
 - 1 -

Multisurface Interaction
in the WILD Room

Michel Beaudouin-Lafon, Stéphane Huot, Mathieu Nancel, Université Paris-Sud
Wendy Mackay, Emmanuel Pietriga, Romain Primet, Julie Wagner, INRIA
Olivier Chapuis, Clément Pillias, CNRS
James R. Eagan, Télécom ParisTech
Tony Gjerlufsen, Clemens Klokmose, Aarhus University

Abstract

The WILD room (wall-sized interaction with large datasets) serves as a testbed for
exploring the next generation of interactive systems by distributing interaction across
diverse computing devices, enabling multiple users to easily and seamlessly create, share,
and manipulate digital content.

© Copyright 2012, IEEE. Author version of the article published in the April 2012 special issue of IEEE
Computer on Interaction Beyond the Keyboard: Beaudouin-Lafon, M., Huot, S., Nancel, M., Mackay, W.,
Pietriga, E., Primet, R., Wagner, J., Chapuis, O., Pillias, C., Eagan, J.R., Gjerlufsen, T. and Klokmose, C.
(2012), “Multisurface Interaction in the WILD Room”, IEEE Computer, vol 45, nº 4, pp. 48-56.
DOI bookmark: http://doi.ieeecomputersociety.org/10.1109/MC.2012.110

 - 2 -

Ubiquitous computing offers a vision in which each person owns multiple computers that work
together seamlessly, embedded into the fabric of everyday life [1]. Part of this vision has arrived:
interactive surfaces are everywhere, from smartphones, tablets, and laptops to large-screen
televisions and smart boards; from car navigation systems to fitness monitoring devices. Their
integration, however, is hardly seamless: data is often trapped in individual applications or
services, and interaction is usually limited to a single device at a time.

As the “The WILD Platform” sidebar describes, the WILD room (wall-sized interaction with
large datasets) is a multisurface environment featuring a wall-sized display, a multitouch table,
and various mobile devices that we designed to help scientists collaborate on the analysis of large
and complex datasets. We combine empirical studies, participatory design, and fundamental
research on basic interaction tasks to explore the design and engineering of the next generation of
interactive systems. The key to this approach is to distribute interaction, not just content, across a
variety of interactive surfaces.

Designing with extreme users

Our research strategy involves designing an extreme environment that pushes the limits of
technology—both hardware and software. To ground the design process, we needed extreme
users—people whose daily work both inspires and stress-tests the environment. We chose
scientists who use a variety of techniques to understand exceptionally large and complex datasets.
We invited researchers from the Paris-Saclay campus in astrophysics, particle physics, chemistry,
molecular biology, neuroscience, mechanical engineering, and applied mathematics to an initial
“show-and-tell” workshop. Scientists from each lab presented specific examples of the challenges
they faced at that time, along with their data analysis processes and tools. We discussed the
similarities and differences among their approaches, seeking to identify both universal needs and
unique opportunities.

For example, a group of microbiologists might arrive in the WILD room with their laptops and
analysis tools to study how one molecule docks with another. One might bring up a large
molecular model downloaded from the research lab’s server, another might add interactive 3D
models of related molecules, and others might access online databases, websites, and research
articles. They could shift smoothly among different representations of each molecule and transfer
them from one interactive display to another, working together in the same room or collaborating
with remote colleagues.

We identified four common strategies for managing complex scientific data where the WILD
multisurface environment could significantly improve and even completely change work
practices:

1. navigation through a single, very large object, such as a simulation of a molecule with
tens or hundreds of thousands of atoms or a gigapixel image of deep space containing
thousands of galaxies;

2. comparison of a large number of related images, such as pathological brain scans or
observations of regions of the sky at different wavelengths;

3. juxtaposition of a variety of heterogeneous forms of data from different sources, such as a
mix of research articles, raw data tables, formulas, graphs, photographs, and video clips;

4. communication with remote colleagues about all of the above to facilitate collaborative
exploration.

We then used the WILD room as a working laboratory for exploring advanced multisurface
interaction techniques.

