefully producing a small
enough dataset for the user to effectively navigate. Two recent
examples of work of this nature are latent semantic indexing
[5] and a video recommender service based on shared ratings
with other viewers [10].

Pad++ is complementary to these filtering approaches in that
it is a useful substrate to structure information. In concert
with recommending mechanisms, Pad++ could be used to
layout the rated information in a way to make the most highly

rated information largest and most obvious, while placing
related but lower rated information nearby and smaller.

DESCRIPTION

Pad++ is a general-purpose substrate for exploring visualiza-
tions of graphical data with a zooming interface. While Pad++
is not an application itself, it directly supports creation and
manipulation of multiscale graphical objects, and navigation
through the object space. It is implemented as a widget for
Tcl/Tk [16] (described in a later section) which provides a
simple mechanism for creating zooming-based applications
with an interpreted language. The standard objects that Pad++
supports are colored text, text files, hypertext, graphics, and
images.

We have written a simple drawing application using Pad++
that supports interactive drawing and manipulation of objects
as well loading of predefine or programmatically created
objects. This application produced all the figures depicted in
this paper.

The basic user interface for Pad++ uses a three button mouse.
The left button is mode dependent. For the drawing applica-
tion shown in this paper, the left button might select and move
objects, draw graphical objects, specify where to enter text,
etc. The middle button zooms in and the right button zooms
out. Pad++ always zooms around the current cursor position -
thus the user can control the zooming dynamically by moving
the mouse while zooming. For systems with a two button
mouse, we have experimented with various mechanisms for
mapping zooming in and out to a single button. Typically, this
involves having the first motion of the mouse after the button
press determine the direction of the zooming.

Pad++ is a natural substrate for representing abstraction of
objects using what we term semuntic zooming. It is natural to
see the details of an object when zoomed in and viewing it up
close. When zoomed out, however, instead of simply seeing a
scaled down version of the object, it is potentially more effec-
tive to see a different representation of it. Perlin [17]
described a prototype zooming calendar with this notion, We
foresee two ways to describe this type of object. The first is to
have different objects, each of which is visible at different,
non-overlapping, zooms. This method is supported with the -
minsize and -maxsize options described in the TcVI’k Section.
The second, and prefemed method, is to describe a procedural
object that renders itself differently depending on its viewing
size or other characteristics. It is possible to prototype proce-
dural objects with Tcl as described below,

RECENT ADVANCES

Our focus in the current implementation has been to provide
smooth zooming in a system that works with very large graph-
ical datasets. The nature of the Pad++ interface requires con-
sistent high frame-rate interactions, even as the dataspace
becomes large and the scene gets complicated. In many appli-
cations, speed is irrtportan~ but not critical to functionality. In
Pad++, however, the interface paradigm is inherently based
on interaction. The searching strategy is to visually explore

18 UIST ’94 Marina del Rey, California



Figure 1: Sequence of snapshots (from left to right and top to bottom) as the view is
zoomed in to a hand-drawn picture.

the dataspace, so it is essential that interactive thrne rates be
maintained,

IMPLEMENTATION

We implemented Pad++ in C++. It runs on either of two
graphics systems: the Silicon Graphics computers graphics
language facilities (GL); and standard X. The X version runs
on SGI’S, Suns, PC’s running Llnux, and should be trivially
portable to other standard UnixR system. Pad++ is imple-
mented as a widget for Tcl/Tk which allows applications to be

written in the interpreted Tcl language. All Pad++ features are
accessible through Tcl making it unnecessary to write any
new C code.

EFFICIENCY

In order to keep the animation frame-rate up as the dataspace

size and complexity increases, we implemented several stan-
dard efficiency methods, which taken together create a power-
ful system. We have successfully loaded over 600,000 objects
and maintained interactive rates.

Briefly, the implemented efficiency methods include:

●

●

●

●

e

Spatial Indexing: Create a hierarchy of objects based on
bounding boxes to quickly index to visible objects.

Restructuring: Automatically restructure the hierarchy
of objects to maintain a balanced tree which is necessary
for the fastest indexing.

Spatial Level-Of-Detail: Render only the detail needed,
do not render what can not be seen.

Clipping: Only render the portions of objects that are
actually visible.

Refinement: Render fast with low resolution while navi-

November 2-4, 1994 UIST ’94 19



gating and refine the image when still.

● Adaptive Render Scheduling Keep the zooming rate
constant even as the frame rate changes.