 - 3 -

Sidebar: The WILD platform

The WILD room (Wall-size Interaction with Large Datasets) features a large wall display (top,
left) powered by a 16-computer cluster (top, right) and two front-end computers, a motion
tracking system (bottom, left), and an interactive table (bottom, right).

The wall display consists of 32 off-the-shelf 30-inch monitors organized in an 8 x 4 grid, for a
total resolution of 131 million pixels (20480 x 6400). The high pixel density (about 100 dpi), a
defining characteristic of WILD, is rare on wall displays. The monitors are mounted on four
movable carts, letting users test different configurations such as the triptych shown in Figure A.
Each computer has two graphics cards driving one screen each. Displaying wall-sized images
requires distributed software that runs across the cluster.

The motion tracking system uses 10 infrared cameras to detect the position of passive markers
attached to different devices, such as the T-shaped tool shown at the lower left in Figure A. The
system has very low latency and a precision of less than one millimeter across the room. We
typically use it to precisely track each device’s position and to support advanced interaction
techniques.

The interactive table uses FTIR (frustrated total internal reflection) technology to track up to 32
simultaneous contact points with a 1920 x 1080 resolution. Because it has only half the pixel
density of the wall display, we are adding a second table with higher pixel density and a flat
screen. Smartphones, PDAs, tablets, and laptops provide additional, personal interactive surfaces.
We also use input devices such as gyroscopic and wireless mice and custom devices.

 - 4 -

Figure 1: Using the Wizard of Oz technique to prototype how a tablet can serve as a
mobile, physical filter atop a wall-sized image.

Exploring multi-surface interaction
We employ two complementary strategies for generating and testing ideas: participatory design,
which focuses on qualitative understanding and external validity, and controlled experiments,
which focus on quantitative evaluations and internal validity.

Participatory design actively involves users throughout the design process. We visited several
labs to observe their current research procedures and conducted participatory design workshops in
the WILD room with the astrophysicists and neuroanatomists, who face interestingly different
analysis challenges.

One of the most effective techniques was the Wizard of Oz, in which scientists acted out ideas for
manipulating their data, using paper images, laptops, and other props. A member of the group,
identified as the wizard, would operate the WILD wall so that it reacted to the users’ actions,
creating a compelling shared experience of a possible future. This often sparked additional ideas
and provided insights as to which techniques were most worth pursuing. For example, the
scientists spontaneously experimented with midair hand gestures and using external props to
manage their data. One neuroscientist brought along a 3D physical model of his own brain from
an MRI scan. He had the idea of using it to control the orientation of all 64 normal and
pathological brains displayed on the wall. He had dreamed of doing this in his lab, where he was
limited to using a mouse to compare at most four brain scans on a single screen.

Scientists also explored relationships among mobile and stationary devices. For example, one
astrophysicist was examining a large image of the Milky Way galaxy, accompanied by a series of
smaller images at different wavelengths. He suddenly grabbed an iPad tablet, held it up to the
primary image, and simulated how he would like to treat it as a physical, interactive filter. Figure
1 shows how he envisioned moving the tablet around, maintainng an overview of the whole
image while flipping through different filters to focus on specific wavelengths.

Participatory design helped us to delve deeply into the problem space and generate specific
innovative ideas. However, we also needed a more systematic approach for characterizing the
design space of interaction techniques and making informed choices. For example, the
astrophysicists showed us a 400,000-pixel-wide image of the center of the galaxy. While they
could see it on WILD much better than in their lab, the image was still 20 times larger than the
display capabilities of our wall.

 - 5 -

These and other gigapixel images highlighted the need for powerful panning and zooming
techniques that could be operated from any location in front of the wall. This suggested midair
interaction, using the hands to point to the locus of the zoom within an image and to control its
expansion and contraction from there. Based on the participatory design results and our own
explorations, we identified three important dimensions, illustrated in Figure 2, that characterize
the design space for pan-and-zoom on a wall display.

We ran a controlled experiment to evaluate our hypotheses about which factors increase
performance, accuracy, and comfort [2]. Our goal was not necessarily to determine the single
“best” technique, but rather to understand the tradeoffs and help users and designers decide which
to use under what circumstances.

We found that, in general, two hands are better than one; linear gestures are faster than circular
ones, despite the need to “clutch;” and greater guidance (or fewer degrees of freedom)
significantly increases performance. Most midair freehand gestures are tiring and inefficient. The
only exception is the two-handed linear gestures in free space shown in Figure 2f—an appealing
technique that requires no additional device.

These and other experiments, together with the results of the participatory design sessions, have
led to an effective set of techniques that we now use routinely in WILD.

Figure 2: A design space for midair pan and zoom techniques with three dimensions:
interaction with one hand (top row) or both hands (bottom row); gestures that are
constrained to one dimension (left column), to a 2D surface (center column), or free in
3D space (right column); linear or circular gestures (insets in each cell). For example,
(d) corresponds to using the dominant hand as a laser pointer to indicate the focus point
and the nondominant hand to control zooming with linear or circular gestures on a
handheld device. In (c), both tasks are carried out with the dominant hand.

 - 6 -

Figure 3: Interaction instruments. (left) An interaction instrument sorts the 64 displayed
brain scans, (center) a brain prop controls the scan orientation, and (right) a digital
pen annotates content on the wall. (Source: Photothèque CNRS, Cyril Fresillon.).

Developing multi-surface applications
Developing software for multisurface environments raises several challenges. First, applications
are inherently distributed and the environment is dynamic: 20 to 30 computers are involved in a
typical session, including the cluster running the wall, the computers running the table and motion
tracking system, the handheld devices, and the users’ laptops. Second, input devices can be
combined in various ways to interact with the various surfaces, and multiple users must be able to
interact in parallel. Finally, content comes from a variety of sources, including static documents
brought by users and live windows from legacy applications.

Our goal was to simplify the development of applications in this context without sacrificing the
flexibility and openness required by our users. This led to a modular approach that separates user
interaction, graphical rendering, and content sources.

Distributed interaction

Our concept of ubiquitous instrumental interaction separates interaction from the rest of the
application [3]. An interaction instrument mediates interaction between a user and the objects of
interest. For example, users can designate objects with a pointing instrument, move them with a
drag-and-drop instrument, and change their color with a color selection instrument. Instruments
are independent of the objects they operate on: they need only know that the object implements a
given protocol, such as selecting, changing position, or setting a color. Multiple instruments can
be used in parallel. Instruments can also be embodied in portable devices—for example, a
smartphone used as a laser pointer. In this case, the instrument runs on the device and interacts
with objects located on other surfaces.

We have created generic instruments for selecting, moving, organizing, and annotating objects, as
well as more specific ones, such as the brain prop shown in Figure 3, which is used to control the
orientation of brain scans on the wall. These interaction instruments have proven very flexible
since they can be customized to the users’ needs without modifying the application: instruments
discover which objects they can interact with based on the protocols that the objects implement.

 - 7 -

Figure 4: jBricks and the WILD Input Server. (left) A jBricks application manages a
scene of 2D objects laid out on an infinite canvas. On the cluster, render servers
replicate the scene and display only the objects that lie in their viewing frustum. (right)
A configuration of the WILD Input Server for a virtual device combining a VICON
position-tracking component and an iPod handheld device. The configuration can be
tested outside the WILD room by replacing the VICON component with those in gray
and using a mouse for position input. The pan-zoom component on the right sends high-
level events to the application.

At a lower level, input in a multisurface environment can come from a variety of sources,
including standard devices such as mice and keyboards, multitouch devices such as interactive
tables and tablets, and systems such as motion trackers. Rather than sending this raw input
directly to applications or instruments, we have created an intermediate layer called the WILD
Input Server [4].

The WILD Input Server uses the ICon visual editor [5] to create and edit input configurations.
Figure 4 shows how a configuration transforms low-level input from physical devices into higher-
level events sent to client applications. The WILD Input Server supports standard protocols such
as USB-HID, OSC, TUIO, and VRPN as well as devices such as LiveScribe interactive pens or
the VICON motion tracker. The server sends events to applications through various protocols
(primarily OSC; http://opensoundcontrol.org) or plug-ins. Applications can also remotely control
the server to start, stop, or change a configuration or to load a plug-in.