One challenge in navigating through any large dataspace is
maintaining a sense of relationship between what you are
looking at and where it is with respect to the rest of the data

(i.e., balancing local detail and global context). The rough
animation or jumpy zooming as implemented in the original
Pad [17] can be disorienting and thus not provide the most
effective support for the cognitive and perceptual processing
required for interactive information visualization and naviga-
tion.

An important interactive interface issue when accessing
external information sources is how to give the user access to
them without incurring substantial start-up costs while the
database is parsed and loaded. In Pad++ this is accomplished
with parallel lazy loading: only load the portion of the data-
base that is visible in the current view. As the user navigates
through the database and looks at new areas, those portions of
the database are loaded. This lazy loading is accomplished in
the background so the user can continue to interact with
Pad++. When the loading is complete, items appear in the
appropriate place.

An associated concept is that of ephemeral objeets. Objects in
Pad++ which are representations of data on disk can be
labeled ephemeral. These objects are automatically deleted if
they have not been viewed in several minutes, thus freeing
system resources. When they are viewed again, they are
loaded again in parallel as described above.

HYPERTEXT

In traditional window-based systems, there is no graphical
depiction of the relationship among windows even when
there is a strong semantic relationship. This problem typically
comes up with hypertext. In many hypertext systems, clicking
on a hyperlink brings up a new window (or alternatively
replaces the contents of the existing window). While there is
an important relationship between these windows @rent and
child), this relationship is not represented.

We have begun experimenting with multiscale layouts of
hypertext where we graphically represent the parent-child
relationships between links. When a hyperlink is selected, the
linked data is loaded to the side and made smaller, and the
view is animated to center the new data.

The user interface for accessing hypertext in Pad++ is quite
simple. The normal navigation techniques are available, and
in addition, clicking on a hyperlink loads in the associated
data as described above, and shift-clicking anywhere on a
hypertext object animates the view back to that object’s par-
ent.

Pad++ can read in hypertext files written in the Hypertext
Markup Language (HTML), the language used to describe
objects in the well-known hypertext system, MOSAIC (from

the NCSA at the University of Illinois). While we do not yet
follow links across the network, we can effectively use Pad++
as an alternative viewer to MOSAIC within our file system.
Figure 2 shows a snapshot with one of the author’s home-
page loaded and several links followed.

INTERFACE TO TCIJTK

Pad++ is built as a new widget for Tk which provides for sim-
ple access to all of its features through Tel, an interpreted
scripting language. Tcl and Tk [16] are an increasingly popu-
lar combination of scripting language and Motif-like library
for creating ~aphical user interfaces and applications without
writing any C code. The Tel interface to Pad++ is designed to
be very similar to the interface to the Tk Canvas widget -
which provides a surface for drawing structured graphics.

While Pad++ does not implement everything in the Tk Can-
vas yet, it adds many extra features - notably those supporting
multiscale objects and zooming. In addition, it supports
images, text files, and hypertext, as well as several navigation
tools including content-based search. As with the Canvas,
Pad++ supports many different types of structured graphics,

and new graphical widgets can be added by writing C code.
Significantly, all interactions with Pad++ are available
through Tel.

Since Tcl is interpreted and thus slower than compiled code, it
is important to understand what its role is in a real-time ani-
mation system such as Pad++. There are three classes of
things that one can do with Pad++, and the importance of
speed varies:

● Create objects: Slow - Tel is fine

● Handle events: Medium - Small amount of Tel is ok

@Render scene: Fast - C++ only

Because all rendering is done in C++, and typically only a
few lines of Tcl are written to handle each event, Pad++ main-
tains interactive rates despite its link to Tel. Tel is quite good,
however, for reading and parsing input files, and creating and
laying out graphical multiscale objects.

The Tel interfaee to Pad++ is, as previously mentioned, quite
similar to that of the Tk canvas, and is summarized here to
give a feel for what it is like to program Pad++. Every object
is assigned a unique integer id, In addition, the user may asso-
ciate an arbitrary list of text tags with each object, Every com-
mand can be directed to either a specific objeet id or to a tag,
in which case it will apply to all objects that share that tag -
implicitly grouping objects. Each Pad++ widget has its own
name. All Pad++ commands start with the name of the wid-
ge~ and in the examples that follow, the name of the widget is
. pad.

Examples:

● A red rectangle with a black outline is created whose cor-
ners are at the points (O, O) and (2, 1):

pad create rectangle O 0 2 1 -f ill red

-outline black

e Putitem number 5 at the Iccation (3, 3), make the object

20 UIST ’94 Marina del Rey, California



Figure 2: Hypertext. Links are followed and placed on the surface to the side, and made smaller.