Developers can easily create and modify configurations by assembling components such as
filters, adapters, and flow controllers, even during a prototyping session. Configurations typically
define virtual devices that aggregate input from multiple sources. For example, the application
sees a multitouch handheld device whose 3D position is provided by the motion tracking system
as a single device.

Our implementation of the pan-and-zoom techniques from Figure 2 illustrate the flexibility of this
approach. We developed the techniques outside the WILD room, substituting a mouse or a
Wiimote for the motion tracking system, and created a set of virtual devices that we could modify
and fine-tune in the WILD room, without relaunching the application.

 - 8 -

Distributed rendering

Displaying graphics in a multisurface environment is challenging because users want to organize
their data onto a virtual canvas that spans multiple surfaces. Depending on the configuration and
the task at hand, different surfaces display either the same part or different parts of the canvas.
Tiled displays require particularly high performance to create the illusion of a single, continuous
surface with no tearing.

Existing cluster-based systems for distributed rendering do not fit our requirements. For example,
Equalizer and CGLX require adapting or rewriting applications using OpenGL, while SAGE [6]
uses pixel streaming and therefore cannot take full advantage of ultra-high resolution wall
displays. Our approach uses replication: each machine driving a display runs a replica of the
complete application or a rendering client that holds a copy of the scene. Each replica knows
which part of the scene to display; a master application synchronizes changes to the scene and the
viewing camera.

We created two frameworks to develop multisurface applications based on this model. The first,
jBricks [4], is based on a 2D scene graph that describes the canvas’s content and a set of reactions
that describe how to respond to user actions, similar to traditional user-interface toolkits. Scene
graph objects include geometric shapes, text, images, and Java Swing widgets laid out on an
infinite canvas and observed through one or more cameras.

jBricks uses a replicated approach to render the scene graph on a cluster-driven tiled display. The
toolkit supports smooth real-time panning and zooming of very large information spaces,
including gigapixel images, as well as interactive visual effects such as magnifying lenses. By
making distribution transparent to the application, jBricks greatly lowers the barrier to developing
multisurface applications.

Our second framework, Shared Substance, takes a different approach by making distribution
explicit [7]. A Shared Substance application is a collection of processes called environments that
run on different machines. The application discovers environments dynamically, and they can
appear and disappear at any time. Each environment contains a hierarchical data structure that it
can share, in whole or in part, with other environments.

An environment accesses a shared subtree either by replicating it and accessing the local copy or
by mounting it and accessing the original through remote procedure calls. Environments can use
facets to dynamically add functionality to a shared subtree. For example, Figure 5 shows how our
Substance Canvas application uses facets to display the canvas, modify its content, and support
interaction. Shared Substance provides great flexibility and makes it possible to create
applications that dynamically adapt to their use context and are reconfigurable at runtime.

Distributed content sources

In a multisurface environment, users need to juxtapose content from multiple sources, as if the
various surfaces were extensions of their laptops. Sources include passive documents such as
PDF files and images, active documents such as webpages, and live applications such as data
analysis and visualization programs. The challenge lies in integrating such heterogeneous sources
into a unified environment.

We began with simple but effective solutions based on conventional tools: a user can e-mail a
document to WILD to display it on the wall or “print to the wall” by sending a document to a
printer queue that WILD monitors. Users can also fill out a simple Web form or use a
bookmarklet to display webpages on the wall.

 - 9 -

Figure 5: Substance Canvas application. (left) Two users share content between the
wall, the table and a laptop. (right) A master environment shares a scene graph
representing a canvas. Rendering environments replicate the scene graph to add local
rendering capabilities, while interaction instruments mount the scene graph to add
editing functions. Content providers then mount the scene graph to modify its content,
for example, through a webservice. (Source: INRIA.)

Even so, scientists must be able to use existing applications. Since porting them to our
frameworks is not practical, at least in the short term, both jBricks and Shared Substance support
the display of live applications running on a different computer, typically a user’s laptop. For
Linux, we use Metisse [8] to send pixel-based representations of the windows. For Mac OS, we
use Scotty [9] to send vector-based representations of the windows, resulting in smooth scaling
when displayed on the wall. In both cases, the scientists can use an instrument that simulates a
mouse to interact with the teleported applications.