November 2-4, 1994 UIST ’94 21



twice as big, and make the object anchored at that point
on its northwest cornec

pad itemconfig 5 -anchor nw -place “3 3 2“

c Specify that item number 5should only be visible when
its largest dimension is greater than 20 pixels and less
than 100 pixels.

pad itemconfig 5 -minsize 20 -maxsize 100

●Makeallitems withtagfoo turnbluewhen theleftbutton
of the mouse is pressed over any of those objects:

pad bind foo <ButtonPress>

{pad itemconfig foo -fill blue)

As mentionedpreviously, Pad++is anatural environmentto
represent abstraction through semantic zooming. Objects can
be represented differently depending on their size by defining
procedural objects. A procedural object is one that is ren-
dered as a result of a special procedure (as opposed to pre-
define static objects such as lines or text). Pad++ supports
Tcl procedural objects which are very useful for prototyping,
but too slow for continued use. Tcl procedural objects work
by specifying two Tcl scripts. One returns the bounding box
of the object (necessary for efficiency), and the other renders
the object (drawing routines are provided). A trivial example
is shown here which draws “1993” in red when it is small,
and “Jan Feb Mar” in black when it is a little biggen

proc makecalendar { } {
pad create tcl -script “cal” -bb “calBB”

}

proc cal { } {
set view [ pad move_to]
set size [lindex $view 2]
if ($size < .1} {

pad set_color red
pad set_linewidth 2

pad draw_text “ 1993” 0 0
} else {

pad set_color black

pad set_linewidth 1

pad draw_text “Jan Feb Mar” O 0

)

)

proc calBB {} {
return “O O 11 1“

}

NAVIGATION

Finding information on thePad++ surface is obviously very
important as intuitive navigation through largedataspaces is
one ofits primary motivations. Pad++ support visual search-
ing with zooming in addhiont otraditional mechanisms, such
ascontent-based search.

Some basic navigation and searching mechanisms arepro-
videdattheTcl interface forthe application programmer. A
fewbasiconesare:

● Smoothly gotothe location (l,O)at zoomof5, and take
1000 milliseconds for the animation:

pad move_to 1 0 5 1000

● Smoothly go to the location such that object #37 is cen-
tered, and fills three quarter’s of the screen, and take 500

milliseconds for the animation:
pad center 37 500

● Return the list of object ids that contain the text “foo”
.pad find withtext f oo

Figure 3 shows a Tk interface based on these commands.

Entering text in the top entry region returns a list of objects

that contain that text. Double clicking on any of these objects

smoothly animates the view to the specified object.

The smooth animations interpolate in pan and zoom to bring

the view to the specified location. If the end point, however, is

more than one screen width away from the starting point, the

animation zooms out to a point midway between the starting

and ending points, far enough out so that both points are visi-

ble. The animation then smoothly zooms into the destination,

This gives a sense of context to the viewer as well as speeding

up the animation since most of the panning is performed

when zoomed out which covers much more ground than pan-

ning while zoomed in.

Figure 3: Content based search

VISUALIZATIONS

We built a Pad++ directory browser to explore how smooth
zooming and the various efficiency mechanisms help in view-
ing a large hierarchical database, and to experiment with
multi-scale layouts. The Pad++ directory browser provides a
graphical interface for accessing the directory structure of a
filesystem (see Figure 4). Each directory is represented by a

square frame, and files are represented by solid squares col-
ored by file type. Both directories and files show their filena-
mes as labels when the user is sufficiently close to be able to
read them, Each directory has all of its subdirectories and files
organized alphabetically inside of it. Searching through the

directory structure can be done by zooming in and out of the
directory tree, or by using the content based search mecha-
nisms described above. Zooming into a file automatically
loads the text inside the colored square and it can then be
edited and annotated.

We are able to load in a directory tree with over 600,000
objects, and maintain interactive animation rates of about 10
frames per second. Spatial indexing allows us to explore very

22 UIST ’94 Marina del Rey, California



November 24, 1994 UIST ’94 23



large databases while keeping the search time fast, since we
render only the visible portion of the scene. While navigating
with Pad++, very small objects are not drawn and larger ones
are drawn with reduced resolution. The objects are then
refined and drawn at high resolution when the user stops
changing the view.