An alternative with better performance is to run the legacy application on the WILD cluster itself.
Using Shared Substance, we wrapped the BrainVISA 3D visualization application
(http://brainvisa.info) into an environment that shares the address of the scan being displayed and
the position of the virtual camera controlling its orientation. Figure 3 shows the cluster running 64
such environments, each displaying a different brain scan. The table runs an instrument for
organizing the brain scans, while the brain prop controls the orientation of a master camera,
which is shared by the 64 environments that display the individual brain scans.

The resulting application was created in a few days, providing neuroanatomists with a unique tool
to study the brain. We used a similar approach with the PyMol molecule viewer. We can display
a single molecule on the full wall by having each replica display its part. Rotating it in real time
shows no visible tearing.

By distributed content, rendering, and interaction we have created a modular architecture that
simplifies the development of multisurface applications while supporting flexible interaction as
well as legacy content and applications. Even without optimization, performance is good: users
can interact with full-wall images in real-time with little perceivable lag. The ability to change
configurations and components on the fly during a design session makes these tools an excellent
platform for rapid prototyping.

 - 10 -

Sidebar: Recommended Reading

Researchers have long been interested in room-scale interaction. An early project was the
Stanford iRoom [10], an infrastructure that enabled the devices in a room to communicate with
each other. Lucia Terrenghi and colleagues provided a comprehensive taxonomy of different
scales of multisurface environments [11], from wristwatches and phones to the side of a building.
These environments support users interacting in isolation or simultaneously, in parallel or
collaboratively.

At the room-sized scale of this spectrum, much work has focused on creating large high-
resolution displays such as wall-sized tiled displays and CAVEs. These projects often focus on
high-performance distributed rendering and data-sharing rather than on interaction. Tao Ni and
colleagues surveyed the technologies and application for such environments and emphasized the
need for better interaction techniques [12]. Our work addresses these issues by introducing
concepts and techniques for distributed, multisurface interaction [3, 4, 7].

Conclusion

Realizing the vision of ubiquitous computing requires creating interaction architectures and
paradigms that harness the power of combining devices and services into integrated
environments. Today’s smartphones, tablets, multitouch tables, and wall displays bring little more
than the sum of their parts. In contrast, the WILD room’s multisurface interaction paradigm
illustrates how interaction, not just content, can be distributed across multiple devices.

The scientists we have worked with are eager to use WILD for their daily work. By involving
them in the design process, we have been able to focus on their real needs and identify the real
technological challenges. We have learned the following lessons in the process:

• decouple tools from one another and use simple protocols to facilitate their integration;
• focus on interaction rather than rendering, and assume that hardware will provide

sufficient performance;
• leverage existing tools when possible, but also develop from scratch when needed; and
• explore alternative designs to gain deeper understanding of their respective advantages and

disadvantages.

However, this is just the beginning. We must work with additional user groups to gain new
insights and expand the scope of multisurface interaction, extend our interaction vocabulary to
match the richness of desktop interfaces, and scale our software architectures to test them with
other applications.

One important requirement not currently addressed by WILD and unanimously requested by our
users is support for collaboration among remote colleagues. While the multisurface interaction
paradigm naturally scales to remote groups, additional technology is needed to support face-to-
face communication. The WILD room is now part of Digiscope (http://digiscope.fr), a larger
project that will create a network of interactive visualization rooms specifically designed to
address these issues.

In the long run, platforms such as WILD will become increasingly affordable. Wall-sized
displays will combine high-definition and multitouch surfaces without borders, and motion
tracking will become more reliable, without the need for markers. These advances will reduce the
constraints on users and support a wider range of multisurface interactions.

 - 11 -

We anticipate that this technology will become prevalent in the workplace, first in meeting rooms
and design studios, then in offices, and later in the home, offering families new ways to play,
study, communicate, and enjoy entertainment. Only then will multisurface interaction become
truly integrated into the fabric of our everyday lives.

Acknowledgments

We thank our partner laboratories, in particular IAS (astrophysics), LAL (particle physics), IGM
(biology) and Neurospin (neuroscience) for their participation. WILD is supported by a Région
Île-de-France/Digiteo grant and by Université Paris-Sud, INRIA, CNRS, ANR and the INRIA-
Microsoft joint laboratory.

References
1. Mark	
 Weiser.	
 The	
 computer	
 for	
 the	
 21st	
 century.	
 Scientific	
 American,	
 265(3):94–104,	
 1991.	

2. Mathieu	
 Nancel,	
 Julie	
 Wagner,	
 Emmanuel	
 Pietriga,	
 Olivier	
 Chapuis	
 ,	
 and	
 Wendy	
 Mackay.	
 Mid-­‐
air	
 pan-­‐and-­‐zoom	
 on	
 wall-­‐sized	
 displays.	
 In	
 Proc.	
 Human	
 Factors	
 in	
 Computing	
 Systems,	

CHI	
 ’11,	
 177–186.	
 ACM,	
 2011.	
 	

3. Clemens	
 Klokmose	
 and	
 Michel	
 Beaudouin-­‐Lafon.	
 VIGO:	
 Instrumental	
 interaction	
 in	
 multi-­‐
surface	
 environments.	
 In	
 Proc.	
 Human	
 Factors	
 in	
 Computing	
 Systems,	
 CHI	
 ’09,	
 869–878.	
 ACM,	

2009.	
 	

4. Emmanuel	
 Pietriga,	
 Stéphane	
 Huot,	
 Mathieu	
 Nancel,	
 and	
 Romain	
 Primet.	
 Rapid	
 development	

of	
 user	
 interfaces	
 on	
 cluster-­‐driven	
 wall	
 displays	
 with	
 jBricks.	
 In	
 Proc.	
 Engineering	

Interactive	
 Computing	
 Systems,	
 EICS	
 ’11,	
 185–190.	
 ACM,	
 2011.	
 	

5. Pierre	
 Dragicevic	
 and	
 Jean-­‐Daniel	
 Fekete.	
 Support	
 for	
 input	
 adaptability	
 in	
 the	
 ICon	
 toolkit.	

In	
 Proc.	
 Multimodal	
 Interfaces,	
 ICMI	
 ’04,	
 212–219.	
 ACM,	
 2004.	
 	

6. Byungil	
 Jeong,	
 Jason	
 Leigh,	
 Andrew	
 Johnson,	
 Luc	
 Renambot,	
 Maxine	
 Brown,	
 Ratko	
 Jagodic,	

Sungwon	
 Nam,	
 and	
 Hyejung	
 Hur.	
 Ultrascale	
 collaborative	
 visualization	
 using	
 a	
 display-­‐rich	

global	
 cyberinfrastructure.	
 IEEE	
 Computer	
 Graphics	
 and	
 Applications,	
 30(3):71–83,	
 2010.	
 	

7. Tony	
 Gjerlufsen,	
 Clemens	
 Nylandsted	
 Klokmose,	
 James	
 Eagan,	
 Clément	
 Pillias,	
 and	
 Michel	

Beaudouin-­‐Lafon.	
 Shared	
 Substance:	
 developing	
 flexible	
 multi-­‐surface	
 applications.	
 In	
 Proc.	

Human	
 Factors	
 in	
 Computing	
 Systems,	
 CHI	
 ’11,	
 3383–3392.	
 ACM,	
 2011.	
 	

8. Olivier	
 Chapuis	
 and	
 Nicolas	
 Roussel.	
 Metisse	
 is	
 not	
 a	
 3D	
 desktop!	
 In	
 Proc.	
 User	
 Interface	

Software	
 and	
 Technology,	
 UIST	
 ’05,	
 13–22.	
 ACM,	
 2005.	
 	

9. James	
 R.	
 Eagan,	
 Michel	
 Beaudouin-­‐Lafon	
 and	
 Wendy	
 E.	
 Mackay.	
 Cracking	
 the	
 cocoa	
 nut:	
 user	

interface	
 programming	
 at	
 runtime.	
 In	
 Proc.	
 User	
 Interface	
 Software	
 and	
 Technology,	
 UIST	
 ’11,	

225–234.	
 ACM,	
 2011.	
 	