Another dataset we looked at with Pad++ is a timeline of
interesting products, events, and papers in computer tecbnol-
ogy and user interfaces. History naturally lends itself to behg
looked back on at different scales. Figure 5 shows a sequence
of snapshots as the view is zoomed into the current year. This
visualization was created by a Tcl script which reads in a file
with a simple format specifying starting and ending dates
along with text or images.

PHYSICS AND METAPHOR

As we mentioned earlier, the exploration of Pad++ is part of
the development of a more general strategy for interface
design. Our goal is to move beyond mimicking the mecha-
nisms of earlier media and start to more fully exploit the radi-
cal new mechanisms that computation provides, We think it
provides an effective complement to the more traditional met-
aphor-based approaches. While an informational physics
strategy for interface design may certainly involve metaphor,
we think there is much that is distinctive about a physics-
based perspective. As an interface strategy, it can be distin-
guished from a metaphor-based strategy in at least four ways.

First, metaphors necessarily pre-exist their use, Pre-Coperni-
cans could never have used the metaphor of the solar system
for describing the atom. In designing interfaces, one is limited
to the metaphorical resources at hand, In addition, the meta-
phorical reference must be familiar to work. An unfamiliar
interface metaphor is functionally no metaphor at all. One can
never design metaphors the way one can design self-consis-
tent physical descriptions of appearance and behavior. Thus,
as an interface design strategy, physics offer designabllity and
tailorabWy that metaphor does not.

Second, metaphors are temporary bridging concepts. When
they become ubiquitous, they die. In the same way that lin-
guistic metaphors lose their metaphorical impact (e.g.,fiot of
the mountain or leg oftalie), successful metaphors also wind
up as dead metaphors (e.g. file, menu, window, desktop). The
familiarity provided by the metaphor during earlier stages of
use gives way to a familiarity with the interface due to actual
experience.

Thus, after awhile, even in the case of metaphor-based inter-
faces, it is the actual details of appearance and behavior (i.e.
the physics) rather than any overarching metaphor that form
much of the substantive knowledge of an experienced user.
Any restrictions that are imposed on the behaviors of the enti-
ties of the interface to avoid violations of the initial metaphor
are potential restrictions of functionality that may have been
employed to better support the users’ tasks and allow the
interface to continue to evolve along with the users increasing
competency.

The pervasiveness of dead metaphors such as files, menus,

24 UIST ’94 Marina del Rey, California



Third, since the sheer amount and complexity of informa-
tion with which we need to interact continues to grow, we
require interface design strategies that scale. Metaphor is
not such a scaling strategy. Physics is. Physics scales to

organize greater and greater complexity by uniform appli-

cation of sets of simple laws. In contrast, the greater the

complexity of the metaphorical reference, the less likely

it is that any particular structural correspondence between

metaphorical target and reference will be useful.

Fourth, it is clear that metaphors can be harmful as well
as helpful since they may well lead users to import
knowledge not supported by the interface. There are cer-
tainly metaphorical aspects associated with a physics-
based strategy. Our point is not that metaphors are not
useful but that they may restrict the range of interfaces we
consider.

There are, of course, also costs associated in following a
physics-based design strategy. One cost is that designers
can no longer rely on users’ familiarity with the meta-
phorical reference and this has learnability consequences.
However, the power of metaphor comes early in usage
and is rapidly superseded by the power of actual experi-
ence. Furthermore, since empirical knowability naturally
follows from a physics perspective, we can begin to ques-
tion and quantify how much experimentation will be nec-
essary to learn the designed-in principles, how many
inductive steps will be required and of what kinds. Thus,
one might want to focus on easily discoverable physics.
As is the case with metaphors, all physics are not created
equally discoverable or equally fitted to the requirements
of human cognition.

CONCLUSION

We implemented Pad++, a zooming graphical interface
substrate, focusing on efficiency and expandability. By
implementing several efficiency mechanisms which act in
concert, we are able to maintain high frame-rate interac-
tion with very large databases. This development is part
of an exploration of an informational physics perspective
for interface design.

We are currently, in collaboration with NYU, continuing
development of the Pad++ substrate as well as starting
work in several application domains, such as history-
enriched digital objects.

ACKNOWLEDGEMENTS

We would like to thank Ken Perlin and his students,
David Fox and Matthew Fuchs, at NYU for enjoyable
discussions and for seeding out interest in multiscale
interfaces. We especially appreciate the support we have
received from Craig Wler as part of ARPA’s new HCI Ini-
tiative. This will allow us to continue our Pad++ research
collaboration with Bellcore and NYU. We also would like
to acknowledge other members of the Computer Graphics
and Interactive Media Research Group at Bellcore for

many discussions shared during our continuing search for
the best cheeseburger.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Ronald M. Baecker, Human Factors and Typography for
More Readable Programs, ACM Press, 1990.