10. Jan	
 Borchers,	
 Meredith	
 Ringel,	
 Joshua	
 Tyler,	
 and	
 Armando	
 Fox.	
 Stanford	
 interactive	

workspaces:	
 a	
 framework	
 for	
 physical	
 and	
 graphical	
 user	
 interface	
 prototyping.	
 IEEE	

Wireless	
 Communications,	
 9(6):64–69,	
 December	
 2002.	
 	

11. Lucia	
 Terrenghi,	
 Aaron	
 Quigley,	
 and	
 Alan	
 Dix.	
 A	
 taxonomy	
 for	
 and	
 analysis	
 of	
 multi-­‐person-­‐
display	
 ecosystems.	
 Personal	
 and	
 Ubiquitous	
 Computing,	
 13:583–598,	
 November	
 2009.	
 	

12. Tao	
 Ni,	
 Greg	
 S.	
 Schmidt,	
 Oliver	
 G.	
 Staadt,	
 Mark	
 A.	
 Livingston,	
 Robert	
 Ball,	
 and	
 Richard	
 May	
 .	
 A	

survey	
 of	
 large	
 high-­‐resolution	
 display	
 technologies,	
 techniques,	
 and	
 applications.	
 In	
 Proc.	

Virtual	
 Reality	
 Conference,	
 VR	
 ‘06,	
 223–236.	
 IEEEMarch	
 2006.	
 	

 - 12 -

About the authors
Michel Beaudouin-Lafon is a professor of computer science at Université Paris-Sud and a senior member
of Institut Universitaire de France. His research interests include interaction techniques and paradigms,
collaborative systems, and engineering of interactive systems. He received a PhD in computer science from
Université Paris-Sud. Contact him at mbl@lri.fr.

Olivier Chapuis is a research scientist at CNRS. His research interests include windowing systems,
pointing, multiscale interfaces, and interaction techniques. He received a PhD in mathematics from
Université Paris VII Diderot. Contact him at olivier.chapuis@lri.fr.

James R. Eagan is an assistant professor at Télécom ParisTech. His research interests include information
visualization and making software more malleable for end-users and programmers. He received a PhD in
computer science from the Georgia Institute of Technology. Contact him at james.eagan@telecom-
paristech.fr.

Tony Gjerlufsen received a PhD in computer science from Aarhus University. His research interests
include software architecture, human-computer interaction, philosophy of computer science, and
ubiquitous computing. Contact him at tony@cs.au.dk.

Stéphane Huot is an associate professor at Université Paris-Sud, on leave at INRIA. His research interests
include interaction techniques, input devices and methods, and engineering of interactive systems. He
received a PhD in computer science from Université de Nantes. Contact him at stephane.huot@lri.fr.

Clemens Klokmose is a postdoctoral fellow at Aarhus University. His research interests include human-
computer interaction and multisurface environments. He received a PhD in computer science from Aarhus
University. Contact him at clemens@cs.au.dk.

Wendy Mackay is a principle research scientist at INRIA and heads the INSITU lab. Her research interests
include coadaptive systems, interactive paper, mediated communication, and participatory design. She
received a PhD from the Massachusetts Institute of Technology. Contact her at wendy.mackay@lri.fr.

Mathieu Nancel is pursuing a PhD at Université Paris-Sud. His research interests include interaction
techniques, visualization platforms, and user performance modeling. He received an MSc and an
engineering degree in computer science from Université Paris-Sud. Contact him at mathieu.nancel@lri.fr.

Emmanuel Pietriga is a research scientist at INRIA. His research interests include interaction techniques,
information visualization, the Semantic Web, and the engineering of interactive systems. He received a
PhD in computer science from Institut National Polytechnique de Grenoble. Contact him at
emmanuel.pietriga@inria.fr.

Clément Pillias is an engineer at CNRS. He received an MSc in computer science from Université Paris 6.
His research interests include interaction techniques, gestural interfaces, collaborative interaction, and
engineering of interactive systems. Contact him at clement.pillias@lri.fr.

Romain Primet is a research engineer at INRIA. He received an MSc in computer science from Université
de Nice. Contact him at romain.primet@inria.fr.

Julie Wagner is pursuing a PhD at INRIA. Her research interests include embodied and tangible
interaction with large surfaces. She received an MSc in computer science from RWTH Aachen University.
Contact her at julie.wagner@lri.fr.