Benjamin B. Bederson, Larry Stead, and JamesD. Hollan,
Pad++: Advances in Multiscale Interfaces, In Proceed-
ings of CHI’94 Human Factors in Computing Sys-
tems Conference Companion, ACIWSIGCHI, 1994,

pp. 315-316.

Eric A. Bier, Maureen C, Stone, Ken Pier, William Bux-

ton, and Tony D. DeRose. Toolglass and Magic Lenses:

The See-Through Interface, In Proceedings of 1993
ACM SIGGRAPH Conference, pp. 73-80.

Stuart K. Card, George G. Robertson, and Jock D. Mack-
inlay. The Information Visualizer, an Information Work-
space, In Proceedings of CHI’91 Human Factors in
Computing Systems, ACM/SIGCHI, 1991, pp. 181-188.

Steve Deerwester, Sue T. Dumais, George W. Fumas,
Tom K. Landauer, and Ray Harshman. Indexing by Latent

Semantic Analysis. Journal of American Socie~ of
Information Science, 41,1990, pp. 391-407.

William C. Donelson. Spatial Management of Informat-

ion, In Proceedings of 1978 ACM SIGGRAPH Confer-
ence, pp. 203-209.

Stephen G. Elck, Joseph L. Steffen, and Eric E. Sumner,

Jr, Seesoft - A Tool for Visualizing Line-Oriented Soft-
ware Statistics, IEEE Transactions on Software Engi-
neering, Vol. 18(1 1), pp. 957-968, November, 1992.

Kim M. Fairchild, Steven E. Poltmck, and George W. Fur-

nas. SernNet: Three-Dimensional Graphic Representa-
tions of Large Knowledge Bases, in Cognitive Science
and its Applications for Human-Computer Interac-
tion, Lawrence Erlbaum Associates, 1988.

George W. Fumas, Generalized Fisheye Views, In Pro-
ceedings of CHI’86 Human Factors in Computing
Systems, ACM/SK3CHI, 1986, pp. 16-23.

[10] William C. Hill, videos@bellcore.tom: Recommending
and evaluating items on the basis of communal history-of-
use. Bellcore Technical Report #TM-ARH-023560,
Morristown, NJ 07960, 1994.

[11] William C. Hill, James D. Hollan, David Wroblewski, and
Tlm McCandless, Edit Wear and Read Wear, In Proceed-
ings of CHI’92 Human Factors in Computing Sys-
tems, ACM/SIGCHI, 1992, pp. 3-9.

[12] William C. Hill and James D. Hollan, History-Enriched

Digital Objects, in press.

[13] James D. Hollan, Elaine Rich, William Hill, David Wrob-

lewski, Wayne Wilner, Kent Wittenburg, Jonathan Gru-
din, and Members of the Human Interface Laboratory. An
Introduction to HITS: Human Interface Tool Suite, in

Intelligent User Interfaces, (Sullivan & Tyler, Eds),
1991, pp. 293-337.

November 2-4, 1994 UIST ’94 25



[14] James D. Hollan and Scott Stornetta, Beyond Being There, In
Proceedings of CHI’92 Human Factors in Computing
Systems, ACIWSIGCHI, 1992, pp. 119-125. (also appeared as
a chapter in Readings in Groupware and Computer Sup-
ported Cooperative Work (Becker, Ed.), 1993, pp. 842-848.

[15] George Lakoff and Mark Johnson, Metaphors We Live By.
University of Chicago Press, 1980.

[16] John K. Ousterhout, Tel and the Tk Toolkit, Addison Wesley,

1994.

[17] Ken Perlin and David Fox. Pad An Alternative Approach to

the Computer Interface, In Proceedings of 1993 ACM SIG-
GRAPH Conference, pp. 57-64.

r 181 Maureen C. Stone. Ken Fishkin. and Eric A. Bier. The Mov-...4....–.-.
able Filter as a User Interfa& Tool, in Proceedings of
CHI’94 Human Factors in Computing Systems, ACMI
SIGCHI, 1994.

[19 Ivan E. Sutherland. Sketchpad: A man-machine graphical com-
munications systems, In Proceedings of the Spn”ng Joint
Computer Conference, 1963, pp. 329-346, Baltimore, MD:

Spartan Books.

26 UIST ’94 Marina del Rey, California


